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Abstract: Hourly traffic volume prediction is now emerging to mitigate and respond to hourly-level
traffic congestion augmented by deep learning techniques. Incorporating meteorological data into the
forecasting of hourly traffic volumes substantively improves the precision of long-term traffic forecasts.
Nonetheless, integrating weather data into traffic prediction models is challenging due to the complex
interplay between traffic flow, time-based patterns, and meteorological conditions. This paper
proposes a graph convolutional network to predict long-term traffic volume with meteorological
information. This study utilized a four-year traffic volume and meteorological information dataset in
Chung-ju si to train and validate the models. The proposed model performed better than the other
baseline scenarios with conventional and state-of-the-art deep learning techniques. Furthermore, the
counterfactual scenarios analysis revealed the potential negative impacts of meteorological conditions
on traffic volume. These findings will enable transportation planners predict hourly traffic volumes
for different scenarios, such as harsh weather conditions or holidays. Furthermore, predicting the
microscopic traffic simulation for different scenarios of weather conditions or holidays is useful.

Keywords: traffic volume prediction; graph convolutional networks; meteorological information

1. Introduction

Traffic volume prediction plays a pivotal role in managing traffic conditions. Previous
studies have explored short-term traffic volume prediction [1–3]. The high complexity
of traffic volume prediction has hindered researchers from analyzing daily or hourly
volume traffic volume predictions. Nonetheless, short-term traffic volume prediction
cannot fundamentally improve hourly or daily specific travel demand management since
the hourly traffic volume is highly dependent on time-dependent information, the weather,
and holidays. In the era of big data and real-time information technology, high-resolution
traffic volume prediction can potentially mitigate hourly traffic congestion. That is because
previous researchers have analyzed short-term traffic flow prediction [1–3].

Long-term traffic volume prediction is emerging for weekly and monthly traffic de-
mand management and precise long-term traffic volume prediction. Long-term traffic
volume prediction provides hourly traffic volumes for several weeks or months. Com-
pared to short-term traffic prediction, long-term traffic volume prediction is affected by
various factors, such as traffic accidents, holiday indicators, and weather information. This
is because long-term traffic prediction accumulates larger errors than short-term traffic
prediction.

Long-term traffic volume prediction considering various factors has been studied.
Previous studies have used statistical and state–space models to predict hourly traffic
volumes. The autoregressive integrated moving average algorithm (ARIMA) is a famous
statistical model for predicting overall time series data [4–6]. Recent progress in neural
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network methodologies has opened new avenues for traffic volume prediction. These con-
temporary techniques, especially those driven by neural networks, have shown promising
results in predicting traffic speeds across road networks [7]. Neural network models can
incorporate diverse data types, including meteorological conditions, such as precipitation,
temperature, and humidity, to improve predictions. Integrating weather data into traf-
fic volume prediction models could significantly enhance their precision and reliability.
Recent works have used the multi-layer perception network (MLP) [8], long short-term
memory (LSTM) [9], graph convolution network (GCN) [10,11], and graph attention net-
work (GAN) [7] to predict traffic volumes. Despite the important role of and progress in
neural network applications, the intensive study of long-term traffic volume prediction
incorporating meteorological data remains limited. This gap is attributable to the intricate
interactions among traffic flows, temporal patterns, and weather conditions.

Exploring long-term traffic volume prediction has been limited, primarily due to
challenges associated with data acquisition. Precise long-term forecasting requires datasets
spanning over a year to capture weekly, monthly, seasonal, and holiday impacts ade-
quately. Previous studies have utilized up to 2 years of datasets for traffic volume or speed
predictions [12] to explain seasonal effects carefully.

The main aim of this study was to determine whether meteorological information
significantly advances long-term traffic volume prediction. The contributions of this study
are three-fold. First, this paper proposes a temporal GCN-based approach to one-year
traffic volume prediction by the one-week traffic volume prediction format to analyze the
impacts of temporal dependencies and meteorological information. Second, we propose
a neural network structure for a prediction performance that is better than that of other
types in previous studies. Third, this study used meteorological information to predict the
impact of weather information.

The outline of this paper is as follows. Section 2 presents some related studies on
traffic volume prediction. Section 3 describes datasets on traffic volume and meteoro-
logical information. Section 4 presents the proposed model’s framework, describing the
graph’s structure and layers. Section 5 shows the training and prediction results. Section 6
summarizes the findings of this study and proposes directions for the next steps.

2. Literature Review

The ARIMA is a widely used approach to forecasting time series data [1,13,14]. It is
acceptable for forecasting the stationary time series data. Despite its widespread use, the
ARIMA’s applicability to traffic volume forecasting is limited due to the non-stationary
nature of traffic data. The non-stationary nature can exhibit unpredictable variations influ-
enced by external traffic flows. With the help of machine learning techniques, researchers
can explore faster and finer traffic predictions with a variety of ranges [15]. Recent deep
learning techniques for traffic volume prediction first considered the MPN [8] and the
recurrent neural network [16]. This deep learning technique contains several hidden, fully
connected layers to predict nonlinear and nonstationary relationships. The LSTM is a
recurrent neural network model to strengthen the long-term and short-term memories in
a neural network [9]. The LSTM is powerful in predicting periodic time-series data. The
GCN considers a graph structure to identify the interdependence between data [10]. It is
powerful to consider the interdependence between data. It is widely used in time-series
data prediction or spatial dependence [17]. The GAN uses an attention mechanism in the
GCN [7]. The attention mechanism focuses on the most related features from the input data.
The attention mechanism has been utilized in various areas due to its flexibility and high
predictability with dependencies. For the systematic reviews on traffic volume prediction
with artificial intelligence, please refer to this article [4].

This paper intensively looks into GCN approaches most widely used to predict long-
term traffic volume. The GCN is one of the emerging techniques to account for the inter-
dependence between data using a graph structure. Previous studies related to the GCN
can be classified into two types: temporal and spatial interdependence. First, temporal
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interdependence is considered as temporal blocks such as temporal self-attention [11], an
LSTM module [18], or a gated recurrent unit (GRU) module [19].

On the other hand, previous works have used the GCN to identify the spatial depen-
dence between traffic volume or speed data. Table 1 represents the literature reviews on
the short-term traffic volume predictions with the GCN. First, Qin et al. (2020) utilized the
GCN with meteorological information to predict bike trips [12]. Qin et al. (2020) focused on
spatial dependence and covered more than one year. Second, Bai et al. (2019) also described
a similar model but with multiple parallel layers in the model to predict the bike-sharing
volumes [20]. They considered three different cities to predict the traffic volume. Three
to six months have been extensively utilized to train the model. Li et al. (2020) utilized
the Manhattan area to predict the traffic volume [2]. They formed the main and minor
areas and subjected the information to deep learning in advance [2]. The last study utilized
the GCN and attention mechanisms unlike the GAN. The model performed better with
spatial dependence.

Table 1. Literature Review.

Author (Year) Methodology Spatial Scope Weather Spatial
Dependence Temporal Scope

Qin et al. (2020) [12] GCN Boston in the U.S. O O 406 days

Bai et al. (2019) [20] GCN, STG2Seq Shenyang and Beijing in China
and NY in the U.S. X X 3 to 6 months

Li et al. (2020) [2] GCN Manhattan in the U.S. X X 1 year

Jiang et al. (2023) [10] PDFormer
(GCN + attention) Beijing in China X O 2 months to 1 year

This study GCN Chung-ju si in South Korea O X 4 years

From the literature review section, we find out that there is no work on long-term
traffic volume prediction and no work considering both meteorological information and
temporal dependence. Furthermore, no study has used data spanning more than two years
to identify the yearly impacts and the other impacts. Therefore, this study aimed to develop
long-term traffic volume prediction techniques to utilize meteorological information and
data spanning more than 2 years to obtain stable results.

3. Data Descriptions

The dataset used in this study encompasses a comprehensive collection of information
relevant to traffic volume and weather conditions within the spatial scope of the Korea
University of Transportation, Chung-ju campus, from 2019 to 2022. Each row in the dataset
represents an hourly observation, providing a detailed view of various attributes, including
the week day, traffic volume, temperature, rainfall, wind speed, wind direction, humidity,
air pressure, hour, week, and holiday indicators. We trimmed the dataset to align all
row observations to be the same as the other datasets. Therefore, the trimmed dataset
covered a period from 7 January 2019 to 29 December 2019, a period from 6 January 2020 to
27 December 2020, a period from 4 January 2021 to 26 December 2021, and a period from
3 January 2022 to 25 December 2022. Note that this dataset contained the COVID-19 period,
such as 2020 to 2021. We used the 2019, 2020, and 2021 datasets to train the model, and we
used the 2022 dataset to validate and test the model.

We collected this publicly available meteorological information from the Open MET
Data Portal (https://data.kma.go.kr/ (accessed on 1 March 2024)) using the Automated
Synoptic Observing System (ASOS) and publicly available hourly traffic volume from
Traffic Monitoring Systems (https://road.re.kr (accessed on 1 March 2024)). The spatial
scope of these data is limited to the Korea University of Transportation, Chung-ju campus.
This dataset offers a comprehensive view of year-round traffic and weather patterns. The
temporal granularity of this dataset allows for an in-depth examination of how these
patterns change over different hours and days.

https://data.kma.go.kr/
https://road.re.kr
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Figure 1 represents the traffic information. Figure 1a,c illustrate the weekly average
traffic volumes at the upper and lower bounds, respectively, from 2019 to 2022. The datasets
imply a seasonal trend, with heightened traffic volumes during the summer months (from
week 22 to week 40) compared to those in winter (from week 0 to week 10 and from week
49 to week 52), suggesting a correlation between traffic patterns and seasonal variations.

Figure 1b,d depict the hourly average traffic volumes at the upper and lower bounds
for the same period. These figures elucidate a consistent hourly pattern over 2019 to 2022
marked by a morning peak at around 7 a.m. at the upper bound (Figure 1b) and an evening
peak at around 5 p.m. at the lower bound (Figure 1d). This bimodal distribution indicates
the conventional rush hours associated with morning and evening commutes.

Figure 1. Temporal patterns of traffic information from 2019 to 2022.

Figure 2a presents the average weekly air temperature from 2019 to 2022, representing
a consistent annual pattern with a pronounced peak around week 31, indicative of the
climatic zenith typically observed during the midsummer period. Figure 2b illustrates
the average weekly rainfall within the same period. The data reveal a notable peak in
precipitation around week 33, implying a temporal concentration of rainfall corresponding
to regional and seasonal weather patterns. Figure 2c depicts the weekly wind speed
averages over the same time period. The graphical representation indicates a relatively
stable wind speed pattern irrespective of the annual variations. Figure 2d visualizes the
average weekly air pressure from 2019 to 2022. A peak of weekly air pressure is observed
at around week 31, aligning with atmospheric pressure changes, often identifying the
transition between summer and autumn.
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Figure 2. Weekly meteorological information from 2019 to 2022.

Table 2 represents the correlation coefficients between the variables. Traffic volumes
in both directions have a strong correlation. Specifically, the lower-bound traffic volume
is positively associated with wind speed and direction and negatively associated with
humidity. Note that associations between the upper-bound traffic volume and the other
variables are not stronger than those of the lower bound traffic volume.

Table 2. A correlation matrix.

Pearson Correlations Traffic—UB Traffic—LB Temp. Rainfall. Wind
Speed

Wind
Direction Humidity hPa

Traffic—UB 1.00 0.80 0.20 −0.02 0.19 0.23 −0.28 0.05
Traffic—LB 0.80 1.00 0.28 −0.02 0.33 0.37 −0.48 0.04

Temp. 0.20 0.28 1.00 0.07 0.18 0.13 0.00 0.86
Rainfall −0.02 −0.02 0.07 1.00 0.05 −0.00 0.13 0.13

Wind speed 0.19 0.33 0.18 0.05 1.00 0.50 −0.49 −0.03
Wind direction 0.23 0.37 0.13 −0.00 0.50 1.00 −0.48 −0.07

Humidity −0.28 −0.48 0.00 0.13 −0.49 −0.48 1.00 0.40
hPa 0.05 0.04 0.86 0.13 −0.03 −0.07 0.40 1.00

4. Methods
4.1. GCN

The GCN is a type of neural network with a graph structure in each node so that
the graph can utilize the graph structure’s information. Compared to the original neural
network, the GCN interacts with other nodes as a graph structure. It has been widely
used in social networks and natural language processing. In this study, the p-th layer and
p + 1-th layer are propagated through the following equation:

Xp+1 = σ(D̂− 1
2 ÂD̂− 1

2 XpWp), (1)

where Xp is the p-th |N | × Fp feature matrix; p is the number of hidden layers; |N | is the
cardinality of the number of nodes N ; Fp is the number of features of each node of the
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p-th layer; σ(·) is a rectified linear unit (ReLU) function, one of the widely-used activation
functions in the neural network techniques; D̂ is a diagonal node degree matrix of Â; Â
is a sum of adjacency matrix A; Wp is the p-th Fp × Fp+1 weight matrix with trainable
parameters; and identity matrix I is to consider self-features of each node. Note that
D̂− 1

2 ÂD̂− 1
2 Xp represents the symmetric approximation of the matrix ÂXp.

The overall data structure of this study is visualized in Figure 3. Each node of a deep
learning approach has a graph structure containing 168 nodes. Each node of the graph
represents 1 h. For example, 168 nodes are interconnected in two ways. The first way is the
consideration of hourly interdependence. For instance, a node from 0 to 1 a.m. and another
node from 1 to 2 a.m. are connected. Furthermore, a node from 0 to 1 a.m. of day 0 and
a node from 0 to 1 a.m. of day 1 are connected. Therefore, the graph structure contains
311 nodes representing a 1-week graph structure.

The overall graph structure is different from that in previous studies. Instead of
focusing on the spatial dependencies, this study focused on the temporal dependencies
between the nodes representing every hour. We found strong temporal dependencies,
as shown in Figure 1. Holidays were the exception to the strong dependencies, so we
considered holidays as a node attribute. Spatial dependencies were not considered since
we only targeted one detector point with two directions.

Figure 3. Schematic descriptions of the graph structure and the graph neural network.

4.2. Scenario Setup

In this study, we set up a scenario to quantify the meteorological information. A
baseline scenario is the real dataset in 2022. We add the 10-millimeter rains for Friday and
Saturday of the first week of 2022.

5. Results

We utilized the Pyg [21] and Pytorch package in the Python environment to develop
and train the deep learning model [22].

5.1. Performance Metrics

We utilized mean squared error (MSE) and mean absolute percent error (MAPE) to
evaluate the proposed model. First, MSE calculates a sum of the squared differences
between the actual and predicted values.
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MSE =
1
n

√
n

∑
i=1

|Q̂i − Qi|, (2)

where Q̂i is the i-th predicted traffic volume, and Qi is the i-th actual value.
Second, MAPE denotes a sum of the absolute percentages of the differences between

the actual and predicted values. A low MAPE means that the actual values are close to the
predicted values.

MAPE =
1
n

n

∑
i=1

|Q̂i − Qi|
Qi

, (3)

5.2. Hyper Parameters

The dropout rates were set to 30% to avoid the overfitting of the model. We tried a
grid search, dropout rates (0.2, 0.3, and 0.4), learning rate (0.01, 0.001, 0.0001), and training
epoch (2000, 4000, 6000, 8000) and chose the best combination. Finally, we used a learning
rate of 0.01 and a training epoch of 6000 with varying batch sizes. The number of layers
was 4, including the input and output layers. All baselines and proposed models had the
same graph structure. The sequence of nodes in each layer was 13, 128, 32, and 2. The
number of input nodes was 13, and the number of output nodes was 2.

5.3. Baselines

The MLP and GAN were used as baselines. The MLP is a simple deep learning network
with multiple fully connected layers. We used three layers with the same structure as that
of the GCN. The GAN is an advanced version of the GCN with attention mechanisms. The
structure of the GAN is the same as that of the GCN.

5.4. Training Results

Table 3 shows the model training results. We tested six different types of models
with or without weather information. The training results indicate that the GCN with
meteorological information performed better in the MSE of UB, and the GCN in the MSE of
LB. When we compared two models, models with meteorological information and models
without meteorological information, models without meteorological information performed
better. On the other hand, the GCN performed worst in the dataset without meteorological
information. This is mainly because the model did not recognize the difference between
upper and lower bounds in this case. Figure 4 visualizes the model prediction results.
Figure 4a,b represent the first week of 2022 with the upper and lower bounds, respectively.
Green lines, representing the proposed model, perform similarly to red and yellow lines,
representing the MLP and GAN.

Table 3. Model training results.

No. Method Dropout
Probability

Meteorological
Information MSE-UB MAPE-UB MSE-LB MAPE-LB

1 MLP - O 18,690.69 0.228 14,901.66 0.264
2 MLP 0.3 O 16,731.72 0.236 20,039.50 0.266
3 GCN 0.3 O 16,001.57 0.234 16,278.24 0.286
4 GAN 0.3 O 44,036.84 0.33 38,494.36 0.398
5 MLP - X 14,744.30 0.167 13,110.84 0.172
6 MLP 0.3 X 16,558.00 0.279 17,039.96 0.302
7 GCN 0.3 X 24,410.24 0.319 130,680.7 0.673
8 GAN 0.3 X 59,472.62 0.956 38,152.25 0.735
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Figure 4. Model prediction results.

Heatmaps of differences between observed and predicted results over 60 days are
expressed in Figure 5. Our proposed model performed the best over 60 days, except for a
period from days 28 to 34. These dates contained three consecutive holidays (Lunar New
Year) in South Korea. Note that morning peaks of the period accounted for 80.4% of the
predicted MSE.

Figure 5. Heatmaps of differences between observed and GCN-predicted results on upper bound
(a) and lower bound (b) starting on 3 January 2022.
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5.5. Scenario Results

We changed the meteorological information manually to quantify the impact of mete-
orological information. In the treatment scenario, we added 10 millimeters of rainfall to
every hour on days 5 and 6 (from hour index 120 to 167). Figure 6 represents the scenario
result and the base scenario result. The MSE between the treatment and the base scenario
was 1834.19 on the upper bound and 2254.38 on the lower bound. Specifically, in Figure 6,
the predicted traffic volume of the treatment results is lower on the higher and lower
bounds on Saturday than the base scenario results. On the other hand, the predicted traffic
volume of the treatment results is higher on Sunday than the base scenario results. We can
interpret this to mean that the impacts of small changes in meteorological information are
not larger than the externalities, such as travel behavior changes.

Figure 6. Scenario results.

6. Discussion

Long-term traffic volume prediction is an emerging area that can efficiently manage
long-term travel demand management with meteorological prediction. This study analyzed
long-term traffic volume prediction with meteorological information using the graph neural
network. We tested the proposed model with eight different baselines to check the impact
of the MLP, the GAN, dropouts, and meteorological information. The results showed
that the proposed model (GCN) performed better than the MLP case. The counterfactual
scenario results indicated that this model admits the traffic volume changes by changing
meteorological information in both directions.

This study contains two main findings: (1) outperformance of GCN and (2) variability
of meteorological information.

6.1. Outperformance of GCN

The findings in Table 2 indicate that the GCN with meteorological information and
dropout strategies has a better prediction than the other models. The table explains that the
accuracy of the GAN and MLP was less than that of the GCN. The MLP without dropout
rates performed better than the GCN, but the MLP without dropouts had overfitting issues,
which cannot be generalizable to the other detectors. When we consider the future direction
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of the models, the GCN emerges as a promising alternative. The GCN successfully predicted
stable traffic volumes with upper and lower bounds. However, the study also identified
the limitation of the attention mechanism. The large weights of the neighbors of a given
node make it challenging for the attention mechanism to capture temporal dependencies
accurately. This suggests that a strong reliance on the interconnections between neighboring
nodes may detrimentally impact the model’s overall predictive capability.

The GCNs in this study successfully captured the differences between weekdays and
weekends, as shown in Figure 5. However, the models did not identify the impact of consec-
utive holidays compared to a single holiday. In South Korea, consecutive holidays usually
affect traffic patterns due to cultural differences and travel behaviors. If we identified these
holidays as an indicator, the model could perform better than the proposed model.

6.2. Disparate Impacts of Meteorological Information

In this study, we quantified the traffic volume prediction with meteorological informa-
tion. We expected that when we add the meteorological information, the models, especially
the GCN, would perform better. Contrary to our expectations, the study showed that
the models integrating meteorological data yielded results similar to those that did not
integrate the meteorological data. These results imply that the influence of meteorolog-
ical information spanning four years on traffic volume prediction is not as significant
as expected compared to other external factors affecting the model. On the other hand,
the counterfactual scenarios imply that when rainfall increases, traffic volume insignifi-
cantly drops. It implies a negative associations between rainfall and traffic volume. This
observation can be supported by a previous study [23].

6.3. Future Research Directions

We identified the outperformance of the GCN and the disparate impacts of meteoro-
logical information in long-term traffic volume prediction with meteorological information.
We utilize these two outcomes to suggest future research directions. The first research
direction is to manage the travel demand. When we have special events, we can assess the
hourly traffic volume impact of one specific location with weather prediction. This can be a
pinpoint travel demand strategy, such as proactive ramp metering or hourly heterogeneous
signal control strategies.

The other research direction is that this model can help transportation planners create
a synthetic traffic volume dataset for analyzing microscopic traffic simulations. Common
microscopic traffic simulations necessitate the use of path-specific traffic volumes. However,
these methods cannot provide precise estimates without a path-based traffic assignment.
We can extend the hourly link-based traffic volume prediction to the hourly-level path-
based traffic volume due to the methodological similarity. Furthermore, we can predict the
traffic volumes during harsh weather conditions or holidays. This can help transportation
planners set up plans to mitigate the impact of harsh weather or holidays.

6.4. Limitations

There are three limitations of this study. First, we did not account for the consecutive
holidays that South Korea and East Asia usually have. During consecutive holidays,
such as the Lunar New Year Day (3 days, without weekends, in January or February)
and Korean Thanksgiving Day (3 days, without weekends, in September or October), the
proposed model did not account for the drastic patterns. We can add the consecutive
holiday indicators independently and check the impact of this indicator. Second, this model
did not address the spatial interdependence between neighboring detectors due to the
lack of a high-quality dataset. We could not gather data from an hourly-level detector
for four years. If we could use the complete dataset, we could also consider the spatial
dependencies of this model. Third, we encountered the inherent prediction error in traffic
volume predictions. Compared to the O/D-based traffic volume prediction, this model did
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not utilize vehicle routes. Vehicle routes can be more extensively used to clearly prove the
accuracy of long-term traffic volume prediction.

7. Conclusions

This study proposes a graph neural network framework to predict long-term traffic
volume With meteorological information. This study predicted the hourly long-term traffic
volume for one week with a GCN trained on data spanning three years, from 2019 to 2021,
and validated with the 2022 dataset. The results of the proposed model showed that it
maintained precision and robustness regardless of the weekend and holiday indicators
by high dropout rates. Furthermore, the counterfactual scenarios of the high rainfall
during two days showed the negative impact of rainfall on the hourly traffic volume.
These findings show that the model can help transportation planners predict hourly traffic
volumes for different scenarios, such as harsh weather conditions or holidays. Furthermore,
the model is useful for predictions in microscopic traffic simulations of different scenarios of
weather conditions or holidays. This study sheds light on using meteorological information
for long-term traffic volume prediction. It will help us simulate various types of traffic
volume prediction scenarios with harsh weather conditions or holidays.
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