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Abstract: Lesion prediction, a very important aspect of cancer disease prediction, is an important
marker for patients before they become cancerous. Currently, traditional machine learning methods
are gradually applied in disease prediction based on patient vital signs data. Accurate prediction
requires a large amount and high quality of data, however, the difficulty in obtaining and incom-
pleteness of electronic medical record (EMR) data leads to certain difficulties in disease prediction
by traditional machine learning methods. Secondly, there are many factors that contribute to the
development of cervical lesions, some risk factors are directly related to it while others are indirectly
related to them. In addition, risk factors have an interactive effect on the development of cervical
lesions; it does not occur in isolation, a large-scale knowledge graph is constructed base on the close
relationships among risk factors in the literature, and new potential key risk factors are mined based
on common risk factors through a subgraph mining method. Then lesion prediction algorithm is pro-
posed to predict the likelihood of lesions in patients base on the set of key risk factors. Experimental
results show that the circumvents the problems of large number of missing values in EMR data and
discovered key risk factors that are easily ignored but have better prediction effect. Therefore, The
method had better accuracy in predicting cervical lesions.

Keywords: semantic biomedical informatics computing; data mining; high-risk HPV cervical lesion;
disease prediction; subgraph mining

1. Introduction

Patients with high-risk HPV (Human Papillomavirus) infection experience a prolonged
state of precancerous lesions (CIN) before their disease progresses to cervical cancer (CC).
Cervical cancer is formed when cervical lesions reach grade 3 (CIN3) [1]. Therefore, the
best strategy to prevent cervical cancer is to predict the onset of cervical lesions in a
timely manner.

There are multiple risk factors that contribute to high-risk HPV infection, and these risk
factors also continue to act on the HPV virus to stimulate the expression of its oncogenes,
which in turn cause cervical lesions. Therefore, analysis of risk factors is useful in predicting
the development of cervical lesions. Some risk factors are directly associated with cervical
lesions, while others are indirectly associated due to other diseases or causes. In addition,
risk factors have an interactive effect on the development of disease [2]; it does not occur
in isolation, and there is an interactive relationship among risk factors. Therefore, it is
extremely important to build a knowledge base of risk factors for diseases.

In natural language processing, the construction of ontology knowledge base is usually
realized by means of Knowledge Graph. Knowledge Graph describes the objective world
entities and their relationships in a structured form, named entity recognition [3] and
relationship extraction are Key to Building Knowledge Graphs, and risk factors are also
a kind of entities. The identification of entities usually needs to analyze the semantic
relationship of the text to achieve, and the relationship between entities can be measured
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by weights. The size of the weights indicates the closeness of the relationship between
the entities.

There are many disease prediction methods in recent years. Statistical methods are
widely used in the field of clinical decision. For example, descriptive methods are used
to analyze infectious disease problems when the risk factors for the disease are well docu-
mented for understanding the variables of interest and their distribution [4]. In addition,
machine learning and data mining methods [5] are widely used for disease prediction
from case data, which include supervised and unsupervised algorithms. Artificial neural
networks can handle various classification problems, and convolutional neural networks
in deep learning are also used to extract phenotypes and make risk predictions [6]. Sup-
port vector machines [7], decision trees [8], and random forests [9], are also widely used
methods. In recent years, these algorithms have been used to structure model and predict
risks. Currently, machine learning and data mining methods used to predict disease risk
are more accurate than purely statistical methods. A network can be represented as a graph,
which consists of nodes and edges. Nodes symbolize entities, while edges symbolize the
relationships between entities. The use of network methods is very appropriate when
considering the relationship between diseases and symptoms or the synergistic effect of
risk factors on diseases [10], which is difficult to predict if considered in isolation. It’s
applicability to the analysis of genes and phenotypes.

EMR data are often difficult to obtain, with small numbers and many missing values,
making it more difficult to predict lesions. Therefore, we must take steps to uncover the
key risk factors for disease. In this paper, we constructed the ontology knowledge base
of cervical lesions containing risk factors that lead to the occurrence of cervical lesions
and the relationships of risk factors by graph structure. Then, we proposed the key risk
factor combination mining algorithm, which mines new key risk factors based on common
risk factors through a subgraph mining method. In addition, we predicted patient lesions
based on the set of key risk factors. The experiments showed that the new key risk factors
improved the accuracy of prediction of cervical lesion. The overall design of the lesion
prediction method is shown in Figure 1, the details of the knowledge graph construction
are shown in the Figure 2.

The contribution of this paper is that it improves the traditional knowledge graph
structure by using the word frequency feature of text to measure the closeness of the
relationship between entities, which not only quantifies the relationship between entities,
but also provides a good foundation for subsequent disease prediction. Secondly, the
key node mining algorithm proposed in this paper mines out potential risk factors that
have an impact on the disease, which are often overlooked, and provides reference for the
prevention and treatment of cervical diseases. In addition, this paper proposes a lesion
prediction algorithm based on the set of key risk factors, which improves the accuracy
of prediction.
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Figure 1. Scheme of the lesion prediction method.

Figure 2. Scheme of knowledge graph construction.
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2. Related Work

The construction of knowledge graph has been gradually developed and matured
in recent years, and named entity recognition and relationship extraction are the basis of
knowledge base construction. Nie, BL. et al. proposed a novel knowledge-enhanced named
entity recognition model (KA-NER) [11], which combines the named entity recognition
model with the a priori knowledge of the knowledge base, and successfully solves the
limitation of the traditional model in utilizing the relevant knowledge. Han, PF et al. es-
tablished a corresponding entity database based on the statistical collection of Vietnamese
names of people, places and organizations in the Vietnamese corpus [12], then, they deeply
analyzed the Vietnamese linguistic properties and combined the establishment of the entity
database with the proposal of a new named entity recognition model. Zhang, B et al. pro-
posed a deep learning model-based SKG-Learning method [13] for constructing Sentiment
Knowledge Graph (SKG) to address the problem of neglecting the relationship between
evaluators and evaluation aspects as well as evaluators and topics in traditional sentiment
analysis methods. Ji, ZJ et al. provided important theoretical and practical support for the
research and application in the field of Chinese knowledge graph construction by designing
novel crowdsourcing annotation system, evaluating pre-trained language models [14], and
providing open-source datasets and tools to provide important theoretical and practical
support for research and application in the field of Chinese knowledge graph construction.
Chang, DJ et al. introduced DiaKG, a high-quality Chinese dataset of diabetes knowledge
graph, which contains a large amount of entity and relationship information and provides
an important resource for the research of domain-specific knowledge graphs in the medical
field [15]. Wang, L et al. by proposing a method based on contextual semantic analysis
and building a medical knowledge base as well as conducting experimental validation, the
paper provides important theoretical and practical support for the tasks of entity recogni-
tion and entity relationship extraction in the field of medicine, and provides useful tools
and methods for medical knowledge mining and clinical research [16]. Lee, J et al. By
pre-trained BioBERT on a large-scale biomedical corpus, using the same architecture as
the BERT model [17]. However, BioBERT outperforms the previous BERT model in three
typical tasks: biomedical named entity recognition, biomedical relation extraction, and
biomedical question answering. The application of knowledge mapping brings us great
inspiration to build ontology knowledge base, traditional knowledge mapping has good
effect in information retrieval, knowledge management, etc., but if it is to be applied in
disease prediction, it needs to be further improved.

Disease prediction methods include statistical methods, machine learning, data mining
and deep learning.

Statistical methods for disease prediction are mainly regression analysis and cox
risk proportional models. Regression analysis can be divided into linear and nonlinear
regression. It identifies quantitative relationships between two or more variables that are
dependent on each other. Adithya Mohanavel et al. constructed multiple linear regression
models and found that the risk of heart disease increased with smoking and decreased with
any form of physical activity [18], effectively making it theoretical. Luo, J et al. proposed a
novel approach to analyze the factor group characteristics of the views. Based on logistic
regression methods as well as normalized mutual information entropy and information gain
rate were used to select the factors. Discriminative minimum class position retention typical
correlation analysis was presented and, in addition, a novel model to predict functional
risk in the New York Heart Association was proposed [19]. The Cox risk proportional
model is also a common regression method used in disease prediction, Zhao, J et al. used
multivariate Cox regression analysis and found five non-genetic risk factors associated
with the risk of chronic kidney disease [20]. Statistical methods are commonly used
by physicians for analysis and are often used for attributional analysis because of their
simplicity of thought, but they require more complete information about the case data and
have difficulty in collecting and organizing the data.



Appl. Sci. 2024, 14, 2456 5 of 26

Compare to purely statistical methods, machine learning, data mining methods and
deep learning for predicting disease risk are more accurate [21–23]. Statistical methods
have some inherent limitations, correlation tests can be misleading if not designed properly.
In addition, statistical methods may give false results if there are any missing variables
in the experiment. Farooqui, Md et al. proposed a disease prediction system based on
support vector machines and multiple linear regression that can predict possible diseases
based on symptoms and it saves the time required for a full diagnosis of the patient [24].
Faruque et al. used several machine learning techniques to explore various risk factors and
found that C4.5 decision trees performed better than other algorithms in predicting diabetes,
in addition, they identified correlations between different risk factors for diabetes [25],
An Y et al. proposed DeepRisk, a fully end-to-end model based on attentional mechanisms
and deep neural networks, which not only automatically learns high-quality features from
EHRs, but also efficiently integrate heterogeneous and temporally ordered medical data
to ultimately predict patients’ cardiovascular disease risk [26]. Ahmad Alaiad et al. used a
combination of classification and association rule mining techniques to construct an efficient
system for predicting and diagnosing chronic kidney disease and its etiology. In addition,
the Apriori algorithm was used to discover strong relational rules between attributes,
and the application of an integrated approach can significantly improve classification
accuracy [27]. Machine learning, data mining and deep learning methods achieve good
results in terms of accuracy of prediction, but for medical data, such methods cannot take
into account the principles of the disease as well as the relevant factors and are prone
to overfitting.

The occurrence of a particular disease is not the result of the independent influence of
a factor variable, risk factors have a synergistic effect on the occurrence of the disease, so
the use of network graph models can be used to analyze the association between factors
and factors and better predict disease. In recent years, the use of graph structure to predict
diseases has been gradually applied. EdgCSN was proposed, which is an ensemble learning
algorithm that predicts disease genes by means of a network based on clinical samples
models trained with centrality features extracted from clinical samples to predict disease
genes [28], Fan L et al. proposed a computational framework based on stage-based gene
regulatory networks to predict disease genes in breast cancer. Seven stage-based modules
were obtained and 20, 12 and 22 key genes were identified for each of the three stages [29].
With the advantage of graph structure, the key influencing factors of the disease can be
well analyzed to achieve the effect of predicting the disease.

3. Data Preprocessing
3.1. Text Data Preprocessing

Medical literature is the most authoritative and rigorous textual data containing risk
factor knowledge, and the analysis of factors and genes associated with disease occur-
rence based on medical literature texts is also one of the common tools in bioinformatics.
Therefore, mining risk factors and conducting factor relationship analysis based on med-
ical literature is an effective means. Case data are in various forms with many missing
values and also require preprocessing. Therefore, the data preprocessing section contains
preprocessing of the medical literature text as well as preprocessing of the case data.

The preprocessing steps of medical literatures are divided into storage type conver-
sion, meaningless component cleaning, word separation and part-of-speech tagging. The
collected literature data are all in pdf storage format, we used conversion software to
convert the pdf format to word format, and then stored as a txt file with paragraphs as the
unit. Therefore, medical literature contains a large number of meaningless components,
such as pictures, links, names of people, etc. If all of them are retained, a large amount of
computing resources will be wasted. Therefore, We cleaned the meaningless components
by observing the characteristics of the text dataset and writing regular expressions for
extracting plain text to achieve the removal of invalid information and facilitate subsequent
processing and analysis. The cleaned text data is divided into words, NLTK package is fast
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and high quality, we also uses nltk to divide the text into words. The lexical annotation
work is carried out directly after word separation, which can improve the accuracy of lexical
annotation. Deactivated words are words that have no value to the semantic expression of
the text but appear more frequently, such as “he”, “that”, “about” and so on. The presence
of deactivated words in the text not only interferes with valuable information, but also
causes excessive content in the text and wastes computational resources. In this part, we
create a deactivation word list, match the words in the lexicon with the deactivation word
list, delete all the words that appear in the deactivation word list, and keep all the remaining
text to realize filtering the words in the lexicon.

EMR data includes electronic case data in text form and data collected in tabular
form. The Electronic Medical Record (EMR) data in text form are preprocessed as follows:
scanning the cases, converting the storage format, converting the text in various formats
to English text format; extracting nouns and noun phrases by word division and lexical
annotation; constructing a negative word list based on the text characteristics, and using the
sentences where the negative words are located to remove key words that are not abnormal
in the cases, such as “deny hypertension, diabetes, coronary heart disease”, etc. Finally, we
constructed a set of key words for the case. The set of case key words was constructed. The
data in the form of a table is preprocessed as follows: attributes are risk factors, and values
are the values of their risk factor profiles. The value types include continuous values and
binary values. For example, “duration of smoking (years): 2” means two years of smoking,
and “immunodeficiency virus: 1” means the patient is infected with immunodeficiency
virus, while a value of 0 means no infection. The preprocessing of this dataset is mainly for
missing values. If 80 percent of the data of this case are missing values then they will be
deleted and in addition the missing values will be uniformly represented by 0.

3.2. Risk Factor Background

Although human papillomavirus infection is a major risk factor for the development
of cervical lesions, there is growing evidence that multiple environmental factors influence
the development of cervical lesions and the clinical course of cervical lesions. Multiple risk
factors have a synergistic effect on disease development, for example, one study showed
that the superimposed effect of hormonal contraceptive use, smoking habits and HPV
infection was higher than the risk of both hormonal contraceptives and HPV. That implies
that there is a relationship between risk factors in the development of cervical cancer. When
two known factors, A and C, are linked to the occurrence of a disease, and another factor, B,
is associated with both A and C, then B also plays a crucial role in how A and C contribute
to the occurrence of the disease. Moreover, B might be a previously unnoticed factor, so it’s
necessary for us to analyze its role.

The association of risk factors can be represented by the graphical structure, In graph
structure, nodes can be connected by edges if they are related to each other. Two nodes may
be directly connected to each other or there may be multiple paths through other points.
Since many people like to focus on the shortest path between two points, the points on
these paths are often ignored, however, these nodes are not only closely related to them but
also may have undiscovered knowledge. In the risk factor network structure, finding the
implied nodes on the path between two common risk factor nodes and analyzing them can
help us to uncover new potential risk factors, which is of crucial importance for the study
of cervical lesions. As shown in Figure 3a, v1,v2 are two common risk factor nodes, and
there are three paths v1-v2, v1-v3-v2, v1-v2-v5-v2 between them. v1 and v2 are directly
connected, which indicates that there is a relationship between them, in addition, they
are also indirectly related through v3, v4, v5, then these three nodes are important for
us to uncover new risk factors is of great significance, as shown in Figure 3b, there may
be new knowledge in these nodes that also have an impact on the disease and have not
been discovered yet, so, through graph structure analysis, by mining new risk factor nodes
among common nodes, it can help us to have an updated understanding of cervical lesions
and help to improve the accuracy of lesion prediction.
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Figure 3. Risk factor graph mining example: (a) is original dataset graph, V1 and V2 are basic risk
factors. After caclulating the correlations (paths) among the whole large-scale graphs, V3, V4, and V5
are newly mined risk factors by subgraph mining method, as shown in (b).

Usually, electronic medical records are in the form of text, in order to perform disease
prediction, most of the current methods are by manually transforming the case text into
a representation of attributes and values. However, the case text does not show all the
attributes, which leads to the occurrence of a lot of missing values, which has a large
impact on the prediction results. I propose a disease prediction method, borrowing the
constructed graph network, by directly extracting the keywords in the case text can carry
out disease prediction, which can avoid the bias of the disease prediction caused by more
missing values.

4. Ontology Knowledge Base Construction Based on Semantic Relationship

Risk factors have an interactive effect on the development of disease, which does not
occur in isolation, and there are interactions among risk factors. The construction of an
ontology knowledge base for cervical cancer can provide a clear understanding of the
causative risk factors and discover the relationships among them, which is important for
the mining of key risk factors and disease prediction.

Risk factors are usually expressed as noun words and phrases, we propose a Textual
Risk Factor Extraction Method Based on Lexical and Grammatical Patterns (TRFLEX-
LGP) model, so the text can be extracted based on the lexicality after lexical annotation.
Word extraction includes extracting words of “noun”, “noun plural”, “proper noun” and
“proper noun plural words of “noun”, “noun plural”, “proper noun” and “proper noun
plural”. The extraction of phrases is based on the grammatical pattern of noun phrases,
specifically: “adjective and noun word and preposition and adjective and noun word”,
“adjective and noun word”, “noun word and noun words”. The noun words include
“noun”, “noun plural”, “proper noun” and “proper noun plural”. All the extracted words
are de-duplicated, and finally the de-duplicated words are stored in the thesaurus.

Word frequency has always been a feature of the text to measure the importance of
keywords. Similarly, the degree of relationship between two keywords can be defined in
terms of the frequency of simultaneous occurrences of two words. Therefore, the keywords
in the keyword lexicon are next formed into multiple phrases of length 2. The frequency of
each pair of words in all sentences, paragraphs and articles is counted separately to form a
collection of word frequency and stored in the database.

The risk factor knowledge base is constructed using a relational graph network struc-
ture because the network graph structure is able to reflect the relationships of factors. The
network graph structure is composed of nodes, edges and the weights of the edges. The
risk factors are the nodes in the graph, and the risk factors can be connected with edges if
there is a relationship between them. The weights of the edges reflect the strength of the
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relationship between the risk factors. In this section, the network structure is constructed
using a graph with the right undirected graph.

The noun words and phrases were extracted and added to the lexicon in the data
preprocessing stage, and all the words in the lexicon were made as nodes in the network
structure of the risk factor relationship graph in this part, forming the set of nodes N. The
frequency of two keywords co-occurring in the same paragraph in the medical literature
indicates the existence of a relationship between these two keywords, so this part filters the
word frequency statistics of the keyword phrases in the database, screen the phrases whose
frequency is not 0, and associate the nodes corresponding to these phrases in the graph
network structure to form the set of edges E.

Parameters’ notations for our proposed methods are shown in Table 1.

Table 1. Notations.

Notation Description

K Keyword dataset.
KC The keyword binary phrase set of K.
Wij The strength of the relationship of keyword i and keyword j.
Aij Keyword i co-occurring with keyword j in the same article.
Pij Keyword i co-occurring with keyword j in the same paragraph.
Sij Keyword i co-occurring with keyword j in the same sentence.
SPi The sum of the word frequencies of i and all keywords co-occurring with i in the

same paragraph.
SSi The sum of the word frequencies of i and all keywords co-occurring with i in the

same sentence.
SAi The sum of the word frequencies of i and all keywords co-occurring with i in the

same article.
SN The seed node set.

SNC The keyword nodes in it are combined two by two to form the seed binary set.
EFi The influence strength of keyword i.
BCi The mesoscopic centrality of keyword i in the current subgraph.
Ci The number of occurrences of keyword i in all subgraphs.

Ctopi The number of occurrences of keyword i in top.
P The threshold value.
F The set of key risk factors for cervical lesion.
H The set of case keywords.

top The set of keyword nodes in each subgraph whose node mesoscopic centrality
value is greater than the three-fourths quantile of the mesoscopic centrality of
all nodes in the current subgraph.

N The set of nodes in risk factors keyword relationship network graph.
E The set of edges in risk factors keyword relationship network graph.
G The risk factors keyword relationship network graph.
fy Any one in F.
hx Any one keyword in the set of case keywords H.

Z(hx, f y) The value of the relationship between hx and fy.
numy Relations between the set of case keywords H and fy.
mapy Mapping value of the case keyword set H to the key risk factors.
f level Patient risk level.

The strength of the relationship of keyword i and keyword j Wij:

Wij = exp

(
Aij

SAi + SAj − Aij

)
+ exp

(
Pij

SPi + SPj − Pij

)
+ exp

(
Sij

SSi + SSj − Sij

)
(1)

The keywords in the keyword dataset K are combined two by two to form the keyword
binary phrase set K, (i, j) ∈ KC. The frequency Aij is keyword i co-occurring with keyword
j in the same article; the frequency Pij is counts of co-occurring in the same paragraph; the
frequency Sij is counts of co-occurring in the same sentence. SAi denotes the sum of the
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word frequencies of i and all keywords co-occurring with i in the same article. SPi denotes
the sum of the word frequencies of i and all keywords co-occurring with i in the same
paragraph. SSi denotes the sum of the word frequencies of i and all keywords co-occurring
with i in the same sentence.

The keyword word frequency statistics greater than 2 in K is represented as the set of
nodes N in the graph, and the connection between keywords is represented as the set of
edges E in the graph, which denotes the weights of edges between node i and node j, W is
the set of all edge weights. The keyword relationship network graph model is constructed
as G = (N,E,W).

We have further improved the traditional knowledge graph approach by utilizing the
word frequency features of the entities and calculating the specific weights to present the
relationships between the entities.

5. Key Risk Factor Combination Mining Algorithm

Subgraph is one of the basic concepts of graph theory, which has node set and edge set
as the graph of a subset of node set and subset of edge set of a certain graph. The ontology
knowledge base is a huge relational graph structure, subgraph mining method could
improve computational efficiency. We proposed Key Risk Factor Combination (KRFC)
mining algorithm, which used common risk factors of cervical cancer as seed nodes and
mined new key risk factors using subgraph mining method. The algorithm idea is shown
in Figure 4.

Figure 4. Combined key risk factors mining example: (a) is a complex original graph, and (b) is a
mined strong association graph after depth-first searching based on risk factors clusters.

Figure 4a represents the risk factor relationship network structure, v1–v12 are keyword
nodes, this algorithm combines common key risk factors two by two, takes any one risk
factor in the combination as the starting point and depth-first search, finds another node
within the minimum consumption and forms a subgraph Figure 4b with all nodes and
edges on the path, and then performs further impact value analysis and calculation on all
nodes in the subgraph to get the new key risk factor.

The algorithm flow of Key Risk Factor Combination Mining Algorithm is as follows:
first, the common risk factors are made as seed node sets, and in the risk factor graph
structure, starting from a seed node, traverse the neighboring nodes using depth-first
search until another node is found, which forms a subgraph containing two seed nodes
and other nodes on the path between them. nodes and other node subgraphs on the path
between them. After traversing all the nodes, some new key risk factors can be obtained
by extracting features for all the other nodes in the subgraph, calculating the influence
intensity of the nodes, and setting a threshold. Combining the new key risk factors with
the seed nodes constitutes the full set of key risk factors for the disease.

Based on the seed node set SN, the keyword nodes in it are combined two by two to
form the seed binary set SNC, m, n are any two seed nodes in SN and,define Cost as the
minimum consumption to find another target node from a point in the graph. Using m
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as the starting point, the 1− hop node is searched based on the top− N(N = 100) of the
weights of the connected edges of the starting node, and the strongly connected subgraph
containing a specific node is generated by searching for another kind of subnode n in Cost.
Where Cost = 5000 nodes, the threshold can be adjusted according to the actual situation.

Our proposed KRFC algorithm pseudo-code is shown in Algorithm 1.

Algorithm 1 KRFC algorithm.
Input: G, common risk factors set
Output: new set of key risk factors

1: SNC← paired combination of SN
2: SUB← empty set
3: for each (i, j) in SNC do
4: Cost← Number of nodes needed to find j from i
5: if Cost < 5000 then
6: Subij ← subgraph of G containing i and j
7: else
8: Continue
9: end if

10: SUB append Subij
11: for each node n in Subij do
12: Pn

ij ←Number of shortest paths connecting i and j and passing through node n
13: Qij ← Number of shortest paths connecting i and j

14: BCn ← sum(
Pn

ij
Qij

), i 6= n 6= j (mesocentricity of n)
15: top← the set of nodes in Subij whose Satisfied BCn
16: end for
17: end for
18: for each n in SUB do
19: F← empty set
20: Cn ← the number of occurrences of n in SUB
21: Ctopn ← the number of occurrences of n in top
22: EFn ← Influence value (BCn, Cn, Ctopn

, ε)
23: if EFn > threshold value ρ then
24: F← SN append n
25: else
26: Continue
27: end if
28: return F
29: end for

The influence strength of keyword i EF:

EFi =
∑n∗

n=1 BCi ∗ Ci
n∗

Ctopi
Ci

(
Ci
n∗

> ε) (2)

n∗ indicates the number of subgraphs generated by all seed nodes, BCi is the mesoscopic
centrality of keyword i in the current subgraph, Ci indicates the number of occurrences
of keyword i in all subgraphs. top indicates the set of keyword nodes in each subgraph
whose node mesoscopic centrality value is greater than the three-fourths quantile of the
mesoscopic centrality of all nodes in the current subgraph. Ctopi denotes the number of
occurrences of keyword i in top.

Set the threshold value ε = 0.01, Ci
n∗ > ε, mean denotes the mean value of the medio-

centricity of all keyword nodes in top, and std denotes the standard deviation of the
mediocentricity of all keyword nodes in top.
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The threshold value ρ:

ρ = mean + θ ∗ std, θ = 0.6
n∗

∑
n=1

BCi > ρ (3)

It can be adjusted ε and θ according to the actual situation.
The impact intensity of all keywords that meet the threshold setting is calculated to

obtain the top− k impact intensity, and the keywords corresponding to the top− k impact
intensity constitute the set of key risk factors for cervical lesion F = { f1, f2, f3, . . . , fv}.

6. Lesion Prediction Algorithm Base on Mapping

There are many missing values in case data, and traditional missing value processing
method is not suitable for case data, because any filling method with missing values may
cause deviation in prediction results. Therefore, this paper proposes a disease prediction
algorithm based on mapping principle, which maps the risk factor keywords extracted
from EMR data to key risk factor nodes in the graph model structure. To obtain different
relationship values, and in using the different relationship values for lesion likelihood
prediction. The idea of lesion prediction base on mapping (LPM) algorithm is shown in
Figure 5.

Figure 5. Lesion prediction process example: V2,V6,V8, and V12 are the basic risk factors from patient
EMR in (a), and V9,V10,V11,and V12 are the newly extracted and confirm the key risk factors based
on potential relationship mining, as shown in (b).

As shown in Figure 5a, {v2,v6,v8,v12} denote the set of keywords extracted from one
patient case data, they exist in the risk factor relationship graph network structure, As
shown in Figure 5b, {v9,v10,v11,v12} denote all the key risk factors we get, the keywords in
the set of keywords extracted from patient case data may exist in the set of key risk factors
or beyond it, therefore, we design the LPM algorithm to map the set of keywords extracted
from each patient case data to the key risk factors uniformly, which can get different case
information features.

Our proposed LPM algorithm pseudo-code is shown in Algorithm 2.
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Algorithm 2 LPM algorithm.
Input: G, F, EMR data
Output: Lesion risk level

1: H ← extract abnormal keywords of EMR data
2: for each hx in H do
3: for fy in F do
4: Z(hx, f y) ← the value of the relationship between hx and fy
5: if hx = fy then
6: Z(hx, f y) = max(neighbourhood weight of fy in G)
7: else
8: if directly connected between hx and fy then
9: Z(hx, f y) = Whx, f y in G

10: else
11: if presence path between hx and fy then
12: mul ← the concatenated product on path
13: npath← path length
14: Z(hx, f y) =

mul
npath

15: else
16: Z(hx, f y) = 0
17: end if
18: end if
19: end if
20: map f y ←mapvalue(Z(hx, f y))
21: end for
22: MAP = (map1, map2, map3, ...mapv)T

23: end for
24: f level ← sigmoid(MAP)

hx is any one keyword in the set of case keywords H, x ∈ (1, u), fy is any one in F,
y ∈ (1, v), Z(hx, f y) is the value of the relationship between hx and fy.

When hx = fy,Z(hx, f y) is the maximum value of the edges connected to all neighboring
nodes of fy in the graph model G. When hx 6= fy, and there is a directly connected edge
between hx and fy in the graph model G, Z(hx, f y) = Z(hx, f y). When hx 6= fy, and there is no
directly connected edge between hx and fy in the graph model G, but there is a path, define
the concatenated product of the strength values of the relations passing on the shortest path
as mul, and the path length as npath. Z(hx, f y) was calculated using Equation (4). When
hx 6= fy, and there is no directly connected edge between hx and fy in the graph model G,
but also not exsit the path, Z(hx, f y) = 0.

Z(hx , fy) =
mul

npath
(4)

the statistical number numy of relations between the set of case keywords H and fy:

numy =
u

∑
x=1

1 Z(hx , fy) 6= 0 (5)

The mapping value of the case keyword set H to the key risk factors:

mapy =

u
∑

x=1
Z(hx , fy)

numy
(6)
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The mapping matrix MAP = (map1, map2, map3, ..., mapv)
T of cases is obtained by

calculating the mapping values of all key risk factors. defined aT . b is parameter values in
the sigmod function obtained by logistic regression model training.

MAP is used as the variable value of the case, and the patient risk level f level is
calculated using the sigmod(MAP, αT , b). f level >= 0.6, patient with high risk level and
high possibility of lesion. 0.6 > f level >= 0.4, patient with medium risk level and medium
possibility of lesion. f level < 0.4, patient with low risk level and low possibility of lesion.

7. Results

The datasets of this paper are medical literature dataset and EMR dataset. The medical
literature was collected by randomly downloading a total of 2221 relevant articles on the
PubMed website with cervical lesions as the keyword as the medical literature dataset. The
Electronic Health Record data were collected from the following ways: hospital, case report
articles of cervical lesions on the PubMed website [30], and clinical data on cervical cancer
(CESC) from The Cancer Genome Atlas (TCGA) database [31]. A total of 371 case data were
collected, a total of 37 electronic health records, 27 case reports downloaded from PubMed
and 307 cases of TCGA-CESC. Positive sample 307 cases, negative sample 64 cases. The
detailed scale and presentation of the data in this study is shown in Tables 2–4, and the
experimental parameter settings are shown in Table 5.

Table 2. Table of text sizes.

Articles Paragraphs Word Bytes

2221 999,445 14,942,952 1,685,262,336

Table 3. Table of graph scale.

Nodes Edges Average Degree

116,336 18,013,237 310

Table 4. Table of case sizes.

Case Dataset Total Count Positive Sample
Count

Negative Sample
Count

All case data 371 307 64
TCGA-CESC 307 307 0

EMR 37 0 37
case report 27 0 27

Table 5. Table of experiment parameters.

Cost ε θ Cross-Validation Folds

5000 0.01 0.6 5

The experimental environment is Windows 10 operating system with Python3.7 and
Networkx2.1.

7.1. Ontology Knowledge Base

Before forming the final graph structure, we filtered the extracted words and phrases
several times in order to remove useless words and improve the computational efficiency of
the graph structure. We collected 45 common risk factors for cervical cancer, and matched
these 45 risk factors proximally in phrases extracted through medical literature texts to
obtain a knowledge base of 65,536 phrases about cervical cancer risk factors, which was
used as a standard library to run the WBC and BioBERT algorithms. Finally, our constructed
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the large-scale knowledge graph contains 116,336 nodes, which contain 50,800 words and
65,536 high-quality phrases.

In order to test our proposed TRFLEX-LGP method for high-quality phrases extraction
performance, we compare with two large-scale language processing models WBC [16] and
BioBERT [17], the results as shown in Table 6. In the testing, our proposed TRFLEX-LGP
model is better than BioBERT. WBC model actually is our newly proposed high-quality
phrase extraction model in our lab, which is focus on solving long phrase, rare words and
professional phrase recognition tool for medical texts. TRFLEX-LGP model is closed to
WBC model about high-quality phrases extraction, but our proposed TRFLEX-LGP is focus
on calculating and mining the correlations among extracted phrases, not only for extracting
the phrases. So, TRFLEX-LGP is better for extracting the high-quality phrases more related
to seed nodes based on knowledge base.

Table 6. Comparison of high-quality phrase rates.

Methods Extracted Phrases Number High-Quality Phrase
Recognition Rate

WBC 101,496 64.57%
BioBERT 103,462 63.34%

TRFLEX-LGP 102,898 63.69%

The graph structure G is constructed by semantic relation computation. G stored into
the Neo4j graphical database. The whole risk factor network structure covers more than
100,000 keyword nodes and more than 10 million relationships between keywords, and
some of the node visualization results are shown in Figure 6.

The degree distribution represents the distribution of connected edges in the network.
The degree of a node is defined as the number of edges directly connected to that node.
The power law distribution is often referred to as the Matthew effect and the law of two
or eight. The power-law distribution characteristic of degree has a great impact on the
fault tolerance and aggressiveness of the network. Therefore, we analyze the power law
distribution of the constructed network. The power law distribution of the degree of the
risk factor relationship graph network structure is shown in Figure 7. The degrees of the
nodes in the graph structure constructed in this paper conform to a power law distribution.

Figure 6. Sample nodes visualization of constructed HPV related medical entities large-scale graph.
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Figure 7. Power-law distribution of network structure degree of risk factor relationship diagram.

7.2. Key Risk Factors Combination Mining

Using the cervical cancer risk factor guidelines [32] and the UCI case dataset [33], we
compiled the common risk factors as shown in Table 7. Using the common risk factors as
seed nodes, new risk factors were mined based on the key risk factor combination mining
algorithm as shown in Table 8. We found that anxiety and depression were also important
factors influencing disease progression, in addition to the vaginal microenvironment as
well as hormones that contribute to HPV infection and promote the development of lesions.
Persistent HPV infection could greatly contribute to the development of lesions, and this
should be taken into account in the pathological diagnosis.

The KSGC algorithm [34] is selected as the comparison algorithm in this experiment.
The KSGC is a gravity formula based critical node identification algorithm that combines
degree centrality and K-shell to measure the importance of a node in the propagation
dynamics. The KRFC algorithm proposed in this paper is based on meso centrality and
importance of nodes in paths as well as subgraphs to find critical nodes. As shown in
Table 9, the nodes mined by the KRFC algorithm proposed in this topic are compared with
the KSGC algorithm, and the same calculation method is chosen for the threshold selection,
Table 9 shows the risk factor nodes of the top− 20 node ranking of the mined nodes. From
the table, we can observe that the top− 20 nodes mined by the KSGC algorithm are all
common risk factors, i.e., the seed node set in the KRFC algorithm of this topic, while the
top− 20 nodes mined by the KRFC algorithm contain not only some common risk factors,
but also many other risk factor keywords such as “hormonal The top− 20 nodes of KRFC
algorithm not only contain some common risk factors, but also many other risk factors
such as “hormonal”, “estrogen”, “anxiety”, etc. These risk factors have important reference
significance for disease research and can provide new perspectives for clinical research.
Therefore, the comparison reveals that the algorithm proposed in this topic is more suitable
for mining potential risk factors, which is important for disease clinical research.
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Table 7. Common risk factors.

Common Risk Factors Common Risk Factors

age intrauterine device (IUD)
Alcohol Sexually transmitted diseases

Drinking time Condyloma
Amount of alcohol consumption Syphilis

Smoking Genital Herpes
Smoking time AIDS

Amount of smoking HIV
Abnormal age of menarche Herpes simplex virus

Age of menopause Chlamydia
Young age of first intercourse Chlamydia trachomatis

Sexual partners Hepatitis B
High number of sexual partners Warts

Sexual behavior Vaginitis
Oral contraceptives Pelvic inflammatory disease

Pregnancy Immunosuppression
Young age at first full-term pregnancy Lymph node abnormalities

Normal birth Postmenopausal bleeding
Multiple pregnancy Vaginal bleeding

Miscarriage Bleeding after sexual intercourse
Ectopic pregnancy Abdominal pain

Stillbirth Other tumors
Human papillomavirus types Family history of disease

Diethylstilbestrol (DES)

Table 8. New risk factors.

New Risk Factors Keywords with High Relationship Intensity in the Graph

Vaginal discharge vaginal bleeding, Bleeding after sexual intercourse,
precancerous lesion, cervical HPV infection

hormone estrogen, progesterone, pregnancy, antibiotics,
HPV16 e7

estrogen Hormone, progesterone, pregnant women,
hr-HPV, infections, perinatal

progesterone pregnancy, hrHPV infection, immunity
Vaginal microbe lactobacillus, vaginal PH, acids,

genital infection
lactobacillus Vaginal microbe, vaginal PH, Inflammatory diseases,

HPV infections
anxiety depression, cellular immunity, HPV-infected cells

depression anxiety, immunity, HPV infect
Persistent hpv HPV, early stage cervical cancer, hsil, lsil

Table 9. Comparison results of KSGC and KRFC.

KSGC KRFC

tumor hpv
pregnancy tobacco

warts immunosuppression
hpv hormonal

smoke tumor
hiv sexual intercourse

immunosuppression pregnancy
syphilis vaginalis

miscarriage estrogen
menopause persistent infection
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Table 9. Cont.

KSGC KRFC

age postmenopausal
hepatitis aids
herpes age

chlamydia immune system
lymph vaginal discharge

condyloma lymph nodes
stillbirths chlamydia trachomatis

postmenopausal follow-up
aids anxiety

follow-up herpes simplex virus

Before calculating the node impact values, we used three features to describe the
keyword nodes, namely BCi, Ci and Ctopi, for the newly mined key risk factors, we
analyzed these three features for them, as shown in Figures 8–10.

Figure 8. Risk factor node feature BCi ratio distribution analysis.

Figure 9. Risk factor node feature Ci ratio distribution analysis.

Figure 8 shows the values of the nodes, and the median of all nodes is selected as
the benchmark to view the ratio distribution of the values of the key risk factors, blue
represents the seed risk factors, and red represents the newly mined risk factors, which
shows that the newly mined factors occupy a relatively very important position. As shown
in Figure 9, higher values indicate that the nodes appear more frequently in all mined
subgraphs, as seen in the high frequency of newly mined nodes, which is also able to
determine the importance of new key risk factors.
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Figure 10. Risk factor node feature Ctopi ratio distribution analysis.

As shown in Figure 10, higher Ctopi indicates that nodes appear in top and rarely
outside top, while lower Ctopi indicates that nodes not only appear in top but also appear
frequently outside top, which is sufficient to demonstrate the importance of the role played
by nodes in the knowledge base.

7.3. Lesion Prediction

The correlation analysis of the mapped attribute matrix is shown in the Figure 11.

Figure 11. Correlation analysis of risk factor mapping values.

The evaluation indicators for this experiment are as follows:
TP (True Positive): True case, both true and predicted values are positive cases.
FP (False Positive): False Positive, where the true value is negative and the predicted

value is positive.
FN (False Negative): False negative case, the true value is positive, the predicted value

is negative.
TN (True Negative): True negative case, both the true value and the predicted value

are negative cases.
True positive rate: TPR = TP

TP+FN
False positive rate: FPR = FP

FP+TN
Precision: P = TP

TP+FP
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Recall: R = TP
TP+FN

F1 score: F1 score = 2×P×R
P+R

The horizontal coordinate of the ROC curve is FPR and the vertical coordinate is TPR,
the prediction results are sorted according to the predicted positive class probability value,
the threshold value is gradually reduced from 1, and the samples are predicted as positive
cases one by one in this order, and the current FPR and TPR values can be calculated
each time, and the images are plotted with TPR as the vertical coordinate and FPR as the
horizontal coordinate.

In this paper, we take the 5-fold cross-validation method to train the data and select
lasso logistic regression [35] and Svm-AdaBoost [36] as comparison experiments, The
precision, recall, and F1score comparisons of the three algorithms are shown in Figure 12
and Table 10, where the overall performance of our algorithm is better.

Figure 12. Comparative Experimental Analysis.

Table 10. Comparative experimental data analysis.

Precision Recall F1 Score

Svm-AdaBoost 85.21% 75.38% 79.99%
Lasso logistic

regression 84.25% 80.60% 82.38%

LMP 92.59% 86.47% 89.43%

The Cost parameter in this study is crucial, as it represents the minimum expense for
one node to reach another. In order to explore the optimal value of Cost, we experimented
with different Cost values and observed the F1 score performance of the method, as shown
in Figure 13. We found that as the Cost increases to 5000, the performance gradually
stabilizes, which is why we chose a Cost of 5000.

Each time a result is plotted a ROC curve and the area under the curve is calculated,
as shown in Figures 14–16, the blue curve is the average ROC curve, and in Figure 17, we
compare the average ROC curve and the area under the curve of the three algorithms.

As shown in Figures 14–16, our algorithm is more stable compared to the other two
algorithms, with a small range of fluctuation in the area under the curve for each fold. In
addition, observing Figure 17, the average ROC curve of the LMP algorithm is closer to the
upper left corner, and the area under the curve is also the maximum in comparison, which
indicates that our algorithm has good results in terms of accuracy as well as stability of
the model.
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Figure 13. Change in F1 score for different Cost values.

Figure 14. LMP algorithm 5- fold cross validation roc curve.

Figure 15. Lasso logistic regression 5- fold cross validation roc curve.

The above three datasets were validated and compared separately using 5-fold cross-
validation for further validate the effectiveness of the algorithm in this study, the accuracy
of each 5-fold was averaged for this algorithm accuracy. As shown in Figure 18, the accuracy
of our proposed LMP algorithm was significantly higher than the other two comparison
algorithms for the case report dataset collected on the PubMed website. The highest is
about ten percent higher.
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Figure 16. Svm-AdaBoost 5- fold cross validation roc curve.

Figure 17. Mean ROC comparison.

Figure 18. Comparison of accuracy in case report dataset.

As shown in Figure 19a, the accuracy on the electronic medical record dataset collected
from a hospital is close, and the LMP algorithm is about one percent higher than the other
two algorithms. As shown in Figure 19b, and the LMP algorithm is close to the LASSO
logistic regression algorithm accuracy on the TCGA-CESC dataset, which is much higher
than the SVM-AdaBoost algorithm. These can prove that the accuracy of our proposed
LMP algorithm can achieve good results on different datasets.
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(a) (b)

Figure 19. Accuracy Comparion with different datasets: EMR dataset (a) and TCGA-CESC dataset (b).

Before conducting the comparison experiments, we had to convert the original data in
text form into key risk factors as attributes, and the corresponding values were taken as
worthy of structured data, which took a lot of time and there were more missing values,
which were filled as follows: categorical variables were filled with zeros, and continuous
variables were filled with mean values. The LPM algorithm directly extracts the textual
cases, which is easy to execute and time-saving, while the other method requires the
conversion of the textual contents of the EMR data into tabular data form, which is tedious
to organize manually. Secondly, the LPM algorithm can avoid the problem of many missing
values in the case data, based on the network structure of risk factor association, and adopts
the calculation idea of “what is available”, using all the information mentioned in the case
data to calculate and map to the set of key risk factors. The other algorithm requires all
cases to have values relative to all attributes, and the treatment of missing values will
directly affect the accuracy of the calculation.

To verify the validity of the new risk factors mined, we compared the prediction
accuracy before and after the addition of the newly mined key risk factors, as shown in
Figure 20.

Figure 20. Comparison of LMP algorithm average roc before and after adding new digging factors.

The area under the curve increased after adding the newly mined factors, indicating
the validity of our mined factors for disease prediction.

8. Discussion

New key risk factors in this study were confirmed to be associated with the devel-
opment of cervical lesions or cervical cancer. The most common complaints of cervical
cancer patients are excessive vaginal discharge, foul smelling, purulent or bloody vaginal
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discharge, and irregular vaginal bleeding, pruritus or abnormalities. The vagina is not a
sterile environment. The vaginal microbiome is composed of many bacteria, including
Lactobacillus and Gardnerella, etc. The vaginal pH < 7 is due to the role of Lactobacillus in
the vagina, which can break down sugar and glycogen in the vaginal epithelium to produce
acid and keep the vagina in an acidic environment, which is very important for maintaining
the ecological balance in the vagina. Once the balance is disturbed, the pH of the vagina is
altered and it becomes susceptible to vaginal HPV infection, leading to disease.

In addition, it has been found that estrogen, progesterone and human chorionic
gonadotropin levels during pregnancy are positively correlated with human papillomavirus
HPV 16 and HPV 18 infection, which indirectly suggests that pregnancy may promote the
progression of cervical cancer. HPV infection also disrupts normal sex hormone function,
diminishes the anti-estrogenic effect of progesterone in endometrial lesions, and increases
the malignant transformation of cells.

It has also been shown that in general, women with good immune systems will heal
themselves within a period of time after HPV infection, but persistent HPV infection will
induce the onset of cervical lesions, and generally 1–2 years of persistent infection should
be taken seriously.

The influence of emotional factors on the disease has also become increasingly sig-
nificant in recent years, mainly because of the fast pace of contemporary life, high work
pressure, prolonged anxiety or depression manifestations may cause a weak immune
system, which in turn leads to HPV infection.

In the structure of the risk factor relationship diagram, for anxiety, depression, and
immunity are all correlated with high-risk HPV infection, but in fact, the role of the
relationship among them is that anxiety leads to depression, and these emotional factors
of anxiety and depression affect the function of a person’s immune system, which in turn
leads to a decrease in immunity and leads to high-risk HPV infection.

As shown in Figure 21, there is a strong correlation between anxiety and depression,
and there is also a relationship with immunity, and there is a strong correlation between
immunity and high-risk HPV.

As shown in Figure 22, Lactobacillus, vaginal microenvironment, and immunity are
all correlated with high-risk HPV infection in the structure of the risk factor relationship
diagram, but in fact, the relationship between them is that Lactobacillus is one of the bacteria
in the vaginal microenvironment, which plays a role in maintaining a normal vaginal
microenvironment, but when it is abnormal, the balance of the vaginal microenvironment
is disrupted and the ability to resist bacterial infection is reduced, and it also affects the
immune system, which makes it easy to get high-risk HPV infection.

Figure 21. The relationship between anxiety, depression, immunity, and high-risk HPV.

As shown in Figure 23, in the structure of the risk factor relationship diagram, hor-
mones, estrogen, progesterone, pregnancy, and immunity are all correlated with high-risk
HPV infection, but in fact, the relationship between them is that estrogen is a type of
hormone, and estrogen and progesterone are mutually regulated, and during pregnancy,
there are dramatic and obvious changes in various hormones that can disrupt the immune
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system and weaken resistance, which can lead to high-risk HPV infection. This is the
reason why many pregnant women are susceptible to HPV infection. The values of their
relationship in our graph structure also indicate this close relationship. Jing Liu.et al Using
statistical analysis method, we found that most of the cervical lesions during pregnancy
were accompanied by high-risk HPV infection [37]. Our method, however, not only found
that high-risk HPV infection and cervical lesions were associated with pregnancy, but also
found the causative factors behind them, i.e., changes in hormone levels as well as changes
in immunity.

Figure 22. Relationship between Lactobacillus, vaginal microenvironment, immunity, and high-risk
HPV types.

Figure 23. The relationship between pregnancy, hormones, estrogen, progesterone, immunity, and
high-risk HPV.

9. Conclusions

In this study, the correlation of risk factors of cervical cancer was analyzed in depth,
and the ontology knowledge base was established on this basis, which included all risk
factors and their relationships. Then, this study proposed a key risk factors combination
mining algorithm, which mined new key risk factors through common risk factors to
obtain the new key risk factors of disease. These factors are important for the prevention
of cervical cancer-related diseases. The experiments showed that the new key risk factors
improved the accuracy of prediction of cervical lesion.

However, there is room for further improvement in our approach. When extracting
risk factor keywords in the literature, we extracted all nouns and noun phrases in order not
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to miss them, which makes the graph size larger and leaves room for improvement in terms
of runtime, which can be improved in the future by utilizing accurate natural language
processing models to extract entities related to disease risk factors.
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