
Citation: Ma, X.; Yan, C.; Wang, Y.;

Wei, Q.; Wang, Y. A Vulnerability

Scanning Method for Web Services in

Embedded Firmware. Appl. Sci. 2024,

14, 2373. https://doi.org/10.3390/

app14062373

Academic Editor: Gianluigi Ferrari

Received: 2 February 2024

Revised: 26 February 2024

Accepted: 27 February 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Vulnerability Scanning Method for Web Services in
Embedded Firmware
Xiaocheng Ma , Chenyv Yan, Yunchao Wang *, Qiang Wei and Yunfeng Wang

School of Cyberspace Security, Information Engineering University, Zhengzhou 450007, China;
wuliangttkx@foxmail.com (X.M.); yan_cyu@163.com (C.Y.); funnywei@163.com (Q.W.);
wangyunfeng_2402@163.com (Y.W.)
* Correspondence: w_yunchao@sina.com

Abstract: As the Internet of Things (IoT) era arrives, the proliferation of IoT devices exposed to the
Internet presents a significant challenge to device security. Firmware is software that operates within
Internet of Things (IoT) devices, directly governing their behaviors and functionalities. Consequently,
the security of firmware is critical to shielding IoT devices from potential threats. In order to enable
users to operate a device intuitively, firmware commonly provides a web interface. Consequently,
this interface frequently serves as the primary attack goal in Internet of Things (IoT) devices, ren-
dering them susceptible to numerous cyber-attacks. Unfortunately, web services have complex data
interactions and implicit dependencies, and it is not easy to balance efficiency and accuracy during
the analysis process, leading to heavy overhead. This paper proposes a lightweight vulnerability
scanning approach, WFinder, designed explicitly for embedded firmware web services to perform
vulnerability checks on backend binary files in firmware. WFinder uses static analysis to focus on
identifying vulnerabilities in boundary binary files related to web services in firmware. Initially, the
approach identifies boundary binary files and external data entry points based on front-end and
back-end associativity features. Subsequently, rules are formulated to filter hazardous functions
to narrow the analysis targets. Finally, the method generates sensitive call paths from the external
data input points to the hazardous functions and conducts a lightweight taint analysis along these
paths to uncover potential vulnerabilities. We implemented a prototype of WFinder and evaluated
it on the firmware of ten devices from five well-known manufacturers. We discovered thirteen
potential vulnerabilities, eight of which were confirmed by the CNVD, and assigned them CNVD
identification numbers. Compared with the most advanced tool, SATC, WFinder was more efficient
at discovering more bugs on the test set. These results indicate that WFinder is effective at detecting
bugs in embedded web services.

Keywords: firmware security; vulnerability discovery; web services; static analysis

1. Introduction

With the advent of the era of the Internet of Things (IoT), countless new devices are
being connected to the network to meet different application requirements. IoT devices are
now omnipresent in our lives. According to the “Mobile Economy 2020” report released
by the GSMA [1], it is predicted that by around 2025, the total number of global IoT
device connections will reach 24.6 billion. Though the scale of the Internet of Things (IoT)
industry is continuously expanding, the development of related security standards has yet
to keep pace. Furthermore, developers have yet to be completely aware of device security
maintenance. As a result, current IoT devices carry many severe security risks.

The functionality of Internet of Things (IoT) devices is predominantly governed by
firmware, which is the underlying software responsible for controlling hardware operations
to ensure that the devices perform as intended. As the number of devices connected
to the Internet of Things (IoT) increases, firmware-targeted attacks have become more

Appl. Sci. 2024, 14, 2373. https://doi.org/10.3390/app14062373 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062373
https://doi.org/10.3390/app14062373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0005-6136-6182
https://doi.org/10.3390/app14062373
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062373?type=check_update&version=1

Appl. Sci. 2024, 14, 2373 2 of 20

prevalent. If attackers gain access, they may remotely control devices, exfiltrate sensitive
data, and use them as springboards for further network intrusions. Firmware typically
restricts access to unauthorized external users, granting only authorized users or system
administrators limited permissions for specific access and modification. To ensure the
user-friendly operation of devices, it is a common practice to provide specific terminal
applications or web interfaces. Therefore, web interfaces usually suffer a large number of
attacks as exposed points of IoT devices in the network. This paper focuses on discovering
vulnerabilities in firmware web servers.

In recent years, considerable work has been carried out on discovering firmware vul-
nerabilities, including dynamic [2–8] and static [9–14] analyses. Within dynamic analyses,
employing emulation techniques for grey-box fuzz testing or conducting black-box fuzz
testing on actual physical devices represent mainstream approaches to discovering vul-
nerability. Dynamic analysis techniques provide contextual information during program
execution; however, due to the complexity and variability of the Internet of Things (IoT) en-
vironment, as well as the inaccessibility of source code and documentation, both black-box
and grey-box testing methods often struggle to achieve a comprehensive exploration of
code execution paths, thereby potentially resulting in overlooked vulnerabilities. Compared
to dynamic analyses, static analysis techniques can achieve higher code coverage rates
given their ability to avoid executing code in an actual runtime environment. Consequently,
this makes them more practical and cost-effective methods for detecting vulnerabilities
in embedded firmware security. Based on the findings of [11–13] and practical analyses
of existing vulnerabilities we conducted, it has been indicated that there is a specific cor-
relation between the input parameters of the web service front end of firmware and the
data-receiving functions in the boundary binary programs in the firmware. Vulnerabilities
in firmware are often the result of backend binary files calling dangerous functions when
processing front-end data, leading to so-called taint-style vulnerabilities. Consequently,
this study adopted static analysis as its principal methodological approach, aiming to
investigate taint-style vulnerabilities in embedded firmware.

The efficacy of detecting taint-style vulnerabilities is largely contingent upon a robust
data-dependency analysis tool. To uncover flaws, such a tool must establish a path that en-
ables contamination to proliferate from an attacker-controlled source to a security-sensitive
sink. Regrettably, the efficient analysis of web services in embedded systems for vulnerabil-
ity detection encounters two primary hindrances: (1) the intricate interactions and implicit
dependencies between the front end and back end preclude the precise determination of
contamination sources [12]; (2) during data flow tracing, achieving an optimal balance
between efficiency and accuracy proves difficult.

Our approach. For web services within embedded systems, we track data flows
between the front end and back end and develop rules to filter out boundary binary
functions that are deemed risky yet prove to be harmless. Additionally, we designed a
lightweight taint analysis methodology to facilitate vulnerability discovery. Specifically, our
approach uses the relationship between the front end and back end to identify boundary
binary files. We then discern functions that introduce external data as source points based
on summarized characteristics. Furthermore, we formulate rules to detect and reduce
hazardous functions viewed as sink points. Finally, we apply a coarse-grained taint analysis
to trace data flows, facilitating vulnerability queries from source to sink points. In summary,
we have developed a vulnerability scanning method that enables data flow tracing between
the front end and back end. The contributions of this paper are as follows:

• We offer data flow tracing based on front end–back end associations, introducing a
novel method of pinpointing boundary binaries and external data entry points.

• We provide rule parsing based on abstract syntax tree (AST) nodes derived from
decompiled code, utilizing these AST nodes to filter hazardous functions.

• We designed coarse-grained taint propagation rules to facilitate data flow tracking
from external data entry points to hazardous functions.

Appl. Sci. 2024, 14, 2373 3 of 20

• We designed and implemented a prototype system, WFinder, and evaluated it using
10 real-world firmware samples. This evaluation revealed 13 unknown bugs, 8 of
which were assigned CNVD numbers.

2. Related Work
2.1. Dynamic Analysis-Based Approaches

Mainstream dynamic analysis methods can be categorized into fuzz testing based
on real devices [3–5] and fuzz testing in simulated environments [6–8]. Fuzz testing on
real devices usually involves a black-box fuzzy test conducted using the communication
protocols supported by the device. Existing black-box fuzz testing works either depend
on reverse engineering [3] and modifying associated applications or on APIs [4,15] and
firmware usage documents [5] disclosed by manufacturers. This approach results in
substantial blind spots within the testing process, and the functional coverage of the
devices under test is notably limited. IOTFUZZER [3] analyzes the supporting application
of the firmware to derive rich agreement information for communication and mutates the
test case by identifying and reusing program-specific logic to discover memory damage
vulnerabilities. Snipuzz [4] runs as a client communicating with the device and infers
mutated message fragments based on the response. WMIFuzzer [15] captures GUI messages
as an initial seed and constructs an abstract syntax tree for mutation. It can test running IoT
firmware without a predetermined data model. HUBFUZZER [5] is designed for scenarios
in which IoT devices and cloud back-end communication are coordinated through a hub.
It utilizes messages exchanged between the hub and IoT devices to discover all functions
automatically and then initiates a feature-oriented message-semantics-guided fuzz test. In
the latest WiFi-security-related works [16–19], wireless access points (APs) are taken as a
research entry point to review the security of actual device WiFi networks, especially the
security of web interfaces related to access points (APs).

Fuzz testing based on emulation primarily relies on an emulation environment. Firma-
dyne [6] is a well-established emulation tool that supports ARM and MIPS architectures;
however, its success rate in emulation is relatively low. Although FIRMAE [7] has greatly
improved the simulation success rate compared to Firmadyne, this improvement comes
at the cost of modifying firmware configuration files and detaching from the actual de-
vice operating environment, resulting in misreports. The grey-box fuzz testing tool for
Internet of Things (IoT) devices, FirmAFL [8], demonstrates notable improvements in
the efficiency of vulnerability mining. However, it is limited to firmware successfully
emulated by Firmadyne, narrowing its applicability. Although the FirmFuzz [20] project
primarily focuses on fuzzing, it employs QEMU [21] for comprehensive system emulations,
resulting in significant system overhead. The implementation process of fuzzing also de-
mands extensive expertise in emulation, diverting focus away from firmware code analysis.
Chen et al. [22] proposed SFuzz, which leverages coarse-grained taint propagation to elimi-
nate paths unrelated to external inputs. It conducts forward slicing on call graphs, followed
by fuzz testing on these slices. However, due to limitations inherent in the emulation plat-
form, this methodology is solely applicable to RTOS. IoTHunter [23] employs multi-stage
message generation techniques for coverage-guided grey-box fuzz testing aimed at proto-
cols, yet it still requires feedback from emulation tools for execution. Consequently, the
current state of firmware emulation technology is a significant limiting factor in advancing
dynamic analysis techniques.

2.2. Static Analysis-Based Approaches

Current efforts addressing taint-style vulnerabilities in firmware primarily focus on
taint analyses. Cheng et al. [9] developed a taint analysis tool, Dtaint, built on angr [24],
which employs static taint analysis for vulnerability mining. Dtaint conducts data flow
analysis based on a control flow graph, forms a data flow graph, and performs a backward
depth-first search to identify execution paths from source to sink points. It then evaluates
path constraints to detect potential taint-style vulnerabilities. However, it adheres to the

Appl. Sci. 2024, 14, 2373 4 of 20

traditional static analysis rules of personal computer programs for identifying source and
sink points, leading to a higher rate of false positives in firmware vulnerability mining.
FIoT [10], developed based on angr [24], facilitates the detection of memory corruption
vulnerabilities using fuzzy testing methods. It employs backward code-slicing techniques
to traverse a binary program’s control flow graph (CFG) within firmware. This process
constructs hazardous code segments extending from input sources to calls of sensitive
functions. Subsequently, it analyzes these segments through symbolic execution and
dynamic fuzz testing. Nonetheless, FIoT’s localization of source points remains dependent
on user-defined criteria. Inaccurate judgments of dangerous code segments could lead to
false positives and false negatives in subsequent analyses. REDINI et al. [11] have addressed
vulnerabilities in Web services of Internet of Things (IoT) devices by introducing the concept
of “boundary binary programs”. They designed a method, KARONTE, to identify boundary
binary programs. KARONTE analyzes numerous indicators, such as the count of basic
blocks, the number of branches, and the quantity of network feature strings within a
program. It then employs the DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) clustering algorithm to selectively identify binary programs within firmware
that process web input data, which are subsequently designated as targets for taint analysis.
However, their method does not consider the impact of web front-end factors, resulting in
reduced identification accuracy. Based on KARONTE, Chen et al. [12] factored in front-end
considerations and developed a vulnerability mining approach centered on keywords
shared between the front end and back end. This method identifies binary programs with
the highest numbers of matching strings between the front end and back end, designating
these as boundary binary programs. It uses the occurrence points of these key terms within
the program as origin points for a taint analysis. By examining the function call graph, the
method pinpoints potential vulnerability trigger paths and conducts a data flow analysis
on these paths. Nevertheless, this approach overlooks the fact that user input data are
ingested via data import functions, leading to a substantial number of false positives in
the analysis. Liu et al. [13] and Cheng et al. [14] have researched the identification of these
external data import functions and have proposed relevant identification techniques.

In summary, current static analysis methods for firmware vulnerabilities primarily
rely on manually defined criteria to locate the origin points of vulnerabilities, including
boundary binary programs and data import functions. Moreover, most studies arbitrarily
designate the call locations of hazardous functions as sink points, lacking specificity. Such
imprecise identifications of origin and termination points frequently lead to false positives
and false negatives.

3. Background and Motivation

In this section, we first provide a background for and examples of embedded system
vulnerabilities, followed by a discussion of the challenges faced in vulnerability analysis
and our proposed methodology.

3.1. Motivating Example

Firmware in embedded devices are user-oriented, and to facilitate access to operating
system features and hardware functionality, most embedded devices offer a web interface
that allows users to configure and manage the device. These web interfaces are often the
primary vectors for attacks on embedded devices. Typically, a web interface consists of
front-end pages, back-end files, and middleware components. The front-end files construct
a complete web page, are displayed to the user via a browser, and offer an interactive
interface for device operation. Back-end files handle web requests originating from the
front end, communicating with the front-end pages to deliver the full functionality of
the web application. Middleware refers to a layer of software that resides between the
front-end pages and back-end files; it processes web requests and responses, enabling the
functionalities of the web interface.

Appl. Sci. 2024, 14, 2373 5 of 20

The web services of IoT devices comprise two main components: the front end and
the back end. The front end presents the device’s configuration options and functionalities
to the end user, and the back end parses requests from the front end and carries out corre-
sponding services. Figure 1 illustrates an example wherein a user employs an interactive
web interface to rapidly configure the Wi-Fi settings of a router. The user interacts with the
front-end interface, automatically generating a request containing the “timeZone” field and
sending it to the back end. Upon receiving this request, the back-end web server parses it
and invokes the function “form_fast_setting_wifi_set” to process the request. The function
“form_fast_setting_wifi_set” retrieves the value corresponding to the “timeZone” field on line
4, and on line 11, it formats this value as an argument for the “_isoc99_sscanf ” function,
which is then utilized in subsequent parts of the program.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 21

front-end pages and back-end files; it processes web requests and responses, enabling the
functionalities of the web interface.

The web services of IoT devices comprise two main components: the front end and
the back end. The front end presents the device�s configuration options and functionalities
to the end user, and the back end parses requests from the front end and carries out cor-
responding services. Figure 1 illustrates an example wherein a user employs an interactive
web interface to rapidly configure the Wi-Fi settings of a router. The user interacts with
the front-end interface, automatically generating a request containing the “timeZone” field
and sending it to the back end. Upon receiving this request, the back-end web server
parses it and invokes the function “form_fast_setting_wifi_set” to process the request. The
function “form_fast_setting_wifi_set” retrieves the value corresponding to the “timeZone”
field on line 4, and on line 11, it formats this value as an argument for the “_isoc99_sscanf”
function, which is then utilized in subsequent parts of the program.

Regrettably, the web service contains a classic stack overflow vulnerability. The ini-
tial stack overflow is on line 11, where the function “form_fast_setting_wifi_set” fails to
check the length of the “timeZone” field before utilizing it as an argument in the
“_isoc99_sscanf” for formatted input. This oversight results in stack overflow during the
formatting of input into the variable list (the third and fourth arguments). Consequently,
an attacker could induce a system crash or exploit the vulnerability further by sending a
specially crafted data packet to trigger this stack overflow.

Figure 1. Motivating example. On the left is the web source code related to the WiFi configuration
for a certain router�s front end, and on the right is the back-end code for message processing. The
timeZone string is used by both front-end and back-end code, and attackers can send carefully
crafted timeZone values to trigger a buffer overflow.

The relationship between the front end and the back end. Back-end binaries pro-
cessing user input exhibit evident characteristics associated with HTTP services mani-
fested by using keywords related to front-end files. As illustrated in Figure 1 with the
example “timeZone”, user inputs are labeled as keywords on the front end and encoded
within the data packet. The back end then uses the same or similar keywords to extract

Figure 1. Motivating example. On the left is the web source code related to the WiFi configuration
for a certain router’s front end, and on the right is the back-end code for message processing. The
timeZone string is used by both front-end and back-end code, and attackers can send carefully crafted
timeZone values to trigger a buffer overflow.

Regrettably, the web service contains a classic stack overflow vulnerability. The initial
stack overflow is on line 11, where the function “form_fast_setting_wifi_set” fails to check
the length of the “timeZone” field before utilizing it as an argument in the “_isoc99_sscanf ”
for formatted input. This oversight results in stack overflow during the formatting of input
into the variable list (the third and fourth arguments). Consequently, an attacker could
induce a system crash or exploit the vulnerability further by sending a specially crafted
data packet to trigger this stack overflow.

The relationship between the front end and the back end. Back-end binaries process-
ing user input exhibit evident characteristics associated with HTTP services manifested
by using keywords related to front-end files. As illustrated in Figure 1 with the example
“timeZone”, user inputs are labeled as keywords on the front end and encoded within the
data packet. The back end then uses the same or similar keywords to extract user input
from the data packet. Data are commonly transmitted in a key–value format. In addition to
retrieving keywords for incoming front-end data—whether as request body parameters or

Appl. Sci. 2024, 14, 2373 6 of 20

HTTP header parameters—the back-end binary files also output page information, which
can be leveraged to extract characteristic words.

Boundary binary. Firmware encompasses numerous binary programs; however, the
subset specifically responsible for processing web service data, referred to as “boundary
binary programs”, could be more sparse. These boundary binary programs are primarily
tasked with processing web service data, which necessitates logic for handling requests
from external sources. Consequently, their level of relevance with front-end script files is
generally more significant than that of other program types. Such files are predominantly
found within web server environments (e.g., GoAhead, httpd) or CGI scripts.

External data introduction functions. Boundary binary files ingest user input data
through functions designed explicitly for input retrieval. These functions are typically
manifested by retrieving the value associated with a keyword index, as illustrated by the
function “sub_295C8”, a custom data input function implemented by the developers. A
statistical analysis of data input functions associated with known vulnerabilities reveals
a variety of functions used for this purpose. These include generic C standard library
functions such as “websGetVar”, “getenv”, and “nvram_get”, as well as proprietary functions
from different manufacturers, including “get_cgi” from Cisco, “httpGetEnv” from TP-Link,
and “find_var” from NETGEAR [13].

Taint-style vulnerabilities. Vulnerabilities categorized as “taint-style” arise from
the inadequate filtering of user input which consequently reaches sensitive functions,
leading to issues such as command injection and buffer overflow vulnerabilities. The taint
propagation process involves both source points and sink points. Source points refer to
locations in the program where external input is received, and these may be manipulated by
malicious users, turning them into taints, as exemplified by the function “sub_295C8”. Sink
points are defined as locations in the program where tainted data may be operated upon
in a manner that poses risks, such as the potentially dangerous function “_isoc99_sscanf ”
depicted in the diagram.

3.2. Challenges and Methods

Current research on embedded web services primarily faces two challenges. We
manually analyzed firmware from six manufacturers, comprising 25 distinct versions,
and integrated these findings with the relevant literature to synthesize and propose
our solutions.

Challenge 1: Given the complexities of interaction and implicit dependencies between
the front end and back end, how can we accurately trace the entry points of front-end data?

Within unpacked firmware, front-end code is relatively distinguishable; however, a
significant challenge arises from the plethora of binary files. Identifying code that processes
front-end data amid such a high volume of binaries—precisely tracing the data entry
points amid intricate front-end and back-end interactions—remains a problem that requires
urgent resolution. Existing research has made strides toward this aim. For example, in
DTaint [9], the authors manually specify vendor-customized functions (e.g., “find_var” and
“websGetVar”) as taint sources. In KARONTE [11], a pre-defined list of network encoding
strings (like “soap” or “HTTP”) are utilized as keywords to infer taint sources. SaTC [12]
proposes utilizing shared keyword-aware taint checking to track user input data flow
between the front end and back end. Researchers like Liu Lingxiang [13] and Cheng
Kai [14] have suggested identifying external data input functions to increase analytical
precision. Through our analysis of the associations between the front end and back end,
we deduced that boundary binary files, which facilitate data interactions with the front
end, exhibit salient HTTP service-related characteristics. Invariably, front end-transmitted
data manifest as key–value pairs in which boundary binary files typically read values by
indexing keys through external data input functions associated with key–value pairs. Thus,
by extracting and assessing features, we can identify boundary binary files and external
data input functions, effectively pinpointing external data entry points.

Appl. Sci. 2024, 14, 2373 7 of 20

Challenge 2: During the process of data flow tracking, how can we achieve a better
balance between efficiency and accuracy?

A program’s complexity and size limit the precision and speed of taint analysis.
Intricate rules for taint propagation have been established in existing work which, when
applied to substantial and complex programs, can result in a time-consuming analysis with
the potential for reduced accuracy. Previous methodologies often designated dangerous
functions in the program as sinks. However, within the voluminous code of real-world
firmware, such functions may be called extensively, making the indiscriminate designation
of these functions as sinks analytically expensive. We have identified that for firmware
with higher complexity, taint analysis outcomes necessitate further manual or automated
verification due to the inherent limitations of static analysis. The unwarranted focus on
accuracy is not advisable; thus, we propose developing lightweight taint propagation rules.
This approach aims to balance accuracy and efficiency, allowing for swift tracking and
querying of potential vulnerabilities. To increase the precision of queries, we not only
focus on accurately locating external data entry points but also implement the filtering of
dangerous functions. Our observations indicate that analysts prefer perusing decompiled
code as it presents information more amenable to analysis, such as data types and higher-
level control flows. Therefore, deploying rules on decompiled code’s abstract syntax tree
(AST) nodes for dangerous function filtration could be valuable.

4. Design
4.1. Overview

In this section, we will elaborate on the design of our system. Figure 2 illustrates the
detailed design, which inputs firmware images using mainstream architectures (such as
ARM and MIPS) in embedded systems and outputs reports on various potential threats.
The system initially utilizes Binwalk [25] to decompress firmware images, subsequently
separating and extracting frontend and backend files from the decompressed firmware. An
analysis correlating the extracted files between the front end and back end is conducted
to identify boundary binary files. Subsequently, the system identifies external data entry
points in boundary binary files through the rule-based matching of external data import
functions. It also interprets rules tailored for dangerous functions and filters these functions
within the boundary binary files. Finally, the system conducts a coarse-grained taint
analysis, identifying external data entry points as source points and filtered dangerous
functions as sink points. In summary, WFinder comprises four main steps: boundary
binary identification, external data entry point detection, dangerous function filtering, and
taint analysis.

4.2. Boundary Binary Recognition

We identify boundary binary files by analyzing association relationships between
the front end and the back end. After firmware unpacking, front-end code can generally
be recognized by its unique file extensions. However, not all executable binary files
within a firmware’s file system are capable of processing front-end data except boundary
binaries. Therefore, it is necessary to discern these boundary binary files through carefully
designed methods.

In the firmware back end, boundary binary files export device functionalities to
the front end and handle user inputs received from the front end. Upon receiving data
packets from the front end, the boundary binary files are required to parse and respond
to the packets accordingly. Therefore, we can distill signature characteristics to recognize
boundary binary files. We use the examples in Figures 3 and 4 to illustrate possible features.
Figure 3 shows a packet submitted by a router configuration page which is used to set the
wanMTU, wanSpeed, cloneType, and MAC parameters of the device. When the back-end
boundary binary receives the data packet, it will process the data in it, and the processed
code may contain features related to the front end, as shown in Figure 4. In Figure 4a, if an
incorrect URL is requested in the packet, an HTML error page will be outputted because

Appl. Sci. 2024, 14, 2373 8 of 20

the URL cannot be found. In fact, boundary binary files can generate various HTML pages
based on different response situations, and some of the code of these HTML pages exists
in the form of strings in the boundary binary. In Figure 4b, the boundary binary checks
whether some header fields in the packet exist. In fact, a boundary binary usually checks
various headers of HTTP requests to complete packet verification, so the boundary binary
file contains strings related to the HTTP header. In Figure 4c, the boundary binary obtains
the parameters passed in the request body, where the parameters in the request body
usually exist in the form of “key1 = value 1 & key2 = value 2 & . . .”. The boundary binary
obtains the corresponding value through the key, which is used for subsequent processing
in the program. The three scenarios in Figure 4 correspond to three features associated
with boundary binaries and the front end, and we can use these three points to identify
boundary binary files.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 21

Figure 2. Structure of WFinder. WFinder inputs firmware from actual devices and outputs potential
bugs. WFinder identifies back-end boundary binary files by analyzing the correlation between the
front end and back end and accurately identifies contaminated source and sink points through spe-
cific features and rules for an input-sensitive taint analysis.

4.2. Boundary Binary Recognition
We identify boundary binary files by analyzing association relationships between the

front end and the back end. After firmware unpacking, front-end code can generally be
recognized by its unique file extensions. However, not all executable binary files within a
firmware�s file system are capable of processing front-end data except boundary binaries.
Therefore, it is necessary to discern these boundary binary files through carefully de-
signed methods.

In the firmware back end, boundary binary files export device functionalities to the
front end and handle user inputs received from the front end. Upon receiving data packets
from the front end, the boundary binary files are required to parse and respond to the
packets accordingly. Therefore, we can distill signature characteristics to recognize
boundary binary files. We use the examples in Figures 3 and 4 to illustrate possible fea-
tures. Figure 3 shows a packet submitted by a router configuration page which is used to
set the wanMTU, wanSpeed, cloneType, and MAC parameters of the device. When the
back-end boundary binary receives the data packet, it will process the data in it, and the
processed code may contain features related to the front end, as shown in Figure 4. In
Figure 4a, if an incorrect URL is requested in the packet, an HTML error page will be
outputted because the URL cannot be found. In fact, boundary binary files can generate
various HTML pages based on different response situations, and some of the code of these
HTML pages exists in the form of strings in the boundary binary. In Figure 4b, the bound-
ary binary checks whether some header fields in the packet exist. In fact, a boundary bi-
nary usually checks various headers of HTTP requests to complete packet verification, so
the boundary binary file contains strings related to the HTTP header. In Figure 4c, the
boundary binary obtains the parameters passed in the request body, where the parame-
ters in the request body usually exist in the form of “key1 = value 1 & key2 = value 2 &
…”. The boundary binary obtains the corresponding value through the key, which is used
for subsequent processing in the program. The three scenarios in Figure 4 correspond to
three features associated with boundary binaries and the front end, and we can use these
three points to identify boundary binary files.

Figure 2. Structure of WFinder. WFinder inputs firmware from actual devices and outputs potential
bugs. WFinder identifies back-end boundary binary files by analyzing the correlation between the
front end and back end and accurately identifies contaminated source and sink points through specific
features and rules for an input-sensitive taint analysis.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 21

Figure 3. Packets from the front end. The data packet is sent by the front-end configuration page of
a certain router. The data package includes parameter configuration information, which is used to
set the device�s wanMTU, wanSpeed, cloneType, and mac parameters.

Figure 4. Possible responses from the back end. The processing logic that may exist in the back end
binary code for data packets, including generating page-corresponding information (a), HTTP
header validation (b), and obtaining the value of parameters passed in the request body (c).

Observations indicate that each characteristic of a boundary binary includes specific
feature keywords present within the binary file, thus enabling the identification of bina-
ries through keyword matching. For Characteristics 1 and 2, we can collect HTTP header
fields and HTML tags to serve as matching keywords. Characteristic 3 requires the extrac-
tion of parameter keywords used for data transfer in the front-end files. We then extract
strings from each back-end binary and attempt to match them with our established feature
keywords. We prioritize back-end files that possess three distinct characteristics, and then
binaries with the highest numbers of matching feature keywords are considered bound-
ary binaries, as expressed in Equation (1), where K1, K2, and K3 represent the sets of key-
words derived from the three characteristics, and Si represents the set of keywords ex-
tracted from each binary file in the firmware.

POST /goform/AdvSetMacMtuWan HTTP/1.1
Host: 192.168.0.140
Content-Length: 58
Accept: */*
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159
Safari/537.36
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Origin: http://192.168.0.140
Referer: http://192.168.0.140/mac_clone.html?random=0.8051087400423418&
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN,zh;q=0.9
Connection: close

wanMTU=1280&wanSpeed=0&cloneType=2&mac=00:0C:29:42:61:32

1 … …
2 for (i = (char *)a1[1]; i && *i; i = v15)
3 {
4 v16 = strtok(i, ": \t\n");
5 if (v16)
6 {
7 v17 = strtok(0, "\n");
8 … …
9 v19 = v17;
10 v22 = v19++;
11 if (!strcmp(v16, "user-agent"))
12 {
13 a1[52] = sub_1C174(v22);
14 continue;
15 }
16 if (sub_2BAB8(v16, "authorization"))
17 {
18 if (!strcmp(v16, "content-length"))
19 {
20 v39 = atoi(v22);
21 … …
22 … …
23}
24… …

1 … …
2 if (sub_20DF8(a1, v8, a6, 0, 438) < 0)
3 {
4 sub_2A878(a1, 404, "Cannot open URL");
5 return 1;
6 }
7 … …
8 int sub_2A878(int a1, int a2, const char *a3)
9 {
10 … …
11 sub_20C10(&v14,20480,
12 "<html><head><title>Document Error: %s</title></head>\r\ n"
13 " <body><h2>Access Error: %s</h2>\r\n"
14 " <p>%s</p></body></html>\r\n",v9);
15 … …
16}

1 … …
2 int __fastcall sub_658D8(int a1, int a2)
3 {
4 … …
5 const char *v5;
6 int v9[8];
7 … …
8 v5 = (const char *)sub_295C8(a1, "wanMTU", &byte_1C2CF0);
9 strcpy((char *)v9, v5);
10 … …
11}
12… …

(a). Feature 1 of boundary binary

(c). Feature 3 of boundary binary (b). Feature 2 of boundary binary

Figure 3. Packets from the front end. The data packet is sent by the front-end configuration page of a
certain router. The data package includes parameter configuration information, which is used to set
the device’s wanMTU, wanSpeed, cloneType, and mac parameters.

Appl. Sci. 2024, 14, 2373 9 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 21

Figure 3. Packets from the front end. The data packet is sent by the front-end configuration page of
a certain router. The data package includes parameter configuration information, which is used to
set the device�s wanMTU, wanSpeed, cloneType, and mac parameters.

Figure 4. Possible responses from the back end. The processing logic that may exist in the back end
binary code for data packets, including generating page-corresponding information (a), HTTP
header validation (b), and obtaining the value of parameters passed in the request body (c).

Observations indicate that each characteristic of a boundary binary includes specific
feature keywords present within the binary file, thus enabling the identification of bina-
ries through keyword matching. For Characteristics 1 and 2, we can collect HTTP header
fields and HTML tags to serve as matching keywords. Characteristic 3 requires the extrac-
tion of parameter keywords used for data transfer in the front-end files. We then extract
strings from each back-end binary and attempt to match them with our established feature
keywords. We prioritize back-end files that possess three distinct characteristics, and then
binaries with the highest numbers of matching feature keywords are considered bound-
ary binaries, as expressed in Equation (1), where K1, K2, and K3 represent the sets of key-
words derived from the three characteristics, and Si represents the set of keywords ex-
tracted from each binary file in the firmware.

POST /goform/AdvSetMacMtuWan HTTP/1.1
Host: 192.168.0.140
Content-Length: 58
Accept: */*
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159
Safari/537.36
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Origin: http://192.168.0.140
Referer: http://192.168.0.140/mac_clone.html?random=0.8051087400423418&
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN,zh;q=0.9
Connection: close

wanMTU=1280&wanSpeed=0&cloneType=2&mac=00:0C:29:42:61:32

1 … …
2 for (i = (char *)a1[1]; i && *i; i = v15)
3 {
4 v16 = strtok(i, ": \t\n");
5 if (v16)
6 {
7 v17 = strtok(0, "\n");
8 … …
9 v19 = v17;
10 v22 = v19++;
11 if (!strcmp(v16, "user-agent"))
12 {
13 a1[52] = sub_1C174(v22);
14 continue;
15 }
16 if (sub_2BAB8(v16, "authorization"))
17 {
18 if (!strcmp(v16, "content-length"))
19 {
20 v39 = atoi(v22);
21 … …
22 … …
23}
24… …

1 … …
2 if (sub_20DF8(a1, v8, a6, 0, 438) < 0)
3 {
4 sub_2A878(a1, 404, "Cannot open URL");
5 return 1;
6 }
7 … …
8 int sub_2A878(int a1, int a2, const char *a3)
9 {
10 … …
11 sub_20C10(&v14,20480,
12 "<html><head><title>Document Error: %s</title></head>\r\ n"
13 " <body><h2>Access Error: %s</h2>\r\n"
14 " <p>%s</p></body></html>\r\n",v9);
15 … …
16}

1 … …
2 int __fastcall sub_658D8(int a1, int a2)
3 {
4 … …
5 const char *v5;
6 int v9[8];
7 … …
8 v5 = (const char *)sub_295C8(a1, "wanMTU", &byte_1C2CF0);
9 strcpy((char *)v9, v5);
10 … …
11}
12… …

(a). Feature 1 of boundary binary

(c). Feature 3 of boundary binary (b). Feature 2 of boundary binary

Figure 4. Possible responses from the back end. The processing logic that may exist in the back end
binary code for data packets, including generating page-corresponding information (a), HTTP header
validation (b), and obtaining the value of parameters passed in the request body (c).

Observations indicate that each characteristic of a boundary binary includes specific
feature keywords present within the binary file, thus enabling the identification of binaries
through keyword matching. For Characteristics 1 and 2, we can collect HTTP header fields
and HTML tags to serve as matching keywords. Characteristic 3 requires the extraction
of parameter keywords used for data transfer in the front-end files. We then extract
strings from each back-end binary and attempt to match them with our established feature
keywords. We prioritize back-end files that possess three distinct characteristics, and then
binaries with the highest numbers of matching feature keywords are considered boundary
binaries, as expressed in Equation (1), where K1, K2, and K3 represent the sets of keywords
derived from the three characteristics, and Si represents the set of keywords extracted from
each binary file in the firmware.

Border = MAX (K1∪K2∪K3) ∩ Si (1)

4.2.1. Keywords of Feature 1 and Feature 2

We collected a list of common HTML tags and HTTP/1.1 general header fields as
keywords for Characteristics 1 and 2, respectively, as shown in Table 1. For the keywords
of Characteristic 1, we only focus on structural tags. This decision is based on the fact that
of the many types of HTML tags, including structural, text, and list tags, structural tags
are the most commonly used and an indispensable part of any HTML document. As for
the keywords related to Characteristic 2, we comprehensively collected the general header
fields of HTTP/1.1 to ensure broad coverage of potential keywords.

Appl. Sci. 2024, 14, 2373 10 of 20

Table 1. Keywords of Feature 1 and Feature 2. The structural tags of HTML tags are collected as the
keyword for Feature 1, and the HTTP header fields are comprehensively collected as the keyword for
Feature 2.

HTML tags <html>, <head>, <title>, <meta>, <link>, <style>, <script>, <body>

HTTP Header

Accept, Accept-Charset, Accept-Encoding, Accept-Language,
Accept-Ranges, Age, Authorization, Cache-Control, Connection,

Keep-Alive, Content-Encoding, Content-Language, Content-Length,
Content-Range, Content-Type, Etag, Expired, Host, If-Match,

If-None-Match, If-Modified-Since, If-Unmodified-Since, If-Range,
Last-Modified, Location, Pramga, Proxy-Authenticate,

Proxy-Authorization, Range, Referer, Server, User-Agent,
Transfer-Encoding, Vary, Via

4.2.2. Keywords of Feature 3

Regarding the keywords associated with Characteristic 3, we analyze front-end scripts
to extract potential keywords derived from user input. Currently, front-end script files for
Internet of Things (IoT) devices predominantly consist of HTML, JavaScript, and XML;
therefore, this study focuses primarily on these types of files for analysis. Owing to the
standardized format of HTML files, we employ regular expressions to extract keywords,
precisely values of attributes such as their id, name, and action. Services based on XML
typically employ a fixed format within their XML files to delineate input data. Therefore,
we employ regular expressions to extract keywords based on their format. Given the
highly variable nature of JavaScript formatting, regular expressions cannot reliably identify
keywords. Therefore, for JavaScript files, we parse the files into an Abstract Syntax Tree
(AST) and scrutinize each literal node to extract values from the value attributes.

Strings collected from HTML, XML, and AST present a significant challenge due
to a plethora of spurious keywords. These not only impose a substantial burden on
subsequent string-matching processes but also introduce false positives in error detection.
For instance, commonly used front-end strings may lack corresponding objects in the
backend. To filter out these irrelevant keywords, we have devised several rules based on
empirical insights. Firstly, we exclude strings containing special characters, such as “!”
and “@”, which typically escape during the generation of HTTP requests on the front end.
Secondly, for strings ending with “=“, we retain the left part and discard the right part.
Take, for example, “timeZone=“ from Figure 1, where only the parameter name is reused in
the backend.

Even after applying filters, the candidate list may still contain many distractors that
are not intended to be used as input keywords. To reduce the complexity of subsequent
modules, we employ two heuristic methods to identify and exclude these from the keyword
set. When a JavaScript file is referenced by numerous HTML documents, we consider it
a generic shared library, similar to chart libraries. As such files typically do not include
input keywords, we disregard all candidates within them. Furthermore, if a keyword is
referenced by multiple front-end files, such as “Button” and “Cancel”, it is likely to be a
common string rather than an input keyword. These keywords are also removed from the
candidate list.

4.3. Identification of External Data Entry Points

Upon locating the boundary binary program, the subsequent step is to identify the
data entry points within the program. Typically, external data are introduced through
parameters found in HTTP packet headers and bodies, frequently formatted as key–value
pairs. Functions that import external data typically refer to those that retrieve the value
associated with a user-requested keyword, enabling access to values corresponding to the
key: value-type data transmitted from the front end, including the values of HTTP headers
and parameters in the request body that align with Features 2 and 3 of the boundary
binary file. We categorize functions introducing external data into three groups: those

Appl. Sci. 2024, 14, 2373 11 of 20

handling request body parameters, those for HTTP header values, and functions setting
configuration information. Further, we document their respective characteristics.

The first category encompasses functions for introducing request body parameters.
Commonly, these are fixed functions characterized by the following attributes:

• High-frequency characteristics: Functions that introduce external data are invoked
repeatedly throughout various sections of the program. These functions typically
reference keywords shared between the front end and back end, matching corre-
sponding data from external input sources. Due to their reference to a range of
keywords, these functions experience extensive utilization within the program. There-
fore, we consider functions with a higher frequency of referenced parameter keywords
candidate functions.

• Functions introducing request body parameters may utilize C standard library func-
tions such as websGetVar, getenv, and nvram_get. Initially, we examine whether the
candidate functions utilize C standard library functions; if so, we classify them as
functions that import external data. If standard library functions are not used, we
review the names of candidate functions, prioritizing those named with keywords
related to WEB input for subsequent examination, such as Web, http, get, var, and
similar terms.

• Functions for importing external data typically resemble the strcmp function or obtain
the address index of values corresponding to keywords from external inputs by
invoking functions similar to strcmp (we collectively refer to these as strcmp-like
functions). Therefore, we assess whether the candidate functions are strcmp-like,
prioritizing those marked for examination. Simultaneously, we evaluate whether these
functions’ parameters or return values contain pointers that store values. We identify
functions characterized by strcmp-like features and with parameters or return values
that retain values as functions for importing external data.

HTTP header fields are utilized less frequently in boundary binaries compared to
request body parameters, potentially lacking dedicated import functions. Initially, we iden-
tify the locations of functions referencing HTTP header fields and subsequently examine
whether these functions are similar to strcmp. If they resemble strcmp functions, we clas-
sify the functions referencing request body parameters at these locations as external data
import functions.

Configuration information setting functions are typically library functions and usually
manifest in pairs, serving the purpose of either assigning a value to a particular parameter
(referred to as “set” functions) or retrieving a configuration parameter (referred to as “get”
functions). Sometimes, the “set” functions retrieve values from external data inputs to
configure device parameters, while “get” functions may process configuration information
read from the device. Consequently, we can ensure the comprehensiveness of vulnerability
exploration by integrating data flows of “set” and “get” functions that reference the same
external keyword. In naming conventions, the “set” and “get” functions are identical except
for their “set” or “get” prefixes. This characteristic enables us to identify such functions
within imported library functions.

4.4. Hazardous Function Filtering

In vulnerability analysis, functions that serve as execution endpoints, termed “sink”
functions, often use hazardous functions. However, not all instances of hazardous function
calls are necessarily harmful. Our analysis focuses on risky functions associated with three
types of taint-based vulnerabilities: buffer overflows, command injections, and format
string vulnerabilities. We find that taint-based vulnerabilities arise when specific argument
positions within hazardous functions can be controlled by the user. Therefore, we posit that
a vulnerability only occurs when these dangerous parameters of hazardous functions are
user-controllable. In many practical scenarios, the dangerous parameters of such functions
are often constants or parameter types that do not lead to overflows. For example, in
the case of the “strcpy” function associated with buffer overflows, the critical parameter

Appl. Sci. 2024, 14, 2373 12 of 20

(second argument) could be a number or a constant string. Even if not constant, it might be
a string whose length has been evaluated by the “strlen” function.

To diminish the number of sink points in the vulnerability analysis, we can devise
rules that filter based on the hazardous parameter positions of dangerous functions. In
composing these rules, we craft them with coarse granularity to avoid generating false
negatives. For instance, with “strcpy” and similar functions, a rule could be “the second
parameter is neither a constant nor derived from the ‘strlen’ function.” For “strncpy” and
analogous functions, the rule could be “the second parameter is neither a constant nor
sourced from ‘strlen’, and the third parameter is either not a constant or is a constant
of significant size.” Regarding “sprintf” and similar format input functions, we examine
whether the first parameter is a constant string. If it is not, there is potential for format
string vulnerabilities; if it is a constant string, we search for “%s” within the string and
assess whether its corresponding parameters meet the criteria of being non-constant and
not derived from “strlen”, concurrently tracking the parameters that could potentially
induce vulnerabilities. We have categorized common dangerous functions and developed
filtering rules tailored to their parameter characteristics. Table 2 showcases a sample of the
rules we have developed.

Table 2. Example of dangerous function filtering rule. Examples of filtering rules for dangerous
functions corresponding to vulnerabilities, such as buffer overflow, command injection, and formatted
strings, are shown.

Vulnerability Types Function Types Rules

Buffer Overflow

Strncpy-like Functions

not param[1].is_constant() and
not param[1].used_in_call_after([‘strlen’])

and (not param[2].is_constant()
or param[2].is_morethan(256))

Sprintf-like Functions

any([(not param[i+1].used_in_call_before([‘strlen’])
and not param[i+1].is_constant()) for i in

range(len(param[1].string_value().split(‘%’))) if
param[1].string_value().split(‘%’)[i].startswith(‘s’)]

Command Injection System-like Functions not param[0].is_constant()

Formatted String Print-like Functions not param[0].is_constant()

4.5. Vulnerability Path Exploration

After identifying external data introduction functions and filtering hazardous func-
tions, we treat the external data introduction functions that reference the keywords of
Feature 2 and Feature 3 as source points and hazardous functions as sink points for explor-
ing potential vulnerability paths. Initially, we generate function call paths for both source
and sink points. Subsequently, we rely on these function call paths and control flow graphs
within functions to conduct a taint analysis, aiming to uncover potential vulnerabilities.

Although the preceding modules have narrowed down the target of the contamination
analysis, a substantial number of pollution sources still require a trace analysis. To enhance
the efficiency of this analysis, we first search for function call traces from source to sink
points—that is, the sequence of function calls from external data introduction points to
potential hazardous functions—before exploring paths. We designate the external data
introduction function associated with an introduction point as the root node and employ
depth-first traversal to search for calls to hazardous functions within the function’s call tree,
thus generating a sequence of calls. Should an external data introduction point lack any
function call sequences, it is considered to have no reachable paths to potential hazardous
functions and, consequently, can be removed from the collection of pollution sources.

Our taint analysis relies on the generated function call paths and the control flow
graphs within functions. The main factors influencing the efficiency and accuracy of taint
analysis are the taint propagation specifications for function calls. As shown in Algorithm

Appl. Sci. 2024, 14, 2373 13 of 20

1, we categorize functions into three types: downward-propagating functions, inward-
propagating functions, and terminator functions. Functions involved in the function call
paths are designated as inward-propagating functions, within which we track the propa-
gation of tainted parameters. Hazardous functions are considered terminator functions;
for these, we verify whether tainted parameters correspond to dangerous ones, and if
so, we issue an alert. Other functions are classified as downward-propagating functions.
For these, we do not trace into the function; instead, we contaminate their parameters
and return values and continue the downward propagation of taint in the originating
function. The external data introduction functions within the pollution sources serve as
the initial downward-propagating functions. As illustrated in Figure 5, the data reception
function is in “Func_A”, and from “Func_A” to the hazardous call point “Func_sink”,
there is a call path “Func_A -> Func_B -> Func_sink1”. We regard “Func_B” on the
call chain as a downward-propagating function. “Func_B” calls “Func_D” before calling
“Func_sink1”, but since “Func_D” is not on the call chain, it is considered a downward-
propagating function. In the diagram, Func_C and Func_E are paired in calling the set
and get functions of the configuration information setting function. Therefore, we con-
tinue to explore the data flow from Func_A through Func_C and Func_E to Func_sink2.

Algorithm 1: Taint Specifications.

1. Function Taint(Ins,Taint_Map)
2. if IS_FUNCALL then
3. func← GETFUNADDR(Ins)
4. (retv,params)← GERPARAMS(Ins)
5. taint_set← HAS_TAINT(params)
6. if taint_set = NULL then return
7. end if
8. if IS_CALLNOTEFUNC(func) then
9. STEPINTO(func,Taint_Map,taint_set)
10. else if IS_SINKFUNC(func) then
11. alert()
12. else then
13. if IS_POINTER(retv) && IS_USED(retv) then
14. T(retv)
15. else
16. T(params,retv)
17. end if
18. end if
19. else
20. TAINT_RULE(Ins,Taint_Map)
21. end if
22. end function

Considering factors of efficiency and accuracy, we address the issue of cycles within
the control flow graph caused by loops and similar constructs, which can lead to infinite
loops during path exploration. To avoid this occurrence, we record the visitation status of
each basic block in the control flow graph and limit the number of visits to each basic block
to once.

Appl. Sci. 2024, 14, 2373 14 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 21

12. else then

13. if IS_POINTER(retv) && IS_USED(retv) then

14. T(retv)

15. else

16. T(params,retv)

17. end if

18. end if

19. else

20. TAINT_RULE(Ins,Taint_Map)

21. end if

22. end function

Figure 5. Function call graph. The figure shows the possible function call paths and data flow paths
from Func-A, which calls the external data import function, to the potentially dangerous function.
Finc_B called Func_D before calling Finc_sink1. Func_C and Func_E contain a pair of function calls
for system configuration functions.

Considering factors of efficiency and accuracy, we address the issue of cycles within
the control flow graph caused by loops and similar constructs, which can lead to infinite
loops during path exploration. To avoid this occurrence, we record the visitation status of
each basic block in the control flow graph and limit the number of visits to each basic block
to once.

5. Evaluation
5.1. Experiment Setup

We have developed a prototype system utilizing Python on the foundation provided
by the reverse-engineering tool IDA [26]. The front-end keyword extraction module is im-
plemented based on SaTC [12], while the hazardous-function-filtering module utilizes the
IDA plugin VulFi [27]. The taint analysis engine is constructed atop angr [24]. We evaluate
WFinder in real-world embedded systems and answer the following questions:

Func_A

Func_B Func_C

Func_sink1Func_D

Function Call Path

Data Flow Path

Func_E

Func_F Func_sink2

Invoke system setting functions that appear in pairs

Figure 5. Function call graph. The figure shows the possible function call paths and data flow paths
from Func-A, which calls the external data import function, to the potentially dangerous function.
Finc_B called Func_D before calling Finc_sink1. Func_C and Func_E contain a pair of function calls
for system configuration functions.

5. Evaluation
5.1. Experiment Setup

We have developed a prototype system utilizing Python on the foundation provided
by the reverse-engineering tool IDA [26]. The front-end keyword extraction module is
implemented based on SaTC [12], while the hazardous-function-filtering module utilizes
the IDA plugin VulFi [27]. The taint analysis engine is constructed atop angr [24]. We
evaluate WFinder in real-world embedded systems and answer the following questions:

Q1: Can SaTC find real-world vulnerabilities? (Section 5.2.) How effective is it
compared to a state-of-the-art tool? (Section 5.2.)

Q2: Can WFinder accurately detect boundary binary functions and external data
introduction functions? (Section 5.3.)

Q3: Do the detection of external data input points and the filtering of hazard functions
provide positive significance? (Section 5.4.)

Q4: How efficient and accurate is our taint analysis? (Section 5.5.)
Dataset. As shown in Table 3, the dataset for this study is sourced from IoT de-

vice firmware provided online by five vendors: Tenda [28], D-Link [29], Netgear [30],
ToToLink [31], and Vivotek [32]. These firmware architectures include ARM and MIPS, the
mainstream architectures used in embedded devices. As shown in Table 3, we selected
ten firmware samples, six of which use the ARM architecture and four of which use the
MIPS architecture.

Existing Tool. We compared our tool with SaTC, the state-of-the-art static bug hunter
for embedded systems. It searches for input entries in back-end binary files by analyzing
keywords shared between the front end and back end and utilizes a taint analysis to track
data flow to detect vulnerabilities.

Bug Confirmation. Each alert generated by WFinder contains a call trace from the
starting point to the receiving function, as well as corresponding input keywords. We
distinguish between true and false positives based on whether the path is reachable. If we
can manually generate a proof of crash (PoC) based on alerts and validate it on physical
devices, we consider it a real bug.

Appl. Sci. 2024, 14, 2373 15 of 20

Table 3. Dataset of device samples. We selected 10 device samples from 5 vendors: 9 routers and 1
camera. SizeP and SizeUP represent the averages size before and after unpacking, respectively.

Vendor Device Series Architecture SizeP SizeUP

Tenda
AX1803 ARM 41.7 MB 102.7 MB
AX1806 ARM 46.8 MB 114.5 MB
G1/G3 ARM 10.4 MB 62.5 MB

D-Link
DIR823G MIPS 6.2 MB 31.8 MB
DIR816 MIPS 3.9 MB 20.5 MB

ToToLink
X2000R MIPS 12.5 MB 72.9 MB
A3002R MIPS 6.9 MB 37.5 MB

Netgear R7000 ARM 32.3 MB 192.9 MB
R7000P ARM 41.7 MB 227.2 MB

vivotek CC8160 ARM 36.4 MB 51.7 MB

5.2. Real-World Vulnerabilities

As shown in Table 4, WFinder detected 13 previously unknown bugs. These 13 bugs
were first discovered by WFinder during the experimental process. We report newly
discovered vulnerabilities to the CNVD in a non-public manner, and the CNVD will verify
and confirm the vulnerabilities and be responsible for contacting the manufacturer for
handling. At the time of writing this paper, 8 of these have been reported to the CNVD and
assigned identifier numbers; all 13 are buffer overflow vulnerabilities.

Table 4. Zero-day discoveries using WFinder. We identified 13 new buffer overflow vulnerabilities; 8
of them were reported to the CNVD and assigned identifier numbers.

Device Series Total Bug IDs

AX1803 8
CNVD-2022-89238, CNVD-2022-89237, CNVD-2022-89236,
CNVD-2023-03805, CNVD-2023-03806, CNVD-2023-03807,
CNVD-2023-03809, CNVD-2023-00833

X2000R 2 unassigned

AX1806 3 unassigned

The 13 bugs we discovered are all buffer overflow vulnerabilities, including heap
overflow and stack overflow. They are all web service programs on the firmware back end
which, when processing data packets, obtain the parameter values and flow into dangerous
functions without limiting their length, resulting in buffer overflows. We use real devices
to verify vulnerabilities, and 13 vulnerabilities can cause DOS or even more harm to the
device. In fact, the harm that buffer overflow vulnerabilities can cause is related to the
protection mechanisms enabled by binary programs. Due to the limited resources provided
by embedded devices, most defense mechanisms will not be enabled. In the firmware we
analyzed, most of the firmware programs only enabled NX, while ASLR and canary were
hardly enabled. This paper only describes the relevant work of vulnerability discovery,
and the discovered vulnerabilities can be triggered through the constructed PoC. Further
discussion on vulnerability exploitability analysis will not be conducted.

Comparison with SaTC. We compared WFinder with the state-of-the-art static analysis
tool SaTC with respect to discovering vulnerabilities. In order to make the comparison fair,
we added the danger function defined in SaTC to align it with WFinder. Table 5 shows our
evaluation results. WFinder raised a total of 644 alerts, of which 346 were true positives
and 225 were verified to be real vulnerabilities. SaTC raised 660 alerts, of which 422 were
true positives, but only 183 were verified to be real vulnerabilities. The results indicate that
WFFinder can identify more vulnerabilities. At the design level, WFinder adopts a similar
approach to SaTC, identifying the correlation between the front end and back end to locate

Appl. Sci. 2024, 14, 2373 16 of 20

the starting point of the taint analysis. However, there are significant differences in the final
results. This is because SaTC did not consider that the user input data were introduced by
an external input function. Therefore, although the result contains many true positives that
can be reached by the path, the starting point may not be controlled by the user and cannot
lead to vulnerabilities. In addition, SaTC’s recognition of boundary binary files is also not
entirely accurate, resulting in CC8160 being unable to detect vulnerabilities. Furthermore,
we will discuss the impact of the taint analysis on the experimental results in Section 5.5.

Table 5. Comparison with SaTC. We list the number of alerts (Alerts), true positives (TPs), and
vulnerabilities.

Device Series Boundary
Binary

SaTC WFinder

Alert TP Vulnerability Alert TP Vulnerability

AX1803 tdhttpd 64 42 16 45 31 29
AX1806 tdhttpd 61 45 19 51 29 25
G1/G3 httpd 53 31 14 59 29 17
DIR823G goahead 64 43 21 70 39 23
DIR816 goahead 78 39 25 64 37 27
X2000R boa 87 66 20 112 48 21
A3002R boa 33 15 0 20 8 1
R7000 httpd 96 78 32 121 64 41
R7000P httpd 124 63 36 98 58 40
CC8160 httpd 0 0 0 4 3 1

Total 660 422 183 644 346 225

5.3. Inferring External Data Entry Points

This paper analyzes the front-end and back-end correlation of the file systems of
10 firmware types and obtains each firmware’s boundary binary programs and data import
functions. According to the actual situation of each firmware, this paper compares the
analysis results of boundary binary files with SATC, as shown in Table 6. Both Wfinder and
SATC can recognize most boundary binaries. However, for vivotek_cc8160, SATC failed
to accurately identify it because the boundary binary file httpd in cc8160 contains fewer
parameter keywords. However, WFinder can successfully identify it by introducing HTTP
headers and HTML tags as feature keywords. For the boundary binary file boa identified
by dir823, we manually analyzed it and found that it was not the boundary binary file
used by the device. After the file was excluded, we identified it again and successfully
identified the boundary binary file Goahead. In addition, this paper lists the identified
external data import functions. The table only lists the functions specifically used to extract
the parameters of the HTTP request body and the identified configuration information
setting functions. Since most HTTP header import functions are not fixed, they are not
listed in this paper.

5.4. Sensitive Path Reduction Analysis

Because this paper filters the source point and sink point, the sensitive path is greatly
reduced, as shown in Table 7. We count the number of danger functions filtered by
WFFinder, the number of accurately identified external data input points, and the number
of sensitive paths. We compare the results with SaTC. Using unfiltered hazard functions
and external data input points containing many false positives as starting and ending
points in SaTC generates a large number of sensitive paths, increasing the burden of stain
analysis. On the contrary, due to the reduction in starting and ending points, WFinder
obtains significantly fewer sensitive paths, which can greatly improve the efficiency of the
taint analysis.

Appl. Sci. 2024, 14, 2373 17 of 20

Table 6. External data entry point recognition. BB is the boundary binary; EDIF is the external data
introduction function; CSF is the settings configuration function.

Device Series Device Series
SaTC Wfinder

BB BB EDIF CSF

Tenda

AX1803 tdhttpd tdhttpd sub_4F4F4 Getvalue
Setvalue

AX1806 tdhttpd tdhttpd sub_295C8 Getvalue
Setvalue

G1/G3 httpd httpd websGetVar Getvalue
Setvalue

D-Link

DIR823G boa boa
goahead

sub_40DF84
sub_41EA84

apmib_set
apmib_get

DIR816 goahead goahead websGetVar

nvram_get
nvram_set

nvram_bufset
nvram_bufget

ToToLink
X2000R boa boa sub_40F1F0

A3002R boa boa sub_410510

Netgear R7000 httpd httpd sub_19644 acosNvramConfig_set
acosNvramConfig_get

R7000P httpd httpd sub_1A760 acosNvramConfig_set
acosNvramConfig_get

vivotek CC8160 onvifd httpd sub_1A760

Table 7. Sensitive path reduction. DF is the dangerous function, IE is the input entry, SP is the
sensitive path, and FDF is the filtered dangerous function.

Series Binary
SaTC WFinder

DF IE SP FDF IE SP

AX1803 tdhttpd 649 2847 1324 457 345 257
AX1806 tdhttpd 612 2721 977 429 367 276
G1/G3 httpd 1268 4304 63,523 462 598 1236

DIR823G goahead 254 670 672 208 48 143
DIR816 goahead 316 427 1782 217 395 1322
X2000R boa 909 1067 4,760,783 552 822 253,677
A3002R boa 913 1171 3,524,763 505 785 245,343
R7000 httpd 3813 5509 170,774 2907 1774 3566

R7000P httpd 3615 5621 175,822 2758 1764 3687

5.5. Efficacy of Taint Analysis

Based on reducing sensitive paths, we adopt lightweight function pollution specifica-
tion which reduces the exploration path of the taint analysis and dramatically improves
the efficiency of finding embedded web server vulnerabilities in firmware. As shown in
Figure 6, compared with the well-known work SATC, it is found that the efficiency is
improved by 40% on average; x2000r and a3002r were not completed within the specified
time (12 h) due to too many sensitive call paths.

As shown in Table 8, we calculated the proportion of true positives in alerts (TP/Alert)
and the proportion of vulnerabilities in true positives in the analysis results of each sample.
We believe that the value of TP/Alert only reflects the accuracy of whether the taint analysis
exploration path is reachable. In fact, whether the path is reachable does not necessarily
mean that a vulnerability exists, so we also calculated Vulnerability/TP. We compared the
statistical results of WFinder and SaTC. It was found that WFinder outperforms SaTC on

Appl. Sci. 2024, 14, 2373 18 of 20

Vulnerability/TP. WFinder reduces false positives caused by factors other than the taint
analysis by accurately locating the starting and ending points of the taint analysis. Therefore,
true positives in WFinder results are more likely to be verified as vulnerabilities. In fact,
the false positives of the taint analysis are difficult to avoid, and the cost of improving its
accuracy is not worth it. We need to balance the efficiency and accuracy of the taint analysis.
This is why WFinder is generally not as good as SaTC on TP/Alert. WFinder simplifies the
function call specification for the taint analysis in exchange for higher analysis efficiency.
But we also use accurate positioning of the starting and ending points to compensate for
their false positives, reducing them to an acceptable range for manual verification. In
fact, according to Table 5, the number of alerts we issued is not significantly different
from SaTC, but our analysis efficiency has dramatically improved. In addition, due to the
simplified function call specification, which can avoid path explosions encountered during
the analysis process, we explored more vulnerabilities than SaTC.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 21

Figure 6. the efficiency of the taint analysis. We have listed the analysis time of each sample for
WFFinder and SaTC.

6. Discussion
We devised the vulnerability scanning tool WFinder specifically for embedded web

servers. We analyze the correlation between the front end and back end, identify bound-
ary binary files and external data inflow points based on the features of the front end and
back end correlation, scan and filter the dangerous functions in the boundary binary files,
and finally perform a lightweight taint analysis to identify potential vulnerabilities.
WFinder successfully uncovers thirteen zero-day vulnerabilities across ten firmware sam-
ples, with eight of them already assigned CNVD identifiers. Our evaluation results indi-
cate that WFinder surpasses the capabilities of cutting-edge tools in identifying errors
within the firmware samples.

Future Work: In this study, we implement a preliminary vulnerability-scanning ap-
proach crossing the front end and back end. We analyze and observe real firmware pro-
grams, summarize the feature recognition of external data entry points in the back end,
and design methods to balance efficiency and accuracy in the process of data flow analy-
sis. Due to the balance between accuracy and efficiency, our method can efficiently explore
more vulnerabilities, making it highly practical for firmware vulnerability analyses. How-
ever, to enhance efficiency during the taint analysis phase, we accepted a certain level of
false positives, which can be manually reviewed. Moreover, while WFinder assesses the
reachability of paths during the scanning process, it does not account for potential con-
straints on user inputs along these paths, which is also why some true positives cannot
become vulnerabilities. Therefore, future efforts will focus on developing an appropriate
automatic verification method to address these issues. We consider extracting relevant in-
formation from our static analysis process and combining it with dynamic fuzz testing to
achieve the automated verification of potential vulnerabilities and PoC generation.

Author Contributions: Conceptualization: X.M. and Y.W. (Yunchao Wang); methodology: X.M.; for-
mal analysis: X.M. and C.Y.; resources: Y.W. (Yunfeng Wang); writing—original draft preparation:
X.M.; writing—review and editing: C.Y. and Y.W. (Yunchao Wang); supervision: Q.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research study was funded by National Key Research and Development Program of
China, grant number 2019QY0500.

Figure 6. The efficiency of the taint analysis. We have listed the analysis time of each sample for
WFFinder and SaTC.

Table 8. The accuracy of the taint analysis. We have listed the proportion of true positives in alarms
and the proportion of verified vulnerabilities in true positives for each sample.

Vendor AX1803 AX1806 G1/G3 DIR823G DIR816 X2000R A3002R R7000 R7000P

WFinder
TP/Alert 0.68 0.56 0.49 0.55 0.57 0.43 0.40 0.53 0.59
Vulnerability/TP 0.93 0.86 0.58 0.58 0.72 0.43 0.13 0.64 0.69

SaTC
TP/Alert 0.66 0.73 0.58 0.67 0.5 0.76 0.45 0.81 0.50
Vulnerability/TP 0.38 0.42 0.45 0.48 0.64 0.30 - 0.41 0.57

6. Discussion

We devised the vulnerability scanning tool WFinder specifically for embedded web
servers. We analyze the correlation between the front end and back end, identify boundary
binary files and external data inflow points based on the features of the front end and back
end correlation, scan and filter the dangerous functions in the boundary binary files, and
finally perform a lightweight taint analysis to identify potential vulnerabilities. WFinder
successfully uncovers thirteen zero-day vulnerabilities across ten firmware samples, with
eight of them already assigned CNVD identifiers. Our evaluation results indicate that
WFinder surpasses the capabilities of cutting-edge tools in identifying errors within the
firmware samples.

Appl. Sci. 2024, 14, 2373 19 of 20

Future Work: In this study, we implement a preliminary vulnerability-scanning ap-
proach crossing the front end and back end. We analyze and observe real firmware pro-
grams, summarize the feature recognition of external data entry points in the back end, and
design methods to balance efficiency and accuracy in the process of data flow analysis. Due
to the balance between accuracy and efficiency, our method can efficiently explore more
vulnerabilities, making it highly practical for firmware vulnerability analyses. However,
to enhance efficiency during the taint analysis phase, we accepted a certain level of false
positives, which can be manually reviewed. Moreover, while WFinder assesses the reacha-
bility of paths during the scanning process, it does not account for potential constraints
on user inputs along these paths, which is also why some true positives cannot become
vulnerabilities. Therefore, future efforts will focus on developing an appropriate automatic
verification method to address these issues. We consider extracting relevant information
from our static analysis process and combining it with dynamic fuzz testing to achieve the
automated verification of potential vulnerabilities and PoC generation.

Author Contributions: Conceptualization: X.M. and Y.W. (Yunchao Wang); methodology: X.M.;
formal analysis: X.M. and C.Y.; resources: Y.W. (Yunfeng Wang); writing—original draft preparation:
X.M.; writing—review and editing: C.Y. and Y.W. (Yunchao Wang); supervision: Q.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research study was funded by National Key Research and Development Program of
China, grant number 2019QY0500.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. GSMA. June 2020. Available online: https://www.gsma.com/ (accessed on 1 June 2020).
2. Boofuzz. 2018. Available online: https://github.com/jtpereyda/boofuzz (accessed on 16 April 2018).
3. Chen, J.; Diao, W.; Zhao, Q.; Zuo, C.; Lin, Z.; Wang, X.; Lau, W.C.; Sun, M.; Yang, R.; Zhang, K. IoTFuzzer: Discovering Memory

Corruptions in IoT Through App-based Fuzzing. In Proceedings of the Network and Distributed System Security Symposium,
San Diego, CA, USA, 18–21 February 2018.

4. Feng, X.; Sun, R.; Zhu, X.; Xue, M.; Wen, S.; Liu, D.; Nepal, S.; Xiang, Y. Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, 15–19 November 2021; pp. 337–350.

5. Ma, X.; Zeng, Q.; Chi, H.; Luo, L. No More Companion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of IoT
Firmware. In Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Service, Helsinki,
Finland, 18–22 June 2023; pp. 205–218.

6. Chen, D.D.; Woo, M.; Brumley, D.; Brumley, D. Towards automated dynamic analysis for linux-based embedded firmware. In
Proceedings of the Network and Distributed System Security Symposium, San Diego, CA, USA, 21–24 February 2016; Volume 1,
pp. 1.1–8.1.

7. Kim, M.; Kim, D.; Kim, E.; Kim, S.; Jang, Y.; Kim, Y. Firmae: Towards large-scale emulation of iot firmware for dynamic analysis.
In Proceedings of the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020; pp. 733–745.

8. Zheng, Y.; Davanian, A.; Yin, H.; Song, C.; Zhu, H.; Sun, L. FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via
Augmented Process Emulation. In Proceedings of the USENIX Security Symposium, Santa Clara, CA, USA, 14–16 August 2019;
pp. 1099–1114.

9. Cheng, K.; Li, Q.; Wang, L.; Chen, Q.; Zheng, Y.; Sun, L.; Liang, Z. DTaint: Detecting the taint-style vulnerability in embedded
device firmware. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Luxembourg, 25–28 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 430–441.

10. Zhu, L.; Fu, X.; Yao, Y.; Zhang, Y.; Wang, H. FIoT: Detecting the memory corruption in lightweight IoT device firmware. In
Proceedings of the 2019 18th IEEE International Conference On Trust, Security and Privacy In Computing And Communica-
tions/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand,
5–8 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 248–255.

https://www.gsma.com/
https://github.com/jtpereyda/boofuzz

Appl. Sci. 2024, 14, 2373 20 of 20

11. Redini, N.; Machiry, A.; Wang, R.; Spensky, C.; Continella, A.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Karonte: Detecting
insecure multi-binary interactions in embedded firmware. In Proceedings of the 2020 IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, 18–21 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1544–1561.

12. Chen, L.; Wang, Y.; Cai, Q.; Zhan, Y.; Hu, H.; Linghu, J.; Hou, Q.; Zhang, C.; Duan, H.; Xue, Z. Sharing more and checking
less: Leveraging common input keywords to detect bugs in embedded systems. In Proceedings of the 30th USENIX Security
Symposium, Virtual Event, 11–13 August 2021; pp. 303–319.

13. Liu, L.; Pan, Z.; Li, Y.; Li, Z. A static localization method for firmware vulnerabilities based on front-end and back-end correlation
analysis. Inf. Netw. Secur. 2022, 22, 44–54.

14. Cheng, K.; Fang, D.; Qin, C.; Wang, H.; Zheng, Y.; Yu, N. Automatic inference of taint sources to discover vulnerabilities in soho
router firmware. In Proceedings of the IFIP International Conference on ICT Systems Security and Privacy Protection, Oslo,
Norway, 22–24 June 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 83–99.

15. Wang, D.; Zhang, X.; Chen, T.; Li, J. Discovering vulnerabilities in COTS IoT devices through blackbox fuzzing web management
interface. Secur. Commun. Netw. 2019, 2019, 1–19. [CrossRef]

16. Kampourakis, V.; Chatzoglou, E.; Kambourakis, G.; Dolmes, A.; Zaroliagis, C. Wpaxfuzz: Sniffing out vulnerabilities in wi-fi
implementations. Cryptography 2022, 6, 53. [CrossRef]

17. Chatzoglou, E.; Kambourakis, G.; Kolias, C. Your wap is at risk: A vulnerability analysis on wireless access point web-based
management interfaces. Secur. Commun. Netw. 2022, 2022, 1833062. [CrossRef]

18. Chatzoglou, E.; Kampourakis, V.; Kambourakis, G. Bl0ck: Paralyzing 802.11 connections through Block Ack frames. arXiv 2023,
arXiv:2302.05899.

19. Chatzoglou, E.; Kambourakis, G.; Kolias, C. How is your Wi-Fi connection today? DoS attacks on WPA3-SAE. J. Inf. Secur. Appl.
2022, 64, 103058. [CrossRef]

20. Srivastava, P.; Peng, H.; Li, J.; Okhravi, H.; Shrobe, H.; Payer, M. Firmfuzz: Automated iot firmware introspection and analysis. In
Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things, New York, NY, USA, 15
November 2019; pp. 15–21.

21. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX Annual Technical Conference, FREENIX
Track, Anaheim, CA, USA, 10–15 April 2005; Volume 41, p. 46.

22. Chen, L.; Cai, Q.; Ma, Z.; Wang, Y.; Hu, H.; Shen, M.; Liu, Y.; Guo, S.; Duan, H.; Jiang, K.; et al. SFuzz: Slice-based Fuzzing for
Real-Time Operating Systems. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
New York, NY, USA, 7–11 November 2022; pp. 485–498.

23. Yu, B.; Wang, P.; Yue, T.; Tang, Y. Poster: Fuzzing iot firmware via multi-stage message generation. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; pp. 2525–2527.

24. Shoshitaishvili, Y.; Wang, R.; Salls, C.; Stephens, N.; Polino, M.; Dutcher, A.; Grosen, J.; Feng, S.; Hauser, C.; Kruegel, C.; et al. Sok:
(state of) the art of war: Offensive techniques in binary analysis. In Proceedings of the 2016 IEEE Symposium on Security and
Privacy (SP), San Jose, CA, USA, 22–26 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 138–157.

25. Binwalk. 2015. Available online: https://github.com/ReFirmLabs/binwalk (accessed on 1 February 2024).
26. Interactive Disassembler Professional. Available online: https://hex-rays.com/ida-pro/ (accessed on 1 February 2024).
27. VulFi. 2021. Available online: https://github.com/Accenture/VulFi (accessed on 1 February 2024).
28. Tenda. Available online: https://www.tenda.com.cn/ (accessed on 14 July 2022).
29. D-Link. Available online: http://www.dlink.com.cn/ (accessed on 6 August 2015).
30. Netgear. Available online: https://www.netgear.com/ (accessed on 27 May 2016).
31. ToToLink. Available online: https://www.totolink.cn/ (accessed on 28 February 2023).
32. Vivotek. Available online: https://www.vivotek.com/ (accessed on 24 July 2019).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2019/5076324
https://doi.org/10.3390/cryptography6040053
https://doi.org/10.1155/2022/1833062
https://doi.org/10.1016/j.jisa.2021.103058
https://github.com/ReFirmLabs/binwalk
https://hex-rays.com/ida-pro/
https://github.com/Accenture/VulFi
https://www.tenda.com.cn/
http://www.dlink.com.cn/
https://www.netgear.com/
https://www.totolink.cn/
https://www.vivotek.com/

	Introduction
	Related Work
	Dynamic Analysis-Based Approaches
	Static Analysis-Based Approaches

	Background and Motivation
	Motivating Example
	Challenges and Methods

	Design
	Overview
	Boundary Binary Recognition
	Keywords of Feature 1 and Feature 2
	Keywords of Feature 3

	Identification of External Data Entry Points
	Hazardous Function Filtering
	Vulnerability Path Exploration

	Evaluation
	Experiment Setup
	Real-World Vulnerabilities
	Inferring External Data Entry Points
	Sensitive Path Reduction Analysis
	Efficacy of Taint Analysis

	Discussion
	References

