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Abstract: Structural health monitoring and condition assessment of existing bridge decks is a growing
challenge. Conventional manned inspections are costly, labor-intensive, and often risky to execute.
Sub-surface delamination, a leading cause of deck replacement, can be autonomously and objectively
detected using infrared thermography (IRT) data with developed deep learning AI models to address
some of the limitations associated with manned inspection. As one of the most promising classifiers,
deep convolutional neural networks (DCNNs) have not been utilized to their fullest potential for
delamination detection, arguably due to the scarcity of realistic ground truth datasets. In this
study, a common encoder—decoder semantic segmentation-based DCNN is adapted through domain
adaptation. The model was tuned and trained on a publicly available dataset to detect subsurface
delamination in IRT data collected from in-service bridge decks. The authors investigated the effect of
dataset augmentation, class imbalance, the number of classes, and the effect of background removal
in the training dataset, resulting in an overall number of seventy-five UNET models. Four out of five
bridges were adopted for training and validation, and the fifth bridge was for testing. Most models
averaged 80 iterations, and the training progress finally reached a training accuracy of 75% with a
loss of about 0.6 without any overfitting. The result showed a substantial difference in the minimum
and maximum values for the evaluated performance metrics (0.447 and 0.773 for global accuracy,
0.494 and 0.657 for mean accuracy, 0.239 and 0.716 for precision, 0.243 and 0.558 for true positive
rate (TPR), 0.529 and 0.899 for true negative rate (TNR), 0.282 and 0.550 for F1-score. The results also
indicated that the models trained on the raw annotated balanced dataset performed best for half of
the metrics. In contrast, the models trained on raw data (with no dataset enhancement) performed
better when only global accuracy was considered.

Keywords: bridge infrastructure; non-destructive evaluation (NDE); deep learning; artificial intelligence;
unmanned aerial system (UAS); infrared thermography (IRT); deep convolutional neural networks
(DCNN); semantic segmentation; concrete; bridge deck; delamination detection; encoder—decoder;
uNET

1. Introduction

Effective bridge inspection and assessment techniques are a growing concern and
challenge to stakeholders, investors, practitioners, highway users, and concerned gov-
ernment institutions. The deteriorating condition of the over 619,588 bridges across the
United States, of which 7.5% are considered structurally deficient, has motivated the US
Government to provide and deploy a USD 40 billion bridge fund program to states for
bridge repairs through the year 2026. However, this fund still cannot cater to a backlog of
nationwide bridge repair funding needs of about USD 125 billion [1].

Ratings of bridges are determined by human and visual inspection of the various parts
of the bridges. However, traditional methods of inspections, such as physical and visual
inspections, are hindered by several limitations, such as variability and inconsistencies
in designated condition ratings by different inspectors. These inconsistencies are usually
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affected by factors such as fear of traffic, near visual acuity, color vision, formal training
on bridge inspection, dependency on skill or experience, accessibility, and complexity of
structure [2-5]. In addition, an inspection of the bridge structure is usually by contact,
which involves a significant setback, such as lane closure, traffic disruption, hard-to-reach
areas (sub-surface damages), personnel safety, accident-related issues, cost, and time
consumption [3].

Unmanned and autonomous inspections with artificial intelligence (Al) are potentially
viable techniques aiding conventional and traditional bridge inspection methods at a fast-
growing pace [6]. In recent decades, automation has gained ground in bridge inspection
to help alleviate and offset the problems and challenges faced using traditional methods.
Several non-destructive techniques have been used to investigate sub-surface defects in
bridge decks, such as sound techniques (hammer sounding, chain dragging, and impact
echo). Other methods are electric resistivity (ER), ultrasonic surface wave (USW), ground
penetration radar (GPR), and visual sensor imaging [7-10]. However, these methods
are not effective in the detection of sub-surface delamination. Unmanned aerial systems
(UAS) mounted with sensors such as infrared thermography (IRT) in recent years have
proven to be effective in collecting NDE data and assessing sub-surface defects of bridge
structures, fatigue crack detection in steel bridges with fracture critical members (FCM), and
corrosion detection in ancillary structures [11,12]. The UAS-IRT method assesses bridges
in a timely, effective, and cost-efficient manner, revealing sub-surface defects, minimizing
traffic closures, and ensuring the safety of inspectors, providing access to difficult areas
inaccessible by traditional methods [13-17].

Autonomous inspections performed by platforms such as robots or UAS are usually
image-based. The dataset collected during the inspection is either processed visually by
an inspector or autonomously by a computer algorithm/model. Previous studies have
mainly demonstrated image-based inspections using computer vision and deep learning
techniques in crack detection, spalls, and corrosion in concrete bridges, bearing displace-
ment, and bolt loosening, but very few on delamination [12,18-23]. Past studies have
detected sub-surface delamination using image processing methods and deep convolu-
tional neural networks (DCNN) models on laboratory-prepared specimens. Most of these
studies are usually investigated mainly on laboratory specimens that do not depict the
on-site and environmental constraints for IRT data collection [13,24]. The few studies on
delamination detection of bridge decks are image-based only, where inspectors visually
process and classify the images based on pixel intensity or visual characterization. The
image-based method is usually based on temperature difference and pixel-contrasting
thresholding techniques. Other studies adopt image-enhancement techniques for semantic
segmentation to distinguish the delaminated from sound portions of the structure [13,14].
In studies conducted by Cheng et al. [24] for automatic delamination segmentation, the
authors adopted an encoder—decoder architecture. The developed model was trained on
augmented laboratory data, validated, and tested on non-augmented data. The model
falsely detected defects, resulting in lower precision and recall.

To the best of the authors” knowledge, very few or no studies have been carried out
extensively on evaluating delamination detection for in-service bridges using publicly
available IRT datasets for training, validating, and testing DCNN models. Most DCNN
applications for delamination detection are conducted on mostly laboratory-developed
datasets. These datasets are usually collected in a controlled environment. In this study,
we have used a publicly available dataset [13,14,25,26] to develop a DCNN model for
delamination classification and prediction. We further evaluated the effect of different
preprocessing and annotated datasets on the model’s output. We have adopted an encoder—
decoder UNET DCNN model in our study. This architecture had been successful for
biomedical image segmentation [27] but had not been effectively deployed to evaluate
delamination in bridge decks. The architecture has also been adopted in evaluating three
classes of bridge structural conditions: delamination, rebar exposure, and non-damage [28].
Therefore, the aim of this study centers on deploying the UNET encoder-decoder DCNN
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architecture to train the publicly available SDNET2021 dataset for pixel-wise semantic
segmentation in bridge decks. The following objectives are highlighted in achieving the
goal of this study:

i Adopted publicly available IRT dataset of in-service bridge deck for training, validat-
ing, and testing DCNN model;

ii ~ Considered different levels of preprocessing on the performance of the model;

iii ~Compared the DCNN model’s performance with the image-based method adopted
on the same dataset.

1.1. Infrared Thermography (IRT)

Structural defects in concrete bridge decks are broadly categorized into surface and
sub-surface defects. Inspection of surface defects such as cracks can be detected by visual
inspection or cameras. On the other hand, delamination is a sub-surface anomaly not visible
within the visible wavelength spectrum. IRT applications have grown rapidly in recent
years and have been used in studies such as those investigating historic structures [29]
and medical studies [30]. IRT has been significantly explored in assessing and detecting
delamination in bridge decks [6,11,14].

The theory behind IRT technology is based on the thermal emission and absorption
between two different material mediums with different thermal properties. The material’s
temperature and emissivity control the amount of radiation being emitted. This relationship
was developed and shown by the Stefan-Boltzmann Equation in Equation (1) [31].

E=eoT* 1)

where E = Total surface radiation (W.m~2), ¢ = Emissivity, o = Stefan-Boltzmann constant,
and T = Temperature of material (in Kelvin). Material mediums with higher emission
capacity are more suitable for IRT tests. Emissivity ranges from 0 to 1 and changes due to
the variability of surface texture, temperature, and emission characteristics [29]. Therefore,
it is common for defective regions to have different emissivity from sound regions. IRT
applications are either conducted by active or passive thermography. Active means require
introducing an artificial heating or cooling source to stimulate temperature differences
before testing, while passive thermography does not require a heat source. Field tests
are usually conducted during the available heating source of the sun. This is usually the
case for large structures such as bridge decks. Other NDE methods such as microwave
thermography, pulsed-eddy-current-simulated thermography, flash thermography, vibro-
thermography, sonic thermography, and laser thermography are passive-based and have
been highlighted in Ichi et al. [14], where an external source of heat is introduced. Delami-
nation, an internal defect, causes a thermal gradient (AT), resulting in surface temperature
difference due to different heat conduction rates between the sound and defective portions.
A 0.2-0.5 °C thermal contrast is suitable for possible detection [11,32,33].

Past studies have elaborated and established several factors and conditions that ad-
versely affect the reliable outcome of delamination detection using IRT. Some of these
are sizes and depth of delamination, materials preset within the delamination, concrete’s
thermal properties, the presence of overlays, data collection time, height of data collection,
speed of UAS data collection platform, surface conditions, solar loading, ambient wind
speed, ambient temperature, and sensor resolution [11,14,22,34,35].

1.2. DCNN Application in Segmentation

Recently, the use of convolutional neural networks (CNN) for image classification tasks
has been on the rise. This is due to its ability to extract complex features autonomously from
large datasets [24,36]. CNN has broad input, feature extraction, and classification layers.
The feature extraction layers contain sub-layers such as convolutional, activation function,
pooling, and batch normalization, while the classification layers have fully connected, drop-
out, SoftMax, and output layers. The function of the feature extraction layer is primarily
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to determine a common pattern in the sets of images, such as edges, textures, shapes, and
objects in the images. These features are, in turn, fed into the classification layer for the
prediction or classification of the input image. Commonly adopted CNN models for image
classification, AlexNet [36], VGG [37], GoogleNet, and ResNet [38,39], are appropriate for
image classification tasks.

Deep learning has been broadly applied for defect detection, condition assessment,
inspection, and evaluation of existing infrastructures. Studies have been conducted to
investigate the performance of the DCNN for defect detection, such as delamination, cracks,
spalling, and patches in visual and infrared thermography images of laboratory-modeled
and in-service civil infrastructures. Past studies have conducted segmentation by deploying
region-level or pixel-wise semantic segmentation procedures. Region-level segmentation
in bridge inspections draws bounding boxes around damages. Cha et al. [40] adopted
Faster R-CNN, a region-based segmentation model, to detect structural defects. Chen and
Jahanshahi et al., in their study, boost the detection performance of the model by introducing
transient information using video sequences. This model is, however, limited by detecting
various defects at the grid-cell level. Pozzer et al. [41] investigated the MobileNetV2 model
for multi-class damage detection in thermal images from an existing buttress dam. The
classification model identified 79.7% of the defects with a reduction in false positives (FP)
when the VGG 16 model was adopted. The encoder—decoder type of architecture has been
used in past studies for pixel-wise classification in semantic segmentation tasks [42]. Fully
convolutional networks (FCNs) have also been used with high prospects [43].

DCNN models have been shown to perform optimally and better with more datasets.
The effect of data augmentation was investigated by Cheng et al. [24]. Their studies revealed
a drop in the model’s performance after augmentation when considering the intersection
over union (IoU). A general drop in IOU ranged from 12% to 19%. The authors stated
that the model’s overall performance for on-site use can be improved with more robust
in-service data. The lack of a model trained with in-service data is a significant roadblock
in deploying DCNN for the autonomous assessment of existing bridge decks.

A review of the published literature indicates that autonomous delamination detection
of in-service bridge decks is not common. Most models have been developed by training
laboratory datasets subjected to active heating sources. These generated datasets do not
depict the actual conditions of the bridge decks. The performance of models has been based
on laboratory datasets. Therefore, these datasets are augmented to generate more datasets
for training and validation. This study is carried out to develop a trained DCNN model
with a publicly available IRT dataset for delamination detection and to evaluate the effect
of augmentation, dataset balancing, and a combination of these on the performance of the
developed models.

1.3. U-Net Encoder—Decoder Architecture

Convolutional neural networks (CNN) have been broadly applied in the semantic seg-
mentation of cracks in bridge decks but have rarely been used for delamination detection
for in-service bridge decks. The encoder uses convolution and pooling to down-sample
the input images. The size of the original image is reduced, keeping the spatial features in
place throughout the processing until the end. After a series of down-sampling has been
completed, the images are thereafter passed through a deep neural network and fed into
the decoder. In the decoder subnetwork, sampling techniques are used to upscale the im-
ages. Deconvolution operations are applied to the images for upscaling. The up-sampling
and down-sampling blocks are connected to each other through skip connections. After
completing a series of up-sampling, the network outputs an image with segmented masks
on the features. A 2-by-2 max pooling layer comes after two sets of convolutional and ReLU
layers in the U-Net encoder subnetwork. The decoder subnetwork comprises two convolu-
tional and ReLU layers after a transposed convolution layer for up-sampling. Similarly, the
bridge consists of two sets of convolutions and ReLU layers. The convolutional layer starts
with a zero-bias term. Using the weight initialization technique created by He et al., the
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convolution layer weights in the encoder and decoder subnetworks are initialized [38]. The
ulNET architecture framework adopted in this study is shown in Figure 1.

1x*C 1xTC 1x*C

Input
Image = = = = - = - = - o e e o e e e e eSS moo-—so-------s
Tile

C= Conv 3x3
TC= Transpose Conv 3x3 filter
MP= Max pool 2x2, stride
UP= Up-conv 2x2, stride 2
- - - » Concatenation (copy and crop
* Followed by batch Norm.
and Relu

Figure 1. UNET encoder—decoder architecture. (Adapted from Wang et al. [44].)

2. Research Methodology and Dataset

The description of the research methodology and dataset adopted in this study is
presented as follows.

2.1. Data Acquisition and Ground Truth for Validation

In this study, five existing reinforced concrete bridge deck slabs were inspected and
evaluated for sub-surface anomalies such as delamination. The bridges were between
47 and 49 years old and, at the time of investigation, were supporting the I-29 traffic. The
spans range from 64 m to 142 m for Forest and Park River bridges, respectively [13,18,24,25].
At an average height of 17 m above ground level (AGL), a DJI Matric 210 UAS equipped
with a FLIR XT V2 infrared thermal camera was used for non-invasive IRT data collection
(Table 1). A summary of data collection conditions, such as the data collection date, UAS
specification, sensor specifications, ambient weather conditions, data quality, data prepro-
cessing, and annotation, and the number of pixels, are discussed in detail in Ichi et al. [25].
Table 1 provides an overview of the FLIR XT V2 infrared thermal camera specifications for
data collection, while Table 2 highlights an overview of the data collected from the bridge
decks. The resolution of the stitched images is shown in Table 1. The set of image frames
collected for each of the five investigated bridge decks was stitched to generate a single
mosaic thermal image using Agisoft Metaphase 2021 © software. The annotated IRT dataset
used in this study and its detailed description are discussed in SDNET2021 [25,26] and
available via DOI at https:/ /doi.org/10.31356 /data019, accessed on 21 September 2023.

The methodology developed in this study is shown in Figure 2. The raw images from
SDNET2021 were annotated based on the number of proposed classes. Initially, the raw
data was annotated as a two-class problem (classes 0 and 1). The sound and background
were annotated as class 0, while the delaminated pixels were annotated as class 1.
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Table 1. Camera specifications for FLIR XT V2 thermal camera.

Characteristics Specifications

Thermal Resolution 640 x 512 pixels

Full Frame Rates 30 Hz (NTSC) 25 Hz (PAL)
Spectral Band 7.5-13.5 um

Pixel Pitch 17 um

Thermal Imager/Detector Type Uncooled VOx Microbolometer
Digital Zoom 2%, 4%

Field of View 24° x 19°

Focal Length 9 mm

pixels

metrics (IOU,
ACC, TRP
etc.)

Split images
.T Yes_»( Raw data % (32x32 pxs)
Annotate Ground Background- )
truth pixles annotated Splitimages L
(Background, Yes—| data (32x32 pxs.)
sound, defect)
Split images
vest (3asepesy
Testing with Validation Training
— GSthbridge |« (20%0f4 |« (80%o0f4 Default
(100%) bridges) bridges) model
Testing with Validation Training Select Initial
[*—| Sthbridge |« (20%0f4 |e—| (80%of4 Augmented Hypertune Select
(100%) bridges) bridges) data model Training ATS;:ISS};E
parameters
l«— Testing with Validation Training 7 T
5th bridge  |«—| (20% of 4 |«— (80% of 4
(100%) bridges) bridges)
Model
Classify performance

Figure 2. Methodology and workflow.

This developed dataset was called the raw annotated dataset (RD). To evaluate any
likely effect of annotation on the dataset and examine effective background segmentation,
we further annotated the dataset differently as a background annotated dataset (BD) and a
manually cleaned dataset (MD). The MD was also annotated as two-class segmentation
problems (classes 0 and 1), where class 0 signified sound and class 1 signified delaminated
pixels. The BD was a three-class problem (classes 0, 1, and 2) for the sound, delaminated,
and background pixels. The number of delaminated, sound, and background pixels for
each bridge is shown in Table 2. The three datasets adopted in this study are summarized
as follows.

i. ~ RD—The developed ground truth images were preprocessed such that the sound and
background pixels were labeled zeros (0), and the delaminated pixels were labeled
ones (1), showing a binary pixel annotation and classification problem.

ii =~ MD—After sub-dividing the image of 32 x 32 pixels, the blocks for the background
pixels outside the bridge deck’s ROI were manually hand-picked and excluded from
the ground truth and corresponding dataset. This thereby reduces the number of
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image blocks for each bridge deck. Similarly, the pixels were annotated as two classes
(binary classification): sound (0) and delaminated (1).

iii ~BD—The dataset was preprocessed such that the sound pixels were labeled zeros
(0), delaminated pixels were labeled as ones (1), and the background pixels outside
the deck’s ROI were annotated as twos (2). This presents three (3) classes with
multiple classifications. The images were split into 32 x 32 sub-images based on the
recommended least sizes for the selected UNET architecture [27].

A summary of the annotated data for training the DCNN is shown in Table 2.

Table 2. Annotated data types developed for training.

Datasets

/Bridge ReIsrglal?gon RD MD MD

(;g‘iggg) I;l;(;te;llls Del. Sound Background Del. Sound (;g‘iggg) I;l;(;(te&llls Del. Sound
FRNB * 1952 x 480 915 936,960 184,833 752,127 251,309 190,601 495,048 565 578,560 276,487 660,473
FRSB * 1632 x 416 663 678,912 135,597 543,315 183,487 139,790 355,633 411 420,864 202,864 476,048
PRMD * 4352 x 416 1768 1,819,432 354,409 1,456,023 496,993 366,114 947,324 1188 1,216,512 537,229 1,273,203
PRNB * 3008 x 384 1128 1,155,072 222,003 933,069 377,553 229,528 610,289 930 952,320 360,085 794,987
PRSB * 4192 x 480 1965 2,012,160 429,349 1,582,810 472,809 443,594 1,095,756 1036 1,060,084 593,603 1,418,557

* Forest River North Bound (FRNB); Forest River South Bound (FRSB); Park River Median (PRMD); Park River
North Bound (PRNB); Park River South Bound (FRSB).

2.2. Model Selection and Training

Computations were performed on a desktop computer. The PC has a 64-bit operating
system, 32 GB of memory, and a 3.80 GHz processor running an Intel ® Core™ i7-9800X
CPU. The programming software for the operations and command was executed using
MATLAB R2022.

Five models were developed from the UNET architecture. The encoder depth of
the architecture was three (3), resulting in a total of 46 layers and 48 connections. At the
onset of this study, the control model (CM) was first developed and trained with the base
hyperparameters (Figure 1 and Table 3).

Table 3. Base learning hyperparameters for models.

Optimizer Stochastic Gradient Descent with Momentum (sgdm)
InitialLearnRate 1x1073
Momentum 0.8
MaxEpochs 30
MiniBatchSize 100
LearnRateSchedule piecewise
GradientThresholdMethod I2norm
GradientThreshold 0.05
ValidationData valid
ValidationFrequency 3
VerboseFrequency 3

Verbose False

These hyper-tune parameters were selected after several tuning to yield optimal
training and validation loss (Figure 3). There were 44 iterations per epoch, and the model
was set to a maximum of 30 epochs, yielding 1320 iterations in total. The model converged
at 80 iterations, and the training progress finally reached a training accuracy of 73% and a
loss of about 0.67. The computation time was 9 min. 43 sec. The training and validation loss
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were seen to converge before 10 epochs for the CM model (Figure 3). To assess the effect
of augmentation and balancing on the dataset, four (4) models in addition were proposed
and developed, keeping the base hyperparameters the same for all models. The models
developed are (i) raw data (RD), unprocessed dataset (ii). Augmented level 1 models
(AM1): translation of the data prior to training of the model (iii). Augmented level 2 models
(AM2): translation, rotation, scale, and shear augmentation on the data prior to training of
the model (iv). Balanced dataset model (BM): the unbalanced size of data is balanced prior
to training (v). Augmented-balanced model (ABM): augmentation and balancing are both
applied to the data prior to training. A total of 75 models were developed for the bridges,
as shown in Table 4. The training and validation progress showing the training accuracy
and loss function is shown in Figure 3.

Training Progress (04-Oct-2022 01:04:16)

Gé; 88— ) Accuracy Val Acc.: 75.33%
3 50
4 Training Training finished: Max Epoch completed
% Validation @ Training time: 17min 0 sec
® Training Epoch: 30 of 30
@ L ' il Training Iteration: 1260 of 1260 2
\ Training Iterations per Epoch: 42
T Loss Training max. iteration: 1260
* P
% (Y Tralnlng Validation freq.: 3 iterations
| o ——
8| Validation Learning rate: 1e-5
5 \ i i R I LR
Figure 3. Training and validation—progress and parameters for FRNB MD preprocessed dataset.
Table 4. Training model matrix.
. . Model Type
Preprocessing Testing Bridge P
Name cM AM1 AM2 BM ABM
FRNB FN/R/D FN/R/A FN/R/A2 FN/R/B FN/R/AB
FRSB FS/R/D FS/R/A FS/R/A2 FS/R/B FS/R/AB
RD PRMD PM/R/D PM/R/A PM/R/A2 PM/R/B PM/R/AB
PRNB PN/R/D PN/R/A PN/R/A2 PN/R/B PN/R/AB
PRSB PS/R/D PS/R/A PS/R/A2 PS/R/B PS/R/AB
FRNB FN/B/D FN/B/A FN/B/A2 FN/B/B FN/B/AB
FRSB FS/B/D FS/B/A FS/B/A2 FS/B/B FS/B/AB
BD PRMD PM/B/D PM/B/A PM/B/A2 PM/B/B PM/B/AB
PRNB PN/B/D PN/B/A PN/B/A2 PN/B/B PN/B/AB

PRSB PS/B/D PS/B/A PS/B/A2 PS/B/B PS/B/AB
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Table 4. Cont.

Preprocessing Testing Bridge Model Type
Name CM AM1 AM2 BM ABM
FRNB FN/M/D FN/M/A FN/M/A2 FN/M/B FN/M/AB
FRSB FS/M/D FS/M/A FS/M/A2 FS/M/B FS/M/AB

MD PRMD PM/M/D PM/M/A PM/M/A2 PM/M/B PM/M/AB
PRNB PN/M/D PN/M/A PN/M/A2 PN/M/B PN/M/AB
PRSB PS/M/D PS/M/A PS/M/A2 PS/M/B PS/M/AB

Legend. Dataset: R = Raw, B = Background annotated, M = Manually cleaned dataset. Models: D = Base,
A = Augmentation level 1, A2 = Augmentation level 2, B = Balanced, AB = Augmented and balanced models.

2.3. Data Balancing and Augmentation

The preprocessing of the dataset before feeding into the model required that the
images be normalized from the (0-255) uint eight image type to a grey image within the
(0-1) range. Data augmentation was applied to the training dataset to evaluate the effect of
augmentation on the model’s performance. The augmentation adopted for the AM1 and
AM?2 models is shown in Table 5. The images were translated about the X- and Y-axis within
the range [—10 10] pixels, causing the dataset to increase 20 times. The augmentation basis
was from studies conducted by Nanni et al. [45]. The AM1 and AM2 models are compared
with themselves to see the effects of scale, rotation, and shear on the performance of the
model and thereafter compared to the control model without augmentation.

Table 5. Augmentation parameters for models.

Parameter Axis AM1 Models AM2 Models
Translation (pixels) X [—-1010] [—-1010]
Translation (pixels) X [-1010] [-1010]
Rotation (degrees) [—2020]
Scale X [1010]

Scale Y [1010]

Shear X [1010]

Shear Y [10 10]

An unbalanced dataset describes a dataset in which the classes of the training dataset
are not equally represented. The defective pixels in the dataset adopted in this study
are relatively smaller than the sound pixels. The loss function used in most semantic
segmentation tasks represents the overall accuracy that is inappropriate for an unbalanced
training dataset. Therefore, an unbalanced dataset may influence the model’s results and
bias towards the dominant class and still give a favorably high overall accuracy. Figure 4
shows the pixel distribution of FRNB datasets adopted in this study. In addressing this bias
in classification, the class weighting factors are introduced to create a balanced dataset. In
this case, the inverse of class frequency is applied [46]. Class weighting effectively balances
classes when there are underrepresented classes in the training data. In this study, the RD
and MD models’ defect-to-sound pixels ratio was 1:4 and 3:7, respectively (Figure 4).

Similarly, the ratio of the defect-to-background-to-sound pixels is 2:3:5. The class
weights in the classification layer for each class label, which is either one or none, were
replaced with the inverse class frequency of the other class label. In balancing the RD
dataset, the defected pixel class weight was replaced by the inverse of the class frequency
of the sound pixels (1.33), while the sound pixel class weight was replaced by the inverse
of the class frequency of the defected pixels (4.00). The total sum of the pixels remained
the same.
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Figure 4. Pixel distribution of FRNB for (a) raw annotated dataset (RD), (b) background annotated
dataset (BD), and (c) manually cleaned annotated dataset (MD).

The images for each set of four (4) bridges set for training were split at every instance
into five (5) k-folds and the fifth bridge was used for testing the model. Therefore, in every
instance, 80% of the dataset for every four-bridge set is for the training and 20% for the
validation set. The five bridges and k-folds were alternated for cross-validation to improve
the model’s effectiveness and reduce the possibility of overfitting.

2.4. Model Performance Evaluation Metrics

As mentioned earlier, the output of the classification is in a binary form but with
three classes of annotation, where white segments of the images represent the delaminated
pixels, the black regions represent the sound /non-delaminated, and the background pixels
of the bridge decks. Several metrics can be used to evaluate the performance of the
proposed architecture. The model’s performance is determined by benchmarking the
output predictions with the annotated ground truth pixel-wise.

The performance of the model was evaluated based on the following selected met-
rics: (i) Global and mean Accuracy (ACC), (ii) Precision/Positive Predictive value (PPV),
(iii) F1-score, (iv) True positive rate (TPR)/Recall/Sensitivity, (v) True negative rate (TNR)/
Specificity, (vi) mean Intersection of Union (IOU). The metrics are calculated by the follow-
ing equations, as shown in Equations (2)—(8):

Global Acc. = TP + TN/(TP + FP + TN + FN) )

Mean Acc. = [TP/(TP + FP)]/2 + [TN/(TN + EN)]/2 (3)
Precision/PPV = TP /(TP + FP) 4)

F1-Score = 2TP/(2TP + FP + FN) @)

TPR/Recall = TP/(TP + FN) (6)

TNR = TN/(TN + FP) @)

Mean IOU = [TP/(TP + FP + FN)]/2 + [TN/(TN + FP + FN)]/2 (8)

where TP refers to a true positive, which is when the model detects delamination correctly,
FP refers to a false positive when defective pixels are falsely predicted as sound, TN
refers to a true negative when defective pixels are correctly predicted as defective, and
FN refers to a false negative when sound pixels are falsely predicted as defected pixels.
IOU measures the percentage of the overlapped area between the predicted pixels and
the actual pixels (ground truth) over their union. An IOU of 0 implies no overlapping,
while a value of one means they are perfectly matched. The model’s ACC indicates the
correct detection rate with respect to the total number of detections. The PPV and TPR
are often used to understand prediction outcomes further. PPV measures what fraction of
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the detected delamination has been correctly detected given the ground truth, and TPR
indicates what fraction of the real damages are correctly detected by the model among the
actual defects [47]. Low PPV rates indicate many false defect detections, where many areas
are incorrectly classified as delaminated. Models with high PPV results are preferred to
minimize false defect detections. Low TPR rates indicate a high number of false negatives
or where many of the existing delaminations were missed.

3. Results and Discussion

The results of the U-Net model developed for the semantic segmentation of the bridge
decks are evaluated and discussed in this section. They are presented and discussed for
each bridge based on the data annotation and preprocessing categories: (i) RD, (ii) BD, and
(iii) MD.

3.1. Raw Annotated Data (RD)

The summary of the results for the five sets of bridges for RD is presented and
discussed. The models developed by training the RD dataset for the FRNB showed that
the precision values for the balanced models ABM and BM were 0.631 and 0.667, while
that of the CM, AM1, and AM2 models were 0.269, 0.264, and 0.282, respectively. The
precision increased by an average of 80% when the pixels were balanced (Figure 5). The
least performing metrics are seen in the unbalanced models (CM, AM1, and AM?2) except
for GA and mean IOU. The BM model was seen to have better performance metrics than
the ABM model, except for GA metrics.
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Figure 5. Evaluation metrics for FRNB for RD.

The F1 score for ABM and BM (balanced) models is 0.416 and 0.427, while that of
the augmented models (AM1 and AM2) is 0.284 and 0.294, respectively. The F1 score of
the CM is 0.295. The F1 score increased by an average of 47% after balancing the pixels,
while it remained almost the same for the augmented models. The average GA for AM1
and AM2 is 0.720, while that of the BM and ABM is 0.623. Balancing the dataset caused a
drop in the GA by 15%. Contrarily, by computing the mean accuracies (MA), the average
values of the ABM and BM models increased by 14% compared to the AM1 and AM2
models. The TNR for the balanced models is the highest, with values of 0.872 and 0.863,
respectively, compared to the base and augmented models, which have values of 0.813,
0.810, and 0.811, respectively. There was no significant change in the TNR values for the
CM and the augmented models.

Considering the RD dataset for FRSB, the CM model showed the least performance
considering precision, TNR, and F1 score (Figure 6).
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Figure 6. Evaluation metrics for FRSB for RD.

In contrast, AM1 and AM2 models showed the least performance for MA, TPR, and
TNR metrics except for GA, precision, mean IOU, and F1-score. The results depicted that the
balanced models, BM and ABM, developed from the RD increased the model’s performance.
For instance, the MA, precision, TPR, TNR, and F1-score for the balanced models increased
by an average of 16%, 175%, 5%, 8%, and 53%, respectively, when compared to the least
performing augmented model. CM had a higher GA value of 0.736 and outperformed the
balanced dataset by 20% (Figure 6). This is contrary to when MA is considered. The MA of
the balanced models outperformed the CM, AM1, and AM2 models by 19%. This shows
that MA may be a preferred evaluation metric over GA. The GA does not account for the
effect of the biased nature of the unbalanced dataset. The preference of MA over precision
for a balanced dataset is due to the balanced models outperforming other models for most
evaluation metrics. The scale, shear, and rotation augmentation parameters for AM2 had to
significant effect on the performance of the models.

The BM and ABM models developed from the RD for the PRMD bridge showed a
significant increase in the MA, precision, TPR, TNR, and F1 scores. In comparison to the
least performing augmented model, results showed that MA, precision, TPR, TNR, and
Fl-score increased by an average of 17%, 143%, 11%, 8%, and 52%, respectively. Conversely,
the AM1 models performed the least for all metrics except GA and mean IOU.

The models developed by training the RD dataset for the PRNB bridge show that the
MA, precision, TPR, TNR, and F1-score of the balanced models increased by an average of
3.6%, 135%, 1%, 3%, and 37% compared to the least performing augmented (AM1) model
(Figure 7).

In addition, the precision increased from 0.281 for the CM model to 0.674 and 0.261
for the AM1 model to 0.362 for the BM models. The maximum GA, MA, precision, TPR,
TNR, and FI scores are 0.644 and 0.526, 0.674, 0.257, 0.793, and 0.362, respectively. The
models developed by training the RD dataset for the PRSB bridge show that the MA,
precision, TPR, TNR, and F1-score of the BM model increased by 17%, 150%, 3.5%, 5.5%,
and 50%, respectively, when compared to the least performing augmented model. The
results showed that MA increased from 0.572 for the AM1 to 0.655 for the BM model,
precision increased from 0.239 for CM to 0.605 for the BM model, and F1-score increased
from 0.261 for CM to 0.393 for the BM model. Considering GA metrics, CM shows the best
performance value of 0.773.

Furthermore, the confusion matrix showing the outcome of the pixel distribution after
classification for the FRNB raw annotated dataset is depicted in Figure 8. The effect of
augmenting the model had caused no significant change. The FP and TN only increased and
reduced by 1%, respectively. In contrast, the effect of balancing only caused a substantial
change in the evaluation parameters. The TP increased by 6%, while the TN reduced by
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19%. Similarly, FP reduced by 8% while the FN increased by 19%. Augmenting and then
balancing the dataset had an insignificant effect on the balanced-only outcome.
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Figure 7. Evaluation metrics for PRNB for RD.

TP FN
6% 12% 6% 12%
15% 67% 16% 66%
FP ™
(a) (b)
14% 31% 13% 30%
7% 48% 8% 49%
(c) (d)

Figure 8. Confusion matrix for raw annotated dataset for FRNB for (a) Base, (b)Augmented, (c) Bal-
anced, and (d) Augmented—Balanced models.

The evaluation metrics outcome shows that augmentation reduced the performance
of the models while balancing the dataset alone significantly improved the model’s perfor-
mance. This corroborated studies by Cheng et al. [24], where IOU dropped after augmenta-
tion for the testing dataset. Lastly, the GA, precision, TNR, F1-score, and TPR are highest
for all models developed with the BD dataset.

3.2. Background Annotated Data (BD)

The models developed by training the BD dataset for the FRNB showed that the
average TNR value of 0.693 for the balanced models is lower than the average value of
0.842 for the base and augmented models. The F1-score increased by 36% from 0.291 for the
augmented models to an average of 0.397 for the balanced models. There was no significant
change in the precision and MA before and after data balancing, whereas the GA dropped
by 8% for the augmented models compared to the balanced models from 0.693 to 0.636
(Figure 9).

Similarly, the least performing metrics were seen in the augmented models except for
GA and mean IOU, while the balanced models showed higher performance except for the
GA, precision, mean IOU, and TNR. The TPR for the balanced models is 110% higher than
the unbalanced models, which have TPR values of 0.266 and 0.268, respectively.

The balanced models, BM and ABM, developed from the BD for the FRSB dataset
outperformed the base and augmented models; CM, AM1, and AM2 when considering
performance metrics; and MA, precision, TPR, and F1-score. These metrics increased on
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average by 2.5%, 3.4%, 100%, and 38% compared to the least-performing augmented model
(Figure 10).
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Figure 9. Evaluation metrics for FRNB for BD.
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Figure 10. Evaluation metrics for FRSB for BD.

Conversely, the base and augmented models show lower performance for all metrics
except for GA and mean IOU. This is a similar trend and pattern for all bridges. This further
corroborates the preference of MA for performance evaluation instead of GA. Furthermore,
the precision for both CM and balanced models showed the same value of 0.304, while that
of the augmented models was 0.294. This implies that balancing the dataset did not affect
the precision of the model for the FRSB.

Evaluating the performance metrics of the models developed from the BD dataset
for PRMD, the results show that the TPR was almost doubled from 0.265 for the least
performing augmented model (AM1) to 0.515 for the BM model. Balancing the dataset
significantly improved the performance of the models. Similarly, the F1 score increased by
an average of 40% after balancing the dataset. The TNR increased by 2% for the BM model
compared to the ABM model. The GA for the CM, AM1, and AM2 increased by 12%, 15%,
and 8% compared to the least-performing balanced ABM model.

The results of the models developed by training the BD dataset for the PRNB bridge
show that the TPR, TNR, and F1-score of the balanced models increased by an average of
70% and 23%, respectively, compared to the least performing augmented (AM2) model
(Figure 11).
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Figure 11. Evaluation metrics for PRNB for BD.

In addition, the TPR increased from 0.297 for the AM2 to 0.504 for the BM model, while
the F1-score increased from 0.272 for AM2 to 0.336 for the ABM model. The maximum TPR,
TNR, and F1 scores are 0.504, 0.724, and 0.336, respectively.

The models developed by training the BD dataset for the PRSB bridge show that
the MA, precision, TPR, and F1-score for the BM model increased by 2.5%, 4%, 87%, and
34%, respectively, when compared to the least performing augmented model. The results
showed that MA increased from 0.604 for AM2 to 0.622 for the BM model, TPR increased
from 0.269 for CM to 0.499 for the BM model, and F1-score increased from 0.280 for CM
to 0.374 for the ABM model. Considering GA metrics, AM1 shows the best performance
value of 0.680.

The confusion matrix for the FRNB background annotated dataset is depicted in
Figure 12. Similarly, augmentation of the data caused no significant change in the values
of the metrics shown in the confusion matrix. The figure depicts the same trend as the
previous; while the TP increased by 6%, the TN reduced by 12%. Consequently, while the
FN reduced by 10%, the FP increased by 12%. This further confirms that balancing had a
significant effect on the outcome of the model when compared with augmentation.

TP FN
6% 16% 6% 16%
12% 66% 13% 65%
FP ™™
(a) (b)
12% 10% 11% 11%
24% 54% 23% 55%
(c) (d)

Figure 12. Confusion matrix for background annotated dataset for FRNB for (a) Base, (b)Augmented,
(c) Balanced, and (d) Augmented-Balanced models.

The background annotated dataset (BD) results showed significant improvement in
the TPR compared to other models developed from RD and MD datasets. The annotation
of the BD in three classes distinguishes the background pixels from defective pixels. This
may have improved the TPR of the model compared to others. However, the precision for
all models remained almost the same without significant improvement. The MA and TPR
are the metrics with the highest values for all models developed with the BD dataset.
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3.3. Manually Cleaned Annotated Data (MD)

BM and ABM models developed from MD for FRNB show the least performance for
all metrics except for precision and Fl1-score (Figure 13). The models developed from the
MD had the lowest performance in comparison to the models developed from the RD and
BD. For instance, the average values of the GA, MA, precision, TPR, TNR, and mean IOU
for the BD reduced by 20%, 23%, and 16%, 11%, 19%, 34%, and 3%, respectively, when
compared to the average values for best-performing models developed from the RD or
BD dataset.
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Figure 13. Evaluation metrics for FRNB for manually cleaned annotated data.

Considering the MD dataset for FRSB, a similar trend was observed (Figure 14). The
augmented models showed lower performance considering all metrics except for GA and
mean IOU. The ABM model showed the least GA and the mean IOU values. The effect of
balancing was minimal when considering the MA metrics showing an increase of 1%. The
effect of balancing was most prominent in the precision and F1 score metrics. The precision
and F1 scores increased by 79% and 29%, respectively, compared to the least-performing
augmented models. The models developed from the MD dataset for the FRSB showed the
lowest average performance compared to the RD and BD models.
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Figure 14. Evaluation metrics for FRSB for manually cleaned annotated data.

Evaluating the performance metrics of the models developed from the MD dataset for
the PRMD, results show that the MA, precision, TPR, TNR, and F1-score of the BM and
ABM models increased by an average of 3%, 90%, 4%, 2%, and 34% compared to the least
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performing augmented (AM1) model. In addition, the precision increased from 0.27 for the
CM model to 0.511 for the balanced models. The maximum GA, MA, precision, TPR, TNR,
and FI scores are 0.597 and 0.513, 0.511, 0.317, 0.705, and 0.391, respectively.

Results for the MD-trained models for PRNB showed that the MA, TPR, TNR, and
Fl-score of the BM and ABM models increased by an average of 2%, 1.5%, 1%, and
25%, respectively, when compared to the least performing augmented model (Figure 15).
However, the augmented models had better performance metrics than the balanced models
for GA and TPR.
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Figure 15. Evaluation metrics for PRNB for manually cleaned annotated data.

The models developed by training the MD dataset for the PRSB bridge showed that
the MA, precision, TPR, and F1-score for the BM model increased average by 1.0%, 91%,
2%, and 34%, respectively, when compared to the least performing augmented model.
The Fl-score for the BD datasets had the same rate of increment. The results showed
that precision increased from 0.285 for CM to 0.552 for the ABM model, and the F1-score
increased from 0.299 for CM to 0.397 for the BM model. Considering GA metrics, the AM1
model showed the best performance value of 0.680.

Similarly, the confusion matrix shown in Figure 16 further depicts the significant effect
of balancing the dataset, unlike augmentation, which had no significant contribution. The
TP and TN were reduced when compared to the performance of the models developed
from the MD and RD. This may be attributed to a reduction in the data size after removing
the images with artifacts background from the dataset.

TP FN
9% 18% 10% 20%
24% 50% 23% 47%
FP TN
(a) (b)
15% 32% 15% 32%
17% 35% 18% 35%
(o) (d)

Figure 16. Confusion matrix for manually cleaned annotated dataset for FRNB for (a) Base, (b) Aug-
mented, (c) Balanced, and (d) Augmented-Balanced models.
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The models developed from the manually annotated dataset (MD) performed less.
This may have been caused by significantly reducing the datasets by manually removing
the images with artifacts and background noises.

The summary of the performance metrics showing the minimum and maximum values
for the developed models is shown in Table 6. The RD models for all the bridges show
the highest GA values ranging from 0.644 to 0.773, while the least-performing model was
the PN/R/B with a value of 0.447. Contrarily, for the MA metrics, the balanced models
showed the best performance ranging from 0.603 to 0.657, and the least performance value
of 0.494 for the ABM model. Evaluating the models with the precision metrics, the BM
trained with the RD dataset showed the best performance for all bridges with the exception
of the PS/R/D model. The balanced models trained with the BD dataset had the highest
TPR values ranging from 0.504 to 0.558, while the augmented models showed the least
performance values. Similarly, the balanced models trained with the RD showed the best
performance for the TNR and F1-score with the exception of the PS/R/D model.

Table 6. Summary of minimum and maximum performance metrics.

Bridge A(c;clzr:cly Bridge I\iecacn Bridge Precision Bridge TPR Bridge TNR Bridge F1 Score
FN/R/D 0.728 FN/B/B | 0650  FN/R/B 0667 | EN/B/B | 0532 FEN/R/B | 0872 FEN/R/B | 0427
FRNB - —EX/M/AB 0.506 FN/M/AB 0494 FN/M/D 0263  FN/B/Aa 0250 FN/M/AB 0669 FN/B/Aa 0282
FS/R/D 0.736 FS/B/B | 0657 | FS/R/B 0716 FS/B/B | 0558 | FS/R/B | 0895 | FS/R/B 0.420
FRSB FS/M/B 0.491 FS/M/Aa 0500  FS/R/D 0247  FS/B/Aa_ 0273  FS/B/B__ 0671 FS/R/D 0268
PM/R/D 0719 PM/B/A | 0641 | PM/R/B | 0672 _ PM/B/B | 0515 PM/R/B | 0876 PM/R/B | 0427
PRMD 5NN/ AB 0.506 PM/M/A 049 PM/M/Aa 0270  PM/B/A 0265 PM/B/AB 0675 DPM/B/A 0273
PN/R/D 0.644 PN/B/B | 0603  PN/R/B 0674 | DPN/B/AB | 0504 PN/R/B | 0793 PN/R/B | 0362
PRNB PN/R/B 0.447 PN/M/A 0504 DPN/B/A 0248  PN/R/A 0243 PN/B/AB 0529 PN/R/A 0261
PS/R/D 0773 PS/R/B | 0655 | PS/R/D 0239 | DS/B/AB | 0509  PS/R/B | 0899 DS/M/AB | 0401
PRSB 55 M/ /AB 0.485 PS/M/A 0497  PS/R/B 0.605 PS/B/D 0269 PS/M/A 0685 PS/R/D 0261
Maximum
Minimum

In general, the results for FRNB for the evaluated datasets are presented in Table 7
with a highlight of the highest and lowest performance metrics. The results depicted that
the FR/R/D model had the lowest performance for one-out-of-six metrics, whereas the
F/R/B model showed the highest performance for three-out-of-six metrics, and FM/M/AB
showed three-out-of-six lowest metrics. This suggests that the model trained with back-
ground annotated and balanced pixels for the FRNB bridge gave the best performance,
while the model trained with MD had the worst performance. This is expected as the
number of original pixels had dropped by 38% after manually removing the artifacts and
background blocks. Similarly, the other four bridges show the same pattern where the
model trained with the RD and balanced pixels depicted the best performance metrics of
at least three out of six of the highest metrics, and the worst models are the MD-trained
models. If the GA were to be used as the presiding metric for evaluating models” perfor-
mance, then the models trained with the RD with base hyperparameters showed the highest
performance. The augmentation of the pixels had a downtrend effect on the performance
of the models. This suggests that local augmentation, as adopted in the models, had no up-
side effect on the model’s performance. This may imply that the pixel-wise augmentation
adopted is not suitable and robust for the semantic segmentation of IRT images.

3.4. Semantic Segmentation Maps

Results for the semantic segmentation for the RD annotated dataset for FRNB are
presented in Figure 17, showing the ground truth (Figure 17a,b) and the predicted outcome
(Figure 17c—g) of the test bridge image after training. The output of the individual image
blocks was combined to make a complete map for visualization without any further image
processing. The probability outcome of the delamination detection was presented in a heat
map to show the progress and gradient of delamination over the bridge deck area from
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sound (zero) to severe delaminated (one) and mid-delamination level (0.5), represented by
blue, red, and green colors on the map.

Table 7. Performance metrics for FRNB models (Highest and lowest values in italics).

Global Acc. Mean Acc.  Precision TPR TNR F1 Score
FN/R/D 0.728 0.560 0.269 0.326 0.813 0.295
FN/R/A 0.720 0.553 0.264 0.311 0.810 0.285
FN/R/A2 0.713 0.555 0.282 0.306 0.811 0.294
FN/R/AB 0.625 0.628 0.631 0.311 0.863 0.416
FN/R/B 0.621 0.638 0.667 0.314 0.872 0.427
FN/B/D 0.697 0.648 0.325 0.268 0.844 0.294
FN/B/A 0.693 0.645 0.318 0.282 0.829 0.299
FN/B/A2 0.688 0.636 0.322 0.250 0.852 0.282
FN/B/AB 0.636 0.644 0.321 0.505 0.699 0.392
FN/B/B 0.636 0.650 0.324 0.532 0.687 0.402
FN/M/D 0.584 0.501 0.263 0.329 0.674 0.292
FN/M/A 0.570 0.499 0.296 0.326 0.673 0.310
FN/M/A2 0.577 0.501 0.282 0.328 0.674 0.304
FN/M/AB 0.506 0.494 0.462 0.322 0.669 0.379
FN/M/B 0.508 0.499 0.472 0.326 0.672 0.385

© ' | @

(@

Figure 17. Semantic segmented heat maps for RD annotated dataset for (a) image ground truth, (b) bi-
narized ground truth, (¢) CM model, (d) AM1 model, (e) AM2 model, (f) ABM model, (g) BM model.

The output for the CM, AM1, and AM2 models barely distinguished between sound
and delaminated regions. The maps generated from the BM and ABM models, compared
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to the ground truth (Figure 17f,g), show the defective pixels concentrated around the center
of the maps. This may not have depicted the exactness of the ground truth map, but there
is an indication that balancing the data significantly improved the model’s performance
and the semantic segmentation output, as presented in the earlier discussion. The BM
output, in comparison to the ABM model, showed a clearer distinction in the prediction
and segmentation of sound and delaminated pixels. This segmentation map output justifies
the preference of the FN/R/B model based on its performance metrics, as shown in Table 6.
This also further suggests that GA may not be an appropriate metric for evaluating the
performance of a model. The maps clearly show that the model distinctly and successfully
segmented the background from the deck’s boundary but would need further studies to
improve the segmentation output map for the delamination.

A summary of the results of this study compared to earlier studies using the iterative
image-based method [13], carried out on the same dataset, is shown in Table 8. The
condition map from past studies is presented in Figure 18. GA was used to choose the best
model for comparative analysis with previous studies by Ichi et al. [14]. The table shows
that the uNet had better metrics than the iterative image-based method. Contrarily, the
image-based method shows a better visual condition assessment map. This suggests that
combining deep learning with image processing-based models for delamination assessment
has prospects of yielding improved model and prediction outcomes.

Table 8. Comparison of image-based [14] against UNET model.

Bridge FRNB FRSB PRMD PRNB PRSB
Image- Increase  Image- Increase  Image- Increase  Image- Increase  Image- Increase
Model  paceq  uNet (%) Based  “Net (%) Based  “NNet (%) Based  UNet (%) Based  UNet (%)
GA 0.69 0.728 5.4 0.716 0.736 2.8 0.655 0.719 9.8 0.696 0.644 -75 0.731 0.773 5.8
Fl-sc. 0.26 0.295 13.5 0.099 0.268 170.7 0.131 0.290 121.4 0.287 0.268 —6.6 0.148 0.261 76.4
TPR 0.248 0.326 315 0.077 0292 279.2 0.123 0.307 149.6 0.254 0.257 1.2 0.136 0.286 110.3
TNR 0.816 0.813 0.0 0.879 0.824 —6.3 0.799 0.814 1.9 0.836 0.776 -72 0.853 0.852 0.0
@)
(b)

Figure 18. Adaptive image-based model for delamination detection for (a) FRNB and (b) FRSB
bridges [14].

3.5. Limitations of Study

This study has shown that autonomous delamination detection in bridge decks using
DCNN models that are trained, validated, and tested with publicly available IRT datasets
is saddled with some challenges and limitations. The reliability and performance of the
models to correctly predict delamination depends largely on several factors. The final
condition map shows that an appropriate model, image processing and quality, hyper-
tuning parameters, and others would largely determine the performance of the developed
model and segmentation map.
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DCNN:s are required to be developed with large datasets for training and validation.
Previous studies have only centered on developing and training models with laboratory
model samples. This study adopted only datasets from in-service bridges, without any
laboratory datasets. This invariably presented limited datasets for study. The TPR of the
model is still seen to be lower than 35% for the FRNB bridge deck. This implies that less
than this proportion is detected as defective by the model, resulting in higher false positives
(FP). This may have been due to the quality of the image. Ichi et al. [14] highlighted
the impact of image quality on the performance of the model. In addition, the feature
extraction layer may not have extracted very prominent features for classification. This
may be due to fewer features in thermal images when compared to visual images, which
contain prominent and notable textural features for classification. Future studies will also
include hyper-tuning parameters and modifying the models” architecture by adopting the
backbone of other architecture.

4. Conclusions

This paper presents the findings of the study on sub-surface delamination detection in
bridge decks. UNET deep convolutional neural network architecture was adopted. The
network was trained with a first-of-its-kind publicly available bridge dataset SDNET2021.
This study largely differs from previous studies where the investigation of delamination is
carried out on mostly laboratory samples. In addition, the effect of different annotations
and preprocessing approaches was assessed. The results were compared with iterative
image-based methods conducted on the same dataset. The outcome of the investigation
showed prospects in delamination detection. The summary of our findings is hereby
highlighted herein:

i.  Preprocessing and annotation approach adopted before model development had a
significant effect on the outcome of the results.

ii ~ The model trained with the raw annotated dataset (RD) with base hyper-tune pa-
rameters without pixel balancing and augmentation showed the best performance
for all the bridges. This is the case when the global accuracy (GA) was used for
the evaluation of the model’s performance. The GA ranged from the least 0.644 for
Park River North Bound (PRNB) to the highest value of 0.773 for Park River South
Bound (PRSB).

iii ~ The model trained with the raw annotated dataset (RD) with base hyper-tune param-
eters and pixel balancing showed the best performance for all the bridges. This is
considered when at least three-out-of-six performance metrics were highest. All the
bridges had the highest metrics for precision, true negative rate (TNR), and F1 score.

iv. A combination of multiple metrics is more adequate for model evaluation. In this
study, a combination of precision, true negative rate (TNR), and F1 score with the
semantic segmentation maps were used to evaluate the models’ performance and
select the optimal model.

v The models trained with the balanced datasets showed distinctive segmentation of
the background, sound, and delaminated pixels compared to other models trained
with manually cleaned and background annotated datasets (MD and BD).

vi  The scale, shear, and rotation augmentation parameters had no significant effect on
the performance of the models. Considering the models being balanced alone or with
augmentation, there was a performance improvement based on precision, TPR, and
FI scores.

Further studies are required to achieve improved performance metrics and segmenta-
tion maps. Several models will be adopted to compare the results and outputs of the model
to determine the most optimal model for delamination detection. It is important to assess
the effect of image size and resolution on the performance of the models. It is noteworthy
that the effect of reduction in image quality should be evaluated and investigated in future
studies. A higher super-resolution quality image may improve the model’s performance.
Future studies should adopt image-based methods and deep learning for improved results
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and output. In addition, since hyperspectral imagery combines spectral and spatial features
over the visual and IR spectrum, this will undoubtedly yield better model performance
and will be considered in future studies.
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