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Abstract: The study of electroencephalographic (EEG) signals has gained popularity in recent years
because they are unlikely to intentionally fake brain activity. However, the reliability of the results is
still subject to various noise sources and potential inaccuracies inherent to the acquisition process.
Analyzing these signals involves three main processes: feature extraction, feature selection, and
classification. The present study extensively evaluates feature sets across domains and their impact
on emotion recognition. Feature selection improves results across the different domains. Addition-
ally, hybrid models combining features from various domains offer a superior performance when
applying the public DEAP dataset for emotion classification using EEG signals. Time, frequency,
time–frequency, and spatial domain attributes and their combinations were analyzed. The effective-
ness of the input vectors for the classifiers was validated using SVM, KNN, and ANN, which are
simple classification algorithms selected for their widespread use and better performance in the state
of the art. The use of simple machine learning algorithms makes the findings particularly valuable
for real-time emotion recognition applications where the computational resources and processing
time are often limited. After the analysis stage, feature vector combinations were proposed to identify
emotions in four quadrants of the valence–arousal representation space using the DEAP dataset. This
research achieved a classification accuracy of 96% using hybrid features in the four domains and the
ANN classifier. A lower computational cost was obtained in the frequency domain.

Keywords: DEAP dataset; feature extraction; feature selection; frequency domain; time domain;
time–frequency domain; location or spatial domain; emotion recognition; EEG signals

1. Introduction

Brain–computer interfaces (BCIs) provide a means to develop interactions between
humans and computers [1]. Within BCIs, affective BCIs (aBCIs) are identified, and aim to
detect users’ emotional states using electroencephalographic (EEG) signals [2]. BCI devices
record brain responses using various invasive and non-invasive acquisition techniques [3].
EEG monitored via external BCIs is non-invasive because it does not damage tissues. The
use of BCIs for monitoring EEG is one of the preferred methods for emotion recognition
due to its speed, low cost [2], and strong connection with emotional states [4]. Therefore,
emotions can be recognized through the classification of incoming EEG signals.

Brain signal studies have gained importance in recent years, because they are unlikely
to intentionally fake brain activity [5]. However, the reliability of the results is still subject
to various noise sources and potential inaccuracies inherent to the acquisition process.
In general, the implementation of EEG-based emotion recognition has a wide range of
potential applications in entertainment, therapy, security, business, and education.

Emotion recognition primarily relies on combining features and models obtained from
classifiers [6]. Thus, evaluating different types of characteristics is essential and necessary
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for developing more accurate emotion recognition systems. However, the challenge lies
in determining which features are suitable for ensuring acceptable accuracy in terms of
emotion recognition. There is no consensus on the EEG features for emotion detection to
improve classification accuracy. Consequently, EEG emotion recognition has become an
active topic in affective computing.

In this work, we review different feature extraction methods in the time domain,
frequency domain, time–frequency, and location (spatial) domains to obtain input vectors
for classifiers such as the support vector machine (SVM), k-nearest neighbor (k-NN), and
artificial neural networks (ANNs). The data to be analyzed come from the public access
dataset DEAP [7,8], which correlate emotional states with EEG signals using audio and
images as stimuli, acquiring their data through BCI devices.

Based on the EEG data from the DEAP dataset, sixteen feature vectors are constructed,
some within a specific domain and others using multi-domain characteristics. These
features are input to simple machine learning classifiers (SVM, k-NN, ANN). The resulting
models are evaluated to define attributes that provide more information for classification
and, thus, yield a better performance.

The rest of the article is structured as follows: in Section 2, several related works found
in the literature are presented. Section 3 explains the materials and methods employed in
this research, including emotion models, DEAP dataset description, feature extraction in
time, frequency, time–frequency, and location (spatial) domains, and classifiers. Section 4
provides details of the implementation and evaluation of the emotion recognition system
in the four quadrants of valence–arousal (VA). Section 5 presents a discussion emerging
from the results of the present study and various works in the literature. Finally, Section 6
outlines the conclusions and directions for future work.

2. Related Work

Several studies on emotion recognition have been found in the literature, addressing
classification based on the two-dimensional model categorizing valence/arousal (VA) in
terms of the categories derived from EEG signals from the DEAP dataset.

Some studies in the literature begin with the classification of the categories of high/low
valence (HV and LV) and high/low arousal (HA and LA) for emotion recognition. For
example, Nawaz et al. studied emotion recognition by implementing features such as
entropy, statistics, fractal dimension, power functions, and wavelet, which correspond to
time, frequency, and time–frequency, respectively. The authors achieved average accuracy
results in the valence dimension of 75.06% with the k-NN classifier and 77.62% with the
SVM classifier. In comparison, in arousal, they obtained average results of 74.71% and
78.96% for k-NN and SVM, respectively. The authors conclude that the time domain
statistical features better distinguish between low and high valence and arousal levels [9].
The authors of [10] propose selecting locally robust EEG features (LRFS) for emotion
recognition. In feature extraction, they employ methods such as power ratio and power
difference, statistical techniques like variance, kurtosis, and skewness, and variables like
the zero-crossing rate and Shannon entropy; using these methods, they obtained a total
of 364 EEG features. The authors achieved average accuracy results in Arousal of 60.05%,
65.10%, and 61.85%. The average accuracy in valence was 65.13%, 67.97%, and 65.60% using
the k-NN, SVM, and ANN classifiers, respectively. The authors implement features in time
and frequency domains for feature extraction without establishing which features improve
classifier performance. In [11], the authors propose emotion recognition by implementing
the spectral power method for individual channels and spectral power asymmetry among
the 12 pairs of electrodes for feature extraction from the five frequency bands (delta, theta,
alpha, beta, and gamma) of the EEG signals. These methods correspond to the frequency
domain. The authors obtained average accuracy values of 65.0% for Arousal and 63.3% for
Valence using the SVM classifier with a radial basis function (RBF) kernel. Using the naive
Bayes classifier, they achieved an average accuracy of 65.6% in arousal and 68.0% in valence.
However, their approach does not determine which feature extraction methods better
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classify emotional states. In [12], the authors propose feature extraction from EEG signals
by implementing statistical procedures (median, standard deviation, kurtosis), Hjorth
parameters, the spectral density of frequency bands, fractal dimension, and wavelets.

Additionally, they incorporate feature selection using the minimum redundancy max-
imum relevance (mRMR) method for emotional state recognition in the VA space. The
authors report accuracy results of 60.72% in arousal and 62.39% in valence with the SVM
classifier, using an RBF kernel. The authors implement feature extraction methods in time,
frequency, and time–frequency without concluding which features yield the best results.

Other authors perform emotion recognition based on the four quadrants of the two-
dimensional model; that is, they classify the quadrants of the VA model into high arousal–
high valence (HAHV), high arousal–low valence (HALV), low arousal–low valence (LALV),
and low arousal–high valence (LAHV), which implies greater complexity, given the number
of classes to classify. For example, the authors of [13] propose exploring multi-domain
features to identify the attributes that contribute to ranking a higher number of emotion
classes. The authors implement feature extraction methods, such as Hjorth parameters and
entropy, Fourier transform, RASM, DASM, and discrete wavelet transform and differential
entropy. The authors achieved an average accuracy of 65.72% with time-domain features
using the SVM classifier with a polynomial kernel. However, they explore a minimal
set of feature extraction methods. The authors of [14] propose recognizing four emotion
classes in VA, using feature extraction methods in the time and frequency domain and the
mRMR method to select significant features. The authors implement statistical methods
(mean, standard deviation, mean of absolute values of the first and second difference of
the raw and processed signal), discrete wavelet transform, and the wavelet energy and
wavelet entropy estimation. They use 15 EEG channels and the SVM classifier, obtaining
accuracy percentages of 52.1% HAHV, 49.1% HALV, 49.6% LAHV, and 48.3% LALV, with
an overall accuracy of 49.7%. However, the authors do not conclude which features provide
better results.

On the other hand, some authors use public access datasets such as DEAP for emotion
classification. For example, the authors of [15], for emotion recognition, apply features such
as power spectral density (PSD), differential entropy (DE), differential asymmetry (DASM),
and rational asymmetry (RASM). They use the mean accuracy rate (mAR) metric, obtaining
average results in VA space of 44.07% and 59.09% using SVM and ANN classifiers for
the DEAP dataset. The authors of this study use frequency domain methods for feature
analysis and individual participants.

Li et al. propose the recognition of three (positive, negative, neutral) and four (VA
space) affective states using PSD, DE, and Fourier transform features, obtaining accuracy
results of 62.54% in DEAP using the ANN classifier [16].

Several works mentioned in the literature aim to achieve emotion recognition using
different feature extraction methods in the time, frequency, time–frequency, and location
(spatial) domains; however, their goal is not to determine which features or combination
of them provide better results. Very few studies focus on determining which feature
extraction methods from the different domains give better results in classifying emotional
states. Therefore, there is still no agreement on the EEG features that provide better results
to improve classification accuracy.

One of the key contributions of this work lies in studying the recognition of emotional
states defined in the four quadrants of the two-dimensional (VA) model, exploring a broader
set of feature extraction methods in time, frequency, time–frequency, and location (spatial)
domains to obtain input vectors for the SVM, k-NN, and ANN classifiers.

The data to be analyzed come from the public access DEAP dataset that correlates
emotional states with EEG signals using audio and image stimuli that acquire data based
on BCI. Sixteen input vectors were created in order for the classifiers to evaluate which
feature extraction method provides more information and produces a better performance.
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3. Materials and Methods

In this section, the proposed emotion recognition process, the methods for feature
extraction, and the classification algorithms used in this work are mentioned, as well as
general information on the DEAP [7] dataset.

3.1. Emotion Recognition Process

Figure 1 represents the structure of an EEG-based BCI system for emotion
recognition [8].
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This work used preprocessed signals from the DEAP dataset previously labeled with
emotions extracted from subjects who self-assessed their emotional states. Subsequently,
feature extraction was performed to relate the EEG signals to the different emotional states;
the input vector to the classifier contains various combinations of features. Dimension-
reduction techniques were tested using a correlation matrix to eliminate attributes that
have redundant information that could add noise to the classification. The models for
classifying the four quadrants of the VA space were created using simple machine-learning-
based classification algorithms. Model evaluation was obtained using accuracy as the
primary metric.

3.2. Data Acquisition

We have considered the public dataset commonly used for emotion analysis: the EEG
signal set of the DEAP dataset.

DEAP is a dataset containing multiple physiological signals with emotional evalu-
ations, including EEG signals from 32 subjects (16 men and 16 women) while watching
40 one-minute video clips with different emotional tendencies.

The EEG signals are recorded at a sampling frequency of 512 Hz to activate 32 active
electrodes according to the international 10–20 system [17]. Each participant evaluates
their valence, arousal, dominance, and liking levels using the Self-Assessment Manikin
(SAM) [18]. Each data file (s01.dat–s32.dat) contains two matrices:

• Data matrix: 40 × 40 × 8064, where the first 40 elements represent the total number of
videos, the second 40 represent the collection of signals from the total number of chan-
nels (32 EEG), and 8064 are the experimental data based on the video and sampling
sequence (63 × 128). The first 3 s correspond to the reference data obtained before the
experiment. The last 60 s are the information recorded during the experiment.

• Label matrix: 40 × 4, where the number of videos used is represented by 40, and 4 is
the number of labels describing the affective dimensions: valence, arousal, dominance,
and liking, with scores ranging from 1.0 to 9.0 according to the SAM (Self-Assessment
Manikin) scale.
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According to the two-dimensional emotion model (see Figure 2), the emotions labeled
in each video can be classified into 4 quadrants based on the valence–arousal space. Va-
lence is on the x-axis, and arousal is on the y-axis. Therefore, there are four quadrants:
high arousal–high valence (HAHV), low arousal–high valence (LAHV), high arousal–low
valence (HALV), and low arousal–low valence (LALV). Arousal scales range from passive
to active, and valence ranges from negative to positive.
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Figure 2. Bidimensional model representation.

In this bi-dimensional representation, the emotions are described using valence, i.e.,
positive or negative feelings. Arousal refers to the degree of physical or mental activation
or energy. High arousal is the sensation that generates high energy, and low arousal is the
sensation of low energy. For instance, terror, stress, and anger are negative emotions that
produce high arousal. Sadness, depression, lethargy, and fatigue are states with negative
valence and low arousal. Euphoria, happiness, and enthusiasm are positive-valence and
high-arousal emotions. Calm, placidity, and satisfaction are positive-valence and low-
arousal feelings.

In the present work, we evaluate valence and arousal levels from preprocessed EEG
signal recordings of the 32 channels at a downsampled sampling frequency of 128 Hz. Each
trial contains 8064 data points for the sampling frequency, resulting in a 40 × 32 × 8064
structure corresponding to the number of trials per participant, the number of channels,
and the stored signal data for each channel.

The emotions that could be differentiated according to their ubication in a quadrant
in the VA space are, for example, terror, anger, anxiety/euphoria, enthusiasm, happi-
ness/boredom, apathy, sadness/tranquility, placidity, and satisfaction. These emotions
correspond to various combinations of valence and arousal levels within the VA space,
allowing for an understanding of a person’s emotional state.

3.3. Feature Extraction Methods

The feature extraction stage is of particular importance since the quality of the data ob-
tained will directly affect the accuracy of emotion classification. That is, finding informative
features of the EEG signals can improve the discrimination capacity between emotions with
limited dimensionality [19]. Various common feature extraction methods for BCI systems
are based on analyzing signals in the time, frequency, time–frequency, and location (spatial)
domains [20].
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3.3.1. Time Domain

Most EEG signal acquisition equipment supports time-domain series. These methods
mainly consider the geometric characteristics of the EEG signals, leading to a lower loss of
information. The time-domain attributes provide valuable information about the statistical
patterns in the EEG data.

The time-domain methods included in this work are statistical functions such as the
maximum, mean, standard deviation, variance, skewness, kurtosis, and mean of absolute
values of a normalized first and second difference. Entropy functions include Shannon
entropy, approximate entropy, sample entropy, permutation entropy, and other functions
like energy, average power, root mean square, line length, Higuchi fractal dimension,
Petrosian fractal dimension, Hjorth parameters, zero crossing, and higher-order crossing.

3.3.2. Frequency Domain

Frequency domain methods transform the EEG signals from the time domain to
the frequency domain for analysis. The acquired spectrum is typically decomposed into
five sub-bands, delta, theta, alpha, beta, and gamma [4], for feature extraction and the
subsequent analysis of EEG signals. The functions implemented from this domain in
the present work are the spectral entropy, power ratio, power spectral density, and fast
Fourier transform. This domain provides insights into the power spectral density or energy
distribution across various frequency bands. Each frequency band is associated with
different cognitive states and emotional processes.

3.3.3. Time–Frequency Domain

Time–frequency domain analysis methods have localized analysis capabilities in both
the time and frequency domains simultaneously. The functions used in this work are
discrete wavelet transform and wavelet entropy. The feature extraction in this domain is
powerful, capturing the transient behavior of EEG signals and the evolution of frequency
components over time.

3.3.4. Location Domain

Location-domain features would be obtained from voltage measurements at various
locations on the scalp and their differences or ratios among left and right sites. Differential
asymmetry (DASM) and rational asymmetry (RASM) may capture some aspects of the
asymmetry between the two sides. These features are based on the premise that certain
cognitive and emotional processes are lateralized, meaning that they are more dominant in
one hemisphere of the brain than the other.

Table 1 shows the mathematical expressions and the parameters of the feature extrac-
tion methods in the time, frequency, time–frequency, and location domains implemented in
this research.
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Table 1. Mathematical expressions and a brief description of the feature extraction methods.

Method Mathematical Expression Description

Time domain

Maximum (Max) (Xi ∈ C) (1) Xi is the maximum element of C if any other component of that set is less
than or equal to Xi.

Mean mean = 1
N

N
∑

i=1
Xi

(2)

In Equations (2)–(6), Xi represent the data (EEG signal), where i = 1, . . . , N,
and N is the total number of samples (experiments).

Standard deviation (Stddev) stddev =
√

1
N

N
∑

i=1
(Xi − mean)2 (3)

Variance (Var) var = 1
N

N
∑

i=1
(Xi − mean)2 (4)

Skewness skewness = ∑N
i=1 (Xi−mean)3/N

(stddev)3
(5)

Kurtosis kurtosis = ∑N
i=1 (Xi−mean)4/N

(stddev)4
(6)

Mean of absolute values of the first difference
of normalized (AFD_N) AFDN = 1

N−1

N−1
∑

i=1
|X(i + 1)− X(i)| (7) In Equations (7) and (8), Xi represents the data (EEG signal), where

i = 1, . . . , N, and N is the total number of samples (experiments).

The mean of absolute values of the second
difference of normalized (ASD_N ()) ASDN = 1

N−2

N−2
∑

i=1
|X(i + 2)− X(i)| (8)

Shannon entropy (ShEn) ShEn = −
N
∑

i=1
Pi(X)logPi(X) (9) X represents the EEG signal, Pi is the occurrence probability for the values

in X, and N is the total number of experiments.

Approximate entropy (ApEn)
ApEn(X, m, r) =

1
N−m+1

N−m
∑

i=0
logCm

i (r)− 1
N−m

N−m−1
∑

i=0
logCm+1

i (r)
(10)

X represents the EEG signal, m is the size of the vector, r is the tolerance
value, N is the total number of experiments, and Cm

i is the vector
self-similarity.

Sample entropy (SampEn)
SampEn(X, m, r) = log∅m(r)− ∅m+1(r)

where ∅m(r) = ∑N−m
j=0,j ̸=i ∑N−m

i=0 θ(r − ||u[i]− u[j]||∞)
(11) Self-similarity of the pairs of vectors u[i] and u[j] with a tolerance of r. If the

signals are self-similar, then ∅m (r) is high.
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Table 1. Cont.

Method Mathematical Expression Description

Permutation entropy (PerEn)
PE(X) =

m!
∑

k=1
p(πk)log p(πk)

where p(πk) =
1

N−m+1 ∑N−m
i=0 f (u[i], πk)

(12)
f (u[i], πk) = 1 when u[i] and πk have the same pattern, else is 0, and the
pattern is defined by the order of u[i] that corresponds to each element. The
occurrence probability of each pattern category is p(πk).

Energy (Eng) Eng =
∞
∑

n=−∞
|X(n)|2 (13) X(n) → 0 as n → ±∞ , where X(n) is the EEG signal.

Average power (Avg) Avg = lim
N→∞

1
2N

N
∑

n=−N
|X(n)|2 (14) N is the number of samples taken for the computation, and X(n) is the EEG

signal.

Root mean square (EMS) RMS =

√
1
N

N
∑

n=1
X2(n) (15) N is the number of samples taken for the computation, and X(n) is the EEG

signal.

Line length (LinLen) LL =
N
∑

i=1
|X[i − 1]− X[i]| (16) X is the EEG signal, N is the number of samples in the signal, and i is the

data index.

Petrosian fractal dimension (PFD) PFD =
log(m)

log(m)+log
(

m
m+0.4N∆

) (17) The length of the signal is m, and N∆ is the number of pairs of segments
that are not similar in the binary sequence.

Higuchi fractal dimension (HFD)

HDF = −( lim
k→∞ )

log⟨L(k)⟩
log(k)

where

Lm(k) = 1
τ

(
⌊ N−m

k ⌋
∑

i=1
|x[m + i.k]− x[m + (i − 1)k]|

)
N−1

⌊ N−m
k ⌋k

and L(k) = 1
k

k
∑

m=1
Lm(k)

(18)
N is the total number of signals, and y N−1

⌊ N−m
k ⌋k

is the normalization

correction factor. The average length of k sequences with the same interval
as the signal length L(k) corresponds to the interval k.

Zero crossing (ZeCr)
ZeCr(i) = 1

2WL

WL

∑
n=1

|sgn[xi(n)]− sgn[xi(−1)]

where sgn[xi(n)] =
{

1, xi(n) ≥ 0
−1, xi(n) < 0 i = 1, . . . ,

(19)
The total count of samples present in a block of the EEG signal is
represented by WL, x(n) represents the input signal, and sgn is the sign
function.
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Table 1. Cont.

Method Mathematical Expression Description

Higher-order crossing (HOC) HOCk = ZeCr{Sk(Zt)} (20)
ZeCr is the estimation of the number of zero crossings. Zt represents the
finite zero-mean series data, ∇ is the high-pass filter, and Sk is the high-pass
filter sequence.

Hjorth parameters (HPs)
Activity = var(x(t)) (21) The activity is defined as the variance of the input signal represented by

x(t), var(x′(t)) represents the variance of the first derivative of x(t),
var(x′(t)) represents the variance of the signal, and y mobility(x(t)) is the
mobility of the first derivative of x(t).

Mobility =

√
var(x′(t))
var(x(t))

(22)

Complexity =
Mobility(x′(t))
Mobility(x(t))

(23)

Frequency domain

Power ratio (PR)

PR1 = DeltaPower+ThetaPower
AlphaPower+BetaPower (24) It determines power ratios between the current and background epoch in

the same frequency range to compare their power levels. Each power ratio
is used with different applications for state-of-mind recognition.

TBR = ThetaPower
BetaPower (25)

PR2 =
AlphaPower+ThetaPower
DeltaPower+BetaPower

(26)
BAR = BetaPower

AlphaPower (27)

Spectral entropy (SE)
SE(x) = −

m
∑

i=1
p(si)log2 p(si)

where P(m) =
S(m)

∑i S(i)

(28)

m is the number of values for the EEG signal. The denominator log2
represents the maximum uniformly distributed noise, and
S = {Si, . . . , Sm} is a function of the occurrence probability
P = {p(Si) , ..., p(Sm)}.

Power spectral density (PSD) PSD = lim
T→∞

1
T
∫ T

0 |x (t)|2dt (29) x(t) represents the given EEG signal by the following time average, where
T is centered at some arbitrary point t = t0.

Fast Fourier transform (FFT) FFT[k] =
N−1
∑

n=0
x[n].Wkn

N
(30) Wkn

N = e−j 2π
N , N is the number of samples in the signal, and x(n) represents

the input EEG signal, with k = 0, 1, . . . , N − 1.

Time–frequency domain

Discrete wavelet transform (DWT) γ(t) =
∞∫

−∞
x(t) 1√

2a ψ
(

t−b*2a

2a

)
dt (31) γ(t) = DWT of any signal in the time domain x(t); ψ(t) = wavelet; a and b

are the scale parameter and the shift parameter.



Appl. Sci. 2024, 14, 2228 10 of 23

Table 1. Cont.

Method Mathematical Expression Description

Wavelet entropy (WEnt) T(l) = − E(l)
∑M

m=1 E(m)
log
(

E(l)
∑M

m=1 E(m)

)
(32)

E is the wavelet energy based on a value l, l is the level of wavelet entropy,
E(l) is the square of the vector elements, and m is the number of the
wavelet decomposition.

Location domain (LD)

Rational asymmetry (RASM)
and differential asymmetry (DASM)

RASM =
Ple f t
Pright

(33) Ple f t and Pright represent the power of the electrodes in the left and right
hemispheres of the brain.DASM = Ple f t − Pright (34)
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3.4. Dimensionality Reduction

Extracted features may not be correlated with emotional states and can lead to degra-
dation in classifier performance. Therefore, dimensionality reduction could help increase
the speed and stability of the classifier. This study used a correlation matrix approach to
reduce dimensions.

Correlation matrix is a technique to detect correlations and eliminate redundancy from
the original data. The correlation matrix method for feature selection consists of analyzing
pairwise correlations between dataset characteristics. It is a simple but effective way to
understand the relationships between features and identify which ones might contain
redundant information and can be eliminated without loss of knowledge. The correlation
matrix method preserves the features, making the results easily interpretable [21].

The goal is to identify the linear combinations that best represent the variables
X1, . . . , Xp. Let (Z1, Z2, . . . , ZM) M < p be M < p linear combinations of the original
p variables, using

Zm =
p

∑
j=1

∅jmXj (32)

where ∅jm are the loadings of the principal components. Each loading vector of length p
defines the direction in space along which the variance of the data is maximized, and Xj
represents the EEG signal data.

3.5. Classification Algorithms

After extracting the feature vectors and implementing dimensionality reduction, we
classified emotions according to the VA space. There are several classifiers for the automatic
identification of feelings; below, we will mention some of the most commonly used.

3.5.1. Support Vector Machine (SVM)

This algorithm projects the input space to a higher-dimensional space to separate
nonlinear data. The fundamental feature of SVM is that the separation margin of the data
becomes as wide as possible [22].

SVM employs kernel methods, which can be of various types, such as linear, polyno-
mial, and Gaussian. SVM aims to choose an optimal separating hyperplane that maximizes
the distance between two data points of different classes [22].

The SVM machine learning method is chosen due to its high generalization and
classification ability. A training set

(
xj, yj

)
, 1 ≤ j ≤ N, xj denotes the feature vectors

extracted from the EEG signals, yj denote the corresponding emotion labels, and N is the
number of data. The SVM decision function is calculated as follows:

f (x) =
N

∑
i

∝i yik(Si, x) + b (33)

where x is the input vector (in this case, the feature vector extracted from EEG signals), k is
the kernel function, Si denotes support vectors, ∝i are the weights, and b is the bias.

3.5.2. k-Nearest-Neighbor (k-NN)

k-NN is a non-parametric estimation method that implements refinement where the
feature environment is high resolution in regions with dense training and low resolution in
variance. This algorithm assigns labels to previously unsampled points, usually with lower
efficiency as the data size increases [23].

Classification with k-NN is based on the constant k defined by the user, where the
new case will be assigned to the most common class among its k-nearest neighbors mea-
sured using a distance metric such as Euclidean, Manhattan, Minkowski, or Hamming.
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Most k-NN classifiers use the Euclidean metric to measure differences between examples
represented as vector inputs [24]. The Euclidean distance is defined as:

d
(
xi, xj

)
=

√
n

∑
r=1

Wr
(
ar(xi)− ar

(
xj
))2 (34)

where an example is defined as the vector x = (a1, a2, a3, . . . an), n is the dimensionality of
the input vector (number of attributes of an example), ar is the rth attribute of the example,
Wr is the weight of the rth attribute—r is from 1 to n—and d

(
xi, xj

)
represents the smaller of

the two most similar examples [25]. The class label assigned to a test example is determined
via the majority vote of its k-nearest neighbors using:

y(di) =
argmax

k ∑
xi∈kNN

y
(

xj, Ck
)

(35)

where di is a test example, xj is one of its k-nearest neighbors in the training set, and
y
(

xj, Ck
)

indicates whether xj belongs to class Ck.

3.5.3. Artificial Neural Networks (ANNs)

An ANN is based on biological neural systems with nonlinearity, adaptability, respon-
siveness, and fault-tolerance characteristics. The inputs in ANNs are called interconnected
neurons, and work together to search for the best configuration by modifying the network
weights to solve a problem.

A neural network receives as input a set of i = 1, . . . , n patterns in the form of vectors
of dimension p; each input vector is processed through the neurons of the I hidden layers
according to the connections between the nodes. Each node contains an activation function
f , which obtains the node output value through a weighted sum of the node inputs and an
additional bias value [22].

In a feedforward ANN, there are three layers: input, output, and hidden. The input
layer buffers the distribution of the input signals xn (n = 1, 2, 3, . . .) and sends them to the
neurons in the hidden layer. The neurons in the hidden layer aggregate the input signals,
xn, after weighting them with their respective connectivity strengths, Wnl , which are the
inputs of the layer. Finally, the output Y is calculated as follows.

yl = f

(
n

∑
n=1

Wnl xn

)
(36)

The number of neurons is I. The activation function can have different functional
forms, such as sigmoidal, radial, linear, hyperbolic tangent, etc. Using a similar approach,
the outputs of the neurons are calculated.

3.6. Assessment Performance

The performance of a classifier can be evaluated by calculating the number of correctly
recognized class examples (TPs), the number of correctly identified samples that do not
belong to the class (TNs), the samples that were assigned to the wrong category (FPs), and
the examples that were recognized as belonging to the wrong class (FNs) [26].

The performance evaluation metric used in this work is accuracy, obtained from the
values presented in the confusion matrix.
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3.6.1. Accuracy

Accuracy is a measure of a classifier’s class-wise effectiveness, defined as the ratio of
correctly classified instances to the total number of instances, as shown in Equation (37),
where N is the number of class labels.

Accuracy =
∑N

i=1
TP+TN

TP+FN+FP+TN
N

(37)

3.6.2. Confusion Matrix

The confusion matrix is used to measure the performance of the class problem for a
dataset. Table 2 shows an example of a confusion matrix.

Table 2. Confusion matrix example.

Labels
Prediction

Negative (0) Positive (1)

Negative (0) TN FP
Positive (1) FN TP

Nomenclature: true positives (TPs), true negatives (TNs), false positives (FPs), false negatives (FNs).

The elements on the right diagonal, TP and TN, classify the instances correctly. In
contrast, FP and FN classify the instances incorrectly, where

• total instances = correct instances + incorrect instances;
• correctly classified instance = TP + TN;
• incorrectly classified instance = FP + FN.

4. Implementation and Results

The DEAP dataset’s characteristics are presented in Table 3. It consists of 32.dat files,
composed of two parts: the data and the emotion labels classified on a numeric scale from
1 to 9. Regarding the labels, we are only interested in the first two of the four available
variables, corresponding to valence and arousal.

Table 3. DEAP dataset characteristics.

Description DEAP Dataset

EEG devise Biosemi ActiveTwo

Number of channels 32 for EEG, 8 physiological signals

Sampling Original 512 Hz, downsampled samples of 128 Hz

Number of subjects 32

Stimulus 40 musical videos (one minute each)

Emotions Valence, arousal, dominance, and liking (scale from 1 to 9,
familiarity from 1 to 5)

The one-hot encoding process was applied to convert the numerical variables to
categorical data, proposing three criteria: median, mean, and fixed value. The first criterion,
“Median”, consists of finding the median value between the valence–arousal (VA) labels
independently and categorizing these labels with values of 0 and 1, accordingly. Label 1 is
assigned to values above the median, and label 0 to values below the median. The second
criterion, “Mean”, initially looks for the average value among the VA data independently.
Once the average value is identified, the labels are standardized so that values equal to or
greater than the average are labeled 1, and values below the average are labeled 0. Finally,
the third criterion, “Greater than 5”, proposes assigning the label 1 to all data greater than
or equal to 5, and 0 to data less than 5.
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Figure 3 shows the percentages of each categorization according to the proposed
criteria. The “Median” criterion has 28% of classes labeled HAHV, 22% LAHV, 25.2%
HALV, and 24.8% LALV. In the “Mean” criterion, 26.6% of categories correspond to the
HAHV label, 23.7% to LAHV, 20% to HALV, and 29.6% to LALV. The difference between the
“Median” and “Mean” criteria ranges from 1.7% to 5.2%. However, when comparing the
results with the third criterion, “Greater than”, we have 35.8% in HAHV, 23.1% in LAHV,
20.8% in HALV, and 20.3% in LALV, representing a significant difference of 7.8% and 9.2%
in the HAHV label.
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Based on these results, several initial tests were carried out for the one-hot encoding
process via assigning 80% and 20% to the train and test sets [27]. It was identified that the
best option for the process was using the “Median” criterion. It separated the data so that
there were samples of emotions from each VA quadrant both in the train and test sets.

4.1. Selection of Feature Extraction Methods and Classification Algorithms

The experiments to be carried out were based on the results of a literature review
where a total of 25 studies were analyzed, addressing the following questions:

• Q1. What methods are used for feature extraction in the time, frequency, and time–
frequency domains for emotion recognition?

• Q2. Which classification algorithms yield better results in emotion classification?

4.1.1. Feature Extraction Methods

In response to question Q1, regarding the most commonly used feature extraction
methods from the different domains, the results are shown in Figures 4–7.

Figure 4 shows the feature extraction methods in the time domain found in our
literature review vs. the number of papers that used them. Statistical methods are the most
used, followed by ShEn, HFD, SampEn, and HP methods.

In Figure 5, the statistical procedures found in the SLR are shown. In total, 26% of
articles employ Stddev as a statistical method, 19% use the mean method, and 17% use
its AFSD_N variants. Meanwhile, 12% corresponds to the kurtosis method, and 7% to the
skewness method.

Based on the frequency of use of methods in the time domain, the most commonly used
approaches were selected: Shannon entropy, sample entropy, Higuchi fractal dimension,
Hjorth parameters, and statistical methods. Some of the selected statistical methods were
the standard deviation, mean, mean absolute deviation, and kurtosis, corresponding to
percentages greater than 12%.

Additionally, specific methods in the time domain with lower percentages were con-
sidered, as they present good results in the evaluation metrics of classification algorithms.
Among the techniques included in the time domain are two variants of entropy (approxi-
mate and permutation), the Petrosian fractal dimension method, energy, root mean square,
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line length, average power, zero crossing, higher-order srossing, and the statistical tech-
niques: variance, skewness, and maximum.
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Figure 4. Feature extraction methods in the time domain. Energy (Eng), root mean square (RMS),
line length (LinLen), average power (Avg), Shannon entropy (ShEn), approximate entropy (ApEn),
sample entropy (SampEn), permutation entropy (PerEn), Higuchi fractal dimension (HFD), Petrosian
fractal dimension (PFD), Hjorth parameters (HP), zero crossing (ZeCr), higher-order crossing (HOC),
empirical mode decomposition (EMD), higher-order spectral (HOS), Katz’s fractal dimension (KFD),
statistics (ST).
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Figure 6 shows the frequency-domain methods found in the SLR. We found that 22%
of articles employ the PSD method for feature extraction, 15% use the FFT method or one of
its variations, and 11% use the SE, RASM, and DASM methods, followed by the PR method
with 7%.

The selected methods in the frequency domain are power spectral density, fast Fourier
transform, rational asymmetry, differential asymmetry, and spectral entropy, which corre-
spond to percentages greater than or equal to 11% of the frequency of use. Additionally,
the power ratio method, which corresponds to 7%, was selected due to its good results in
the evaluation metrics of classification algorithms.

Finally, Figure 7, feature extraction methods in the time–frequency domain, shows the
feature extraction methods in the time–frequency domain found in the SLR. In total, 68% of
articles use the DWT method, followed by the WEng and WEnt methods with 14% each.

The selected techniques in the time–frequency domain are discrete wavelet transform
and wavelet entropy, which correspond to the highest percentages of frequency of use. The
analysis involved the creation of four vectors with features from the time, frequency, and
time–frequency domains, which were used for the experiments in Section 4.3.

Spatial features in EEG (electroencephalography) refer to the attributes and informa-
tion that can be derived from the distribution and variation of EEG signal amplitudes
across different electrode sites on the scalp. In the DEAP dataset, EEG electrodes are placed
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according to the International 10–20 system, a standardized method to locate the sensors
on the scalp in a specific pattern based on anatomical landmarks of the head. We used the
algorithms DASM and RASM, described in Table 1, to extract these spatial features.

4.1.2. Classification Algorithms

In response to question Q2, regarding which algorithms are used for emotion classifi-
cation, Figure 8 shows the results in the considered papers of the SLR. SVM achieves better
results in 32% of the articles; 23% of articles obtained better results with ANN, and 18%
with the k-NN classifier, followed by the NB and RF classifiers, with 13.5% each.
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In the papers considered in our SLR, the percentage of the frequency and performance
of the algorithms used in the research was calculated, based on which the SVM, k-NN,
and ANN algorithms were selected to be implemented in this work because they have
percentages equal to or greater than 18%. The parameters of the classification algorithms
are discussed in Section 4.3.

4.2. Feature Extraction Times

The feature extraction methods presented in Table 1 were grouped into statistical
features, additional features (energy, root mean square, line length, average power, Higuchi
fractal dimension, Petrosian fractal dimension, Hjorth, zero crossing, and higher-order cross-
ing), frequency-domain features, time–frequency, and location (spatial)-domain features.
The calculation of the approximate time for entropy variants is performed individually. This
division was made because the number of characteristics in the time domain is numerous,
and the entropy variants have a high computational cost.

The time it takes to generate the features was calculated via averaging three executions
of our feature package for a given signal for a single data point, i.e., a specific user, with 1
and 32 channels.

Table 4 summarizes the approximate time in seconds it takes to extract features in
the DEAP dataset. The “Additional” features group has a shorter extraction time despite
being composed of several algorithms (Petrosian fractal dimension method, energy, root
mean square, line length, average power, zero crossing, higher-order crossing, and the
statistical techniques: variance, skewness, and maximum). Next are the time–frequency
feature group and statistical feature group.

On the other hand, frequency-domain features have a longer execution time than the
other features, followed by the approximate and sample entropy variants.
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Table 4. Execution time for feature extraction in the DEAP dataset.

Features 1 Channel (s) 1 Trial
32 Channels (s)

40 Trials
32 Channels (s)

Statistical 0.055000 1.760 70.40

Additional 0.220964 5.974 23.935

Frequency domain 1.114581 35.667 1426.68

Frequency–time domain 0.047963 1.535 61.40

Shannon entropy method 0.272020 8.705 348.20

Approximate entropy 3.471318 111.082 4443.28

Sampling entropy 3.368673 107.798 4311.92

Permutation entropy 0.061990 1.984 79.36

4.3. Emotion Classification and Performance Evaluation

One of the objectives of this work is to use different feature vectors to detect and
classify emotional states, employing different classification algorithms to evaluate which
feature extraction methods provide more information and produce classifiers with a better
performance.

The data were split into 80% and 20% for training and testing. Then, the data were
associated with the previously extracted features to construct the different input vectors for
the classifiers.

The classification algorithms used are SVM, k-NN, and ANN. An RBF kernel was used
in the SVM classifier, and “auto” was set as the gamma parameter. In the k-NN classifier,
the value of k = 5 was used. These two classifiers were implemented using different
functions offered by the sklearn library. The ANN classifier was implemented, assigning
1000 epochs, three layers given the number of quadrants to classify, of which the first two
layers are activated with RELU with 64 neurons each layer, and the last output layer has
four outputs, its activation function is softmax and, in the compilation, the parameter
“categorical_crossentropy” and optimizer “Adam” [16] are used.

The feature vectors for the DEAP dataset were composed of features from one-domain
and multi-domain, original and no-correlation-selected attributes, with the following setups:

• Vector with 21 characteristics in the time domain.
• Vector with selected nine features in the time domain.
• Vector with 11 characteristics in the frequency domain that includes 5 bands for delta,

theta, alpha, beta, and gamma plus PSD ranges.
• Vector with selected seven attributes in the frequency domain.
• Vector with two characteristics in the time–frequency domain.
• Vector with 32 features (DASM and RASM) for the location domain.
• Vector with 16 attributes (DASM) chosen in the location domain.
• Nine vectors corresponding to the combination of selected multi-domain attributes:

time, frequency; time, time–frequency; time, location; frequency, time–frequency; fre-
quency, location; time, frequency, time–frequency; frequency, time–frequency, location;
time, frequency, time–frequency, location.

We applied cross-validation, given that we are working with features, not raw data.
Therefore, the models are simple enough, so that we had a manageable computational load.
In Table 5, we present the average accuracy performance using 5-fold cross-validation.
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Table 5. Accuracy results using the DEAP dataset in the valence–arousal space.

Domain Number of Features
Accuracy

SVM KNN ANN

Time domain
21 0.70 0.71 0.76

Selected 9 0.75 0.78 0.80

Frequency domain
11 (included 5 bands) 0.80 0.77 0.82

7 (included 5 bands) 0.81 0.81 0.88

Time–frequency domain 2 0.86 0.83 0.90

Location domain
16 pairs for 32 channels for DASM and 16 pairs for 32 channels for RASM 0.60 0.62 0.75

Selected 16 pairs for 32 channels for DASM 0.64 0.64 0.81

Hybrid (combination of
selected features in the
domains)

9 time + 7 frequency 0.87 0.82 0.95

9 time + 2 time–frequency 0.78 0.82 0.89

9 time + 16 location 0.70 0.74 0.86

3 frequency + 2 time–Frequency 0.81 0.80 0.90

3 frequency + 16 location 0.74 0.7 0.92

9 time + 7 frequency + 2 time–frequency 0.81 0.83 0.94

9 time + 7 frequency + 16 location 0.80 0.80 0.93

7 frequency + 2 time–frequency + 16 location 0.75 0.76 0.91

9 time + 7 frequency + 2 time–frequency + 16 location 0.82 0.83 0.96

We used StratifiedKFold from sklearn.model_selection for the cross-validation process
to ensure that each fold was representative of the entire dataset. We modified the training
and evaluation loop to iterate over the folds. For each fold, we split the dataset into training
and testing sets. Then, we trained and evaluated all models within each fold. Finally, we
kept track of the performance metrics for each fold to calculate the average performance
after all folds were assessed. In our case, the accuracy results were similar.

Results Using Data from DEAP

It was not necessary to apply methods for balancing data between classes. The input
vectors to the classifiers were reduced in dimensionality using a correlation matrix to
identify features with redundant information that could add noise to the classifier and
result in lower accuracy scores. No-correlation selected the following time features as
non-redundant: mean, standard deviation, variance, Shannon entropy, energy, Higuchi,
higher-order crossing, Hjorth mobility, and Hjorth complexity. In the same way, in the
frequency domain, the selected features were the PSD of the five frequency bands: delta (0.5
to 4 Hz), theta (4 to 8 Hz), alpha (8 to 13 Hz), beta (13 to 30 Hz), and gamma (over 30 Hz),
plus the power ratio, power spectral density for all range of frequencies, and fast Fourier
transform. The selected features were the same as the originals in the time–frequency
domain. In the location domains, the chosen features were only DASM; the RASM was
eliminated for being correlated to the first ones. It is worth noting that these features
were calculated between the pairs of signals located on each side of the scalp (16 pairs for
32 channels).

Table 5 presents an exhaustive evaluation of feature extraction methods and machine
learning algorithms for emotion recognition in the valence–arousal space using the DEAP
dataset. We explore time, frequency, time–frequency, and location (spatial)-domain features
that measure asymmetry between the right and left brain regions. The performance of three
machine learning algorithms, SVM, KNN, and ANN, are reported for each feature set and
their combinations to monitor performance.
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In the time domain with the 21 features described in Table 1, the results for accuracy
were 0.70 for SVM, 0.71 for KNN, and 0.76 for ANN. A correlation matrix was applied
to eliminate characteristics with redundant information that could add noise to the clas-
sification. When using the selected nine features in the time domain, the performance
increased substantially, showing accuracies of 0.75, 0.78, and 0.80 for SVM, KNN, and
ANN, respectively.

Using all the described features in the frequency domain (Table 1), the results were
0.80 for SVM, 0.77 for KNN, and 0.82 for ANN. Applying feature selection, we obtained
seven relevant features and, again, the accuracy values improved to 0.81, 0.81, and 0.88 for
SVM, KNN, and ANN. This last algorithm showed the best performance.

In the time–frequency domain, the original two features were used and yielded
accuracies of 0.86 for SVM, 0.83 for KNN, and 0.90 for ANN.

The location domain was calculated using the asymmetries on the right and left of the
brain (DASM and RASM). With the original features, the accuracies were 0.60 for SVM,
0.62 for KNN, and 0.75 for ANN. Using a correlation matrix, the selected characteristics
were DASM (16 pairs), and ANN’s performance shot up to 0.81.

The tests with hybrid models that were conducted combining features from multiple
domains yielded the following best-performing models: nine time plus seven frequency
features: ANN 0.95; nine time plus seven frequency plus two time–frequency features:
ANN 0.94; nine time plus seven frequency plus two time–frequency + sixteen location
features: ANN 0.96. The highest-performing model used a combination of nine attributes
from the time domain, seven from the frequency domain, two from the time-frequency
domain, and 16 from the location domain, achieving an accuracy of 0.96 when using ANN.
This suggests that combining selected features from different domains can result in a
superior performance. SVM and KNN showed a lower performance than ANN for all the
hybrid vectors.

Moreover, features from the time–frequency domain consistently yielded a high ac-
curacy across all machine learning models, emphasizing their importance. The location-
domain features initially performed poorly but showed significant improvement when com-
bined with features from other domains, highlighting the effectiveness of hybrid models.

5. Discussion

In this study, emotion recognition was performed based on the two-dimensional
valence/arousal (VA) model, which divides emotions into four groups: high arousal–high
valence (HAHV), high arousal–low valence (HALV), low arousal–low valence (LALV), and
low arousal–high valence (LAHV). We used various features in different domains, such
as time, frequency, time–frequency, and location. The features, classifiers, and evaluation
metrics were selected according to their frequency of use and results found in the RSL.
Sixteen input vectors were created for the classifiers, seven were collected for features in
each domain (the original, and that selected via applying a correlation matrix), and nine
were composed of combinations of features chosen from multi-domains.

Then, the present study extensively evaluated feature sets across domains and their
impact on emotion recognition. Feature selection improved results across the different
domains. Additionally, hybrid models combining domain features offered a superior
performance. An ANN using an input vector of nine time, seven frequency, two time–
frequency, and sixteen location features yields the best results, with a maximum accuracy
of 0.96.

There are multiple proposed methods for EEG-based emotion classification. Still,
they have limitations, including the number of emotional states considered. Generally,
strategies dealing with more classes and participants tend to decrease their performance.
According to [8], the average accuracy for emotion recognition using four quadrants in
the two-dimensional valence/arousal space is 76.68%. Therefore, our results are better
than those reported in the literature. An important part of our contribution is the anal-
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ysis of the participation of multi-domain features in the classification performance for
emotion recognition.

Our study uses the DEAP dataset for EEG-based emotion recognition. It is important
to recognize the role of self-labeling in the data acquisition process and its implications for
emotion classification. Participants in the DEAP study used the Self-Assessment Manikin
(SAM) to label their emotions. This method relies on visual mannequins to facilitate the
self-assessment of emotional responses elicited by various video stimuli. This is an intuitive
and accessible approach for participants to convey their emotional states. However, the
self-labeling of emotions still introduces a degree of subjectivity into the dataset. This
subjectivity arises from individual differences in emotional perception and expression.
Individuals may interpret and respond to the same stimuli differently due to personal
experiences, cultural backgrounds, and even momentary psychological states. As a result,
self-labeled emotional states may not always align consistently with the physiological
signals captured by the EEG. This aspect is recognized with the conviction of the po-
tential of machine learning techniques to account for this variability in obtaining their
recognition models.

6. Conclusions

This study presents a comprehensive evaluation of various feature extraction methods
and machine learning algorithms—namely, support vector machine (SVM), K-nearest
neighbor (KNN), and an artificial neural network (ANN)—for emotion recognition. The
study uses the DEAP dataset and explores feature extraction in the time, frequency, time–
frequency, and location (spatial) domains. The following key points emerged:

• Effectiveness of feature selection: applying feature selection techniques like a corre-
lation matrix to eliminate redundant characteristics generally improved the model’s
performance across all domains and algorithms, emphasizing the importance of tar-
geted feature selection.

• The superiority of ANN: ANN consistently outperformed the other machine learning
models, particularly in scenarios where features were selected carefully.

• Importance of time–frequency features: features from the time–frequency domain con-
sistently yielded high accuracies across all machine learning algorithms, underlining
their relevance for emotion recognition tasks.

• Role of hybrid models: combining features from multiple domains led to the highest-
performing models. In particular, a hybrid model employing a mixture of nine time-
domain features, seven frequency-domain features, two time–frequency-domain fea-
tures, and sixteen location-domain features achieved an accuracy of 0.96 with ANN.

• Improvement in location domain: Initially, the location-domain features performed
poorly compared to other domains. However, when combined with features of multi-
ple domains, the performance significantly increased, showing the importance of the
information provided for spatial features.

• The present study uses relatively simple and computationally inexpensive machine-
learning algorithms like SVM, KNN, and ANN. Despite their simplicity, these algo-
rithms could achieve high levels of accuracy. This makes the findings particularly
valuable for real-time emotion recognition applications where computational resources
and processing time are often limited.

One of the key contributions is the exhaustive evaluation of feature extraction methods
across multiple domains, providing a robust understanding of what works best for emotion
recognition in the valence–arousal space. The study identifies optimized subsets of features
in each domain that reduce the computational burden and increase accuracy, aiding in
efficient and effective emotion classification. Our research demonstrates that hybrid models,
combining selected features from different domains, can achieve superior performance,
laying the groundwork for future research. Using a well-acknowledged DEAP dataset, the
study provides empirical evidence supporting the efficacy of different machine learning
algorithms and feature extraction methods for emotion recognition. It offers crucial insights
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into the potential of ANN in emotion recognition tasks. It establishes the importance of
feature selection, setting the stage for future research to build upon these findings.

An additional contribution is the use of less-computationally intensive machine learn-
ing algorithms, which adds a dimension of practicality to this study. The algorithms used
are scalable and capable of running on systems with limited computational power, making
the findings directly applicable to real-time emotion recognition systems. This particularly
benefits wearable devices or mobile applications where rapid processing is paramount.

This study sets a new benchmark by demonstrating that a high accuracy in emotion
recognition can be achieved without resorting to complex or computationally expensive
machine learning algorithms. It shows that effective feature selection and an intelligent
combination of features can deliver exceptional performance, even when the algorithmic
backdrop is simple.

7. Future Work

Finally, regarding future work, we propose studying emotion recognition defined
in the three-dimensional (VAD) model, considering the axes corresponding to valence,
arousal, and dominance for a broader recognition of specific emotions. Another possibility
is to address the regression approach instead of classification, as valence and arousal values
are continuous, allowing the prediction of the user’s sentiment through the EEG signal
rather than classifying it.

We plan to continue exploring feature selection using genetic algorithms that could
provide a more dynamic and adaptive approach to feature selection. We could uncover
complex, nonlinear relationships between variables that are not evident with traditional
methods. This approach can lead to the choice of more efficient feature sets that further
improve the accuracy and generalization of EEG-based emotion classification models.

Our work also paves the way for future research that explores new avenues in emo-
tion recognition using EEG signals and BCI devices as personalized emotion recognition:
individual differences in emotional responses could be considered to develop personalized
emotion recognition models. This approach could potentially improve the performance of
classifiers and provide more accurate emotion recognition for each user.

The findings of this study could be applied to various real-world scenarios, such as
developing more effective human–computer interaction systems, enhancing mental health
interventions, or creating more engaging and adaptive virtual reality experiences.
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