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Abstract: As an emerging teaching method, online learning is becoming increasingly popular among
learners. However, one of the major drawbacks of this learning style is the lack of effective com-
munication and feedback, which can lead to a higher risk of students failing or dropping out. In
response to this challenge, this paper proposes a student performance prediction model based on
multidimensional time-series data analysis by considering multidimensional data such as students’
learning behaviors, assessment scores, and demographic information, which is able to extract the
characteristics of students’ learning behaviors and capture the connection between multiple char-
acteristics to better explore the impact of multiple factors on students’ performance. The model
proposed in this paper helps teachers to individualize education for students at different levels of
proficiency and identifies at-risk students as early as possible to help teachers intervene in a timely
manner. In experiments on the Open University Learning Analytics Dataset (OULAD), the model
achieved 74% accuracy and 73% F1 scores in a four-category prediction task and was able to achieve
99.08% accuracy and 99.08% F1 scores in an early risk prediction task. Compared with the benchmark
model, both the multi-classification prediction ability and the early prediction ability, the model in
this paper has a better performance.

Keywords: online learning; multidimensional time-series data; student performance prediction;
multi-classification prediction; individualized education; early prediction

1. Introduction

With the continuous improvement of online learning platforms, a proliferation of
schools has opened up online course teaching, providing students with more flexible
learning methods. However, there is a significant problem with the online learning pro-
cess: due to the lack of face-to-face interaction between instructors and students, it is
difficult for instructors to accurately grasp the level of understanding and mastery of
course content, which may lead to students’ poor performance on exams. Therefore, it is
particularly important to capture the hidden information related to student performance
from massive educational data collected by online learning platforms. Using this infor-
mation, students at risk of failing and dropping out of school can be identified and an
intervention can be carried out as early as possible to effectively improve their learning
status and enhance learning effectiveness [1]. Data mining techniques aid researchers
in discovering and understanding latent critical information within massive educational
datasets, enabling the identification and prediction of students’ performance trends [2].
Hughes et al. [3] mined high/active engagement, attendance, and multiple interactions
as key factors for students to achieve higher marks on a Massive Open Online Learning
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(MOOC) platform by using data mining techniques. Such information extraction is not con-
fined solely to the field of data mining but also extends into the domain of learning analytics.
With the rise in learning analytics, there has been a growing emphasis on investigating
student behaviors and aggregating various methodologies to enhance the comprehen-
sion of student behaviors, consequently enabling the prediction of students’ academic
performance [4]. As a category of data reflecting student behaviors, clickstream data illus-
trate the pathways students take while navigating one or multiple learning websites on
an online learning platform [5]. Casalino et al. [6] used data from students’ interactions
with the virtual learning environment to analyze learning through a neuro-fuzzy system,
showing that students who regularly visit the course homepage and actively participate
in the teaching and learning activities through evaluation tests are more likely to pass
the exams. In addition to clickstream data, students’ demographic information and as-
sessment scores have also been verified to be closely correlated with students’ academic
performance [7,8]. Considering more dimensions of information beyond students’ learning
behaviors, modeling and analyzing students’ academic performance as a whole can more
accurately predict students’ academic performance.

The early prediction of student performance allows for the proactive identification
of at-risk students, enabling instructors to devise additional courses, and assignments, or
implement other measures to enhance students’ performance before the conclusion of the
course. Currently, most research only applies to predicting student performance at the
end of the course, which does not allow for timely intervention. Therefore, it is particu-
larly important to predict student performance as early as possible before the end of the
course [9]. Furthermore, most studies have predicted student performance (pass, fail) on a
dichotomous basis, which would result in students at an excellent level losing their upward
mobility and failing to maximize benefits from the course [10]. To promote the sustainable
development of online education and provide a basis for teachers to intervene with at-risk
students promptly, this paper synthesizes multidimensional data, such as students’ learn-
ing behaviors, assessment scores, and demographic information, and proposes a prediction
model for student performance based on the analysis of multidimensional time-series data
(MTAPSP), aiming at efficiently and accurately predicting students’ performances in an
online learning platform. The main contributions of this study can be summarized in the
following three points:

1. A student performance prediction model for multi-dimensional time-series data analy-
sis is proposed, which uses the multi-head self-attention (MHSA) mechanism to better
integrate features such as time-series behaviors, assessment scores, and demographic
information, avoiding the limitations of single-dimensional analysis while enhancing
the model’s ability to predict students’ performance in multi-classification.

2. In this paper, we use temporal behavioral features extracted from students’ chronolog-
ical behavior and assessment scores using multilayer LSTM and further enhance the
model’s nonlinear mapping ability to these features through ANN, which improves
the model’s early prediction ability to identify at-risk students as early as possible
and assists teachers in making timely interventions.

3. A large number of experiments have been conducted on the publicly available dataset
OULAD, and the experimental results demonstrate that the model proposed in this pa-
per outperforms the benchmark model in terms of both multi-classification prediction
and early prediction ability.

The paper is organized as follows: Section 2 provides an overview of related research
work. Section 3 presents the dataset used for experiments. Section 4 provides a detailed
description of the multi-dimensional time-series analysis-based student performance pre-
diction model (MTAPSP). Section 5 describes the experimental process and analyzes the
results to evaluate the performance of the proposed algorithm. Finally, Section 6 summa-
rizes the paper and proposes future research.
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2. Related Work

Student performance prediction research can be categorized into regression and classi-
fication problems, where the former predicts a score value, and the latter predicts a cate-
gory [11]. Earlier studies in student performance prediction focused on traditional machine
learning methods, which used logistic regression [12], support vector machines [13], and
decision trees [14] to establish models for predicting student performance. In a study [15],
an automatic method for observing and predicting student grades was proposed. This
method utilized a genetic algorithm to capture the 30 best attributes from students’ histor-
ical learning data and trained a K-NN regression model and a decision tree using these
features and labels to predict students’ performance score and categories. PEK et al. [16]
used naive Bayes, random forest, decision tree, AdaBoost classifier, logistic regression,
and KNN algorithms as basic learners, support vector machine (SVM) as meta-learner,
and created a stacking method to develop a hybrid ensemble model. By analyzing the
data, they discovered important features that influence student learning outcomes and
successfully helped teachers identify students at risk. Jawad et al. [17] and Bujang et al. [18]
combined the SMOTE technique with machine learning techniques to improve the impact
of data imbalance on the model and enhance the accuracy of student performance predic-
tion. Hung et al. [19] proposed a method for predicting student performance based on
time-series clustering. The method aggregates learning behavior data such as the frequency
of accessing course materials, frequency of reading forums, number of discussions, and
number of replies posted to identify at-risk students and predicts student performance
more accurately than traditional frequency aggregation methods. Traditional machine
learning methods ignore time information in the original data, which cannot effectively
capture the impact of time features on student performance. However, deep neural net-
works can effectively address the problem of time information missing [20]. Therefore,
some researchers have begun to utilize deep learning techniques to predict student perfor-
mance. For example, He et al. [21] used a GRU network to extract time-series features from
clickstream data and assessment score data and combined them with demographic features
to predict student performance. Liu et al. [22] proposed a hybrid deep learning model that
can extract time-behavioral and overall behavioral information from learning behavior
data to more accurately predict high-risk students. Qu et al. [23] constructed a student
performance prediction framework with an attention mechanism, in which an LSTM neural
network was used to reflect students’ learning processes, and a DSP-based adapter was
used to enhance the importance of key information and improve the accuracy of student
performance prediction. Kusumawardani et al. [24] proposed a transformer-based method
for predicting student performance by converting the learning behavior data of students
into a sequential feature vector. In some studies [25–27], authors used convolutional neural
networks (CNN) to extract high-dimensional time information from the time series of
student activities to better extract spatio-temporal features and utilized LSTM to capture
the sequence information of student learning dynamics to more accurately predict student
performance. Chen et al. [28] proposed a performance prediction model based on the differ-
ences in patterns of student behavioral features for students with significant performance
changes, which uses a multi-head attention mechanism to automatically select more impor-
tant higher-order behavioral combinations of features, maintain higher temporal accuracy,
and can predict student performance more accurately. Li et al. [29] considered the potential
relationships between students and used multiple graphs with different topologies to reflect
the relationships between students and proposed a student performance prediction model
based on a multi-topological graph neural network (MTGNN). Yang et al. [30] utilized
clickstream data and assessment scores as input data to train a time series neural network
to capture the unique features of each student’s learning pattern. The results showed that
the correlation between behavior features and scores was not very high, and it needed to
consider the overall effect and nonlinear predictive factors.

In summary, most existing performance prediction models have not taken into account
age group, residence location, and other demographic information, and the influence
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of assessment scores on student performance has not been fully considered in many of
them. Additionally, many of these models have limited early prediction abilities. Most
existing research has primarily focused on binary classification of student performance,
with insufficient granularity in terms of dividing student performance. This paper considers
additional information beyond a student’s learning behavior to achieve the early prediction
of student performance and multi-classification prediction of performance, providing
effective support for individualized teaching.

3. Dataset
3.1. Introduction to the Dataset

The validation of the MTAPSP student performance prediction model using the Open
University Learning Analytics Dataset (OULAD) provided by the Open University UK.
OULAD comprises detailed learning behavior log data of 32,593 students in seven courses
during the 2013–2014 academic year, including demographic data and clickstream data
of student interactions in the VLE, which provided effective data support for analyzing
the relationship between student behavior and student performance [31]. In the OULAD
dataset, the seven courses are subdivided into 22 instructional modules covering a wide
range of areas in science, social sciences, technology, engineering, and mathematics. Each
module is named according to the year and month in which it is offered, e.g., a module
offered in February 2013 is named 2013B, and a module offered in October 2013 is named
2013J, reflecting the fact that each module is offered multiple times during the year. Course
information is provided in Table 1.

Table 1. Course information table.

Module Domain Presentations Students

AAA Social Sciences 2 748
BBB Social Sciences 4 7909
CCC STEM 2 4434
DDD STEM 4 6272
EEE STEM 3 2934
FFF STEM 4 7762

GGG Social Sciences 3 2534

Total 7 22 32,593

Each course has resources in the VLE, and there are a total of 20 activities for students
in the VLE, and information on their activity types is shown in Table 2. Students are
evaluated on the Teacher-Marked Assessment (TMA), the Computer-Marked Assessment
(CMA), and the Final Exam (Exam), with the final performance categorized into four
outcomes: “Distinction”, “Pass”, “Fail”, and “Withdrawn”. In addition to this, student
information and student registration information is called demographic information, and
the information is shown in Table 3.

Table 2. Type of learning behavior statistics.

Type of Learning Behavior Description

Folder Open folder
Forumng Clicks on the discussion forum

Oucollaborate Clicks on the online video discussions
Oucontent Clicks on the contents of the assignment

Ouwiki Query with Wikipedia
Ouelluminate Participate in simulation course seminars

Quiz Clicks on the course quiz
Questionnaire Participate in simulation course seminars

Dataplus Supplementary data
Dualpane Access double window

Homepage Clicks on the course homepage
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Table 2. Cont.

Type of Learning Behavior Description

Htmlactivity Web activity
Page Clicks on the information related to course

Resource Clicks on the course homepage
RepeatActivity Repetitive activity

Glossary Access the glossary
Url Clicks on the links to audio/video contents

Subpage Clicks on the other sites enabled in the course
Sharedsubpage Shared pagination

Externalquiz Complete extracurricular quizzes

Table 3. Introduction to student demographics.

Type of Student
Demographics Description

Code_module Module identification code
Code_presentation Presentation identification code

Gender Student’s gender

Region The geographic region, where the student lived while taking the
module presentation

Highest Education The highest student education level on entry to the module
presentation

Imd_band Band of statistical data
Age_band Band of student’s age

Num_of_prev_attempts The number of times the student has attempted this module

Studied_credits The total number of credits for the modules the student is
currently studying

Disability Indicates whether the student has declared a disability

3.2. Data Processing

In this paper, the data were preprocessed while using the OULAD dataset for model
validation. First, samples with incorrect date fields were removed; then all course lengths
were standardized to 270 days. To verify the early prediction ability of the model, this paper
divided the data by course time length into five segments of 20%, 40%, 60%, 80%, and 100%
lengths and summarized the clickstream data and weekly average click volume for each
segment as representative variables for the student’s virtual learning environment (VLE)
interaction. In addition, to reduce the dimensionality and complexity of the model, integer
encoding was used instead of the classification data in the demographic data. Finally, the
clickstream data, assessment scores, and coded demographic data were concatenated to
form the training data for the model.

4. MTAPSP Model
4.1. MTAPSP Model Structure

The student performance prediction model proposed in this paper consists of two
parts: a multilayer LSTM network with a multi-head self-attention mechanism and an
artificial neural network (ANN). First, multi-layer LSTM was used to extract time-series
learning behavior features from the learning behavior time series data. Then, a multi-head
self-attention mechanism was used to evaluate the importance of time-behavior features,
assessment score features, and demographic features, and extract key feature information.
Finally, ANN was used to integrate temporal behavioral features, assessment score features,
and demographic data features to improve the performance of the model. The MTAPSP
model structure is shown in Figure 1.

4.2. Multilayer LSTM Based on a Multi-Head Self-Attention Mechanism

This module aims to extract temporal behavioral features from the time-series data
of learning behaviors through a three-layer LSTM. It utilizes a multi-head self-attention
mechanism to capture the importance of temporal behavioral features, assessment score
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features, and demographic data features—three distinct dimensions—thereby further
extracting more salient features.

Figure 1. MTAPSP model structure.

4.2.1. Multilayer LSTM

Traditional recurrent neural networks (RNN) suffer from the problem of gradient
vanishing for long sequence data like OULAD, in contrast, LSTM can efficiently convey
and express the information of long-time sequences and solve the problem of long-term
dependency [4]. As shown in Figure 2, compared to single-layer LSTM, a three-layer
LSTM can enhance the extraction of long-distance memory and contextual information,
better capture the long-distance dependencies in the sequence of students’ learning time
behaviors, and improve the model’s generalization ability and robustness.

Figure 2. Three-layer LSTM network structure.

The input data Xt ∈ Rt×m is a two-dimensional tensor, where t represents the number
of course days for a student, and m denotes the number of features in the input data. LSTM
uses a gating mechanism to control the flow of information by feeding data Xt into the
LSTM network, which sequentially goes through the computational process of forgetting
gates, input gates, and output gates in LSTM. In the forget gate, LSTM integrates new input
data and the output from the previous time step to determine the omission of irrelevant
information. The computational formula is expressed as Equation (1).
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ft = Sigmoid(W f [ht−1, xt] + b f ) (1)

In the input gate, LSTM filters and updates the information by multiplying the current
input data with the hidden state of the previous moment, which is calculated as shown in
Equations (2)–(4).

it = Sigmoid(Wi[ht−1, xt] + bi) (2)

C̃t = tanh(Wc[ht−1, xt] + bc) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

In the output gate, LSTM extracts relevant information from the vector obtained by
integrating the current input data with the previous time step’s output value, determining
the information to be outputted. The computational formulas as shown in Equations (5)
and (6).

ot = Sigmoid(Wo[ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

The above equations, where b f , bi, bc, bo, W f , Wi, Wc, Wo are the biases and weights
that correspond to the three gates, and denote the activation function.

4.2.2. MHSA

The self-attention mechanism enables the model to automatically learn and focus
on the most relevant information within the input data [32]. A multi-head self-attention
mechanism that can map a sequence into multiple specific spaces separately perform
multiple attention computations, and finally stitch the results together to obtain richer
contextual information.

As shown in Figure 3, in MTAPSP, when the multi-head self-attention mechanism
receives the output sequence from LSTM, the sequence is linearly transformed into vector
matrices Q (Query), K (Key), and V (Value), facilitating multiple attention computations.
The single self-attention is calculated as shown in Equation (7).

Attention(Q, K, V) = so f tmax(QKT√
dk
)V

dk =
dmodel

h

(7)

Figure 3. Structure of the multi-head self-attention mechanism.

In the equation, dk represents the dimension of the vectors in a single attention com-
putation, so f tmax denotes the weight normalization function, and the product of the
dimension dk and the number of heads h in a single attention computation equals the
model’s dimension dmodel . The multi-head self-attention mechanism stitches together the
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results of each set of single self-attention calculations to perform a linear transformation
and finally output the final result, which is calculated by the following formula:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo

headi = Attention(QWQ
i , KWK

i , VWV
i )

(8)

where WO, WQ
i , WK

i , WV
i ∈ Rdmodel×dk is the weight matrix.

4.3. ANN

ANN learning is performed through multiple iterations, which prioritizes previous
biases iteratively adjusting weights to classify potential outcomes [33]. Using ANN to
integrate student learning behavior features, assessment score features, and demographic
features, as shown in Figure 4, the algorithm can nonlinearly map the tensor resulting
from computations through the multi-head attention mechanism. This process extracts
correlated information between features and outputs the predicted student performance.

Figure 4. ANN structure.

ANN consists of an input layer, hidden layers, and an output layer. The output
expression of the hidden layer is shown in Equation (9) and the output expression of the
output layer is shown in Equation (10).

Y(1) = δ[W(1)Y(0) + b1] (9)

Y(2) = δ[W(2)Y(1) + b2] (10)

where δ is the activation function, W(1) ∈ Rm×r, W(2) ∈ Rr×n, m are the dimensions of the
output vectors of the multi-head attention mechanism, r is the dimension of the output
vectors of the hidden layer, n is the dimension of the output vectors of the output layer,
and b1, b2 are the bias vectors.

The algorithmic flow for multi-classification prediction using the MTAPSP model is
shown in Algorithm 1 below.
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Algorithm 1 MTAPSP Algorithm

Input: N: Number of students; T: Number of course days; U: Student clickstream data matrix, which has a
shape N× T× 20; C: Student assessment variables matrix, which has shape N× T× 3; D: Demographics data
matrix, N × T × 10; K: Max epoch
Output: Y: Predicted Results of Student Performance
1: Splice U, C, D to get matrix X;
2: Initialization learning rate, hyper-parameter randomly and LSTM parameter;
3: for epoch← 1 to K do
4: Y1 ← LSTM1(X[n]);
5: Y2 ← LSTM2(Y1[n]);
6: Y2 ← LSTM3(Y2[n]);
7: Qi , Ki , Vi ← Y3[n]; //i ∈ [0, 3], i is the number of heads of the multi-head self-attention
mechanism
8: Atti← softmax( QiKT

i√
dk

)Vi ; // dk is the dimension of X

9: YAtt ← concat Atti; i ∈ [0, 3];
10: Y← ANN(YAtt)
11: end
12: Return Y;

5. Experimental
5.1. Evaluation Indicators

To evaluate the performance of the MTAPSP prediction model proposed in this paper,
accuracy, precision, recall, and F1-score, which are commonly used in student performance
prediction models, are used in this paper as evaluation metrics [34]. The formula for
accuracy is shown in Equation (11):

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

where TP represents the number of correctly predicted positive classifications, FP rep-
resents the number of incorrectly predicted positive classifications, TN represents the
number of correctly predicted negative classifications, and FN is the number of incorrectly
predicted negative classifications. The precision rate represents the model’s prediction
accuracy in positive sample results, which is calculated as shown in Equation (12):

Precision =
TP

TP + FP
(12)

Recall is the probability that the model correctly predicts a positive sample among
positive samples and is calculated as shown in Equation (13):

Recall =
TP

TP + FN
(13)

F1-scoreis the reconciled mean of precision and recall, which is calculated as shown in
Equation (14):

F1-Score = 2× Precision× Recall
Precision + Recall

(14)

5.2. Experimental Environment and Hyper-Parameter Settings

The experimental environment of this study is shown in Table 4. The dataset is
randomly split into 80% training data and 20% testing data for experiments. The initial
learning rate of the MTAPSP model is set to 0.001, the number of neurons in the LSTM
hidden layer is set to 32, the number of heads in the multi-head attention mechanism is set
to 4, the number of neurons in the hidden layer of the ANN is set to 64, the batch size of
the model is set to 50, the cross-entropy loss function is used, the optimizer is set to Adam,
and the number of iterations of the model is set to 100.
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Table 4. Experimental environment.

Experimental Environment Environment Configuration

Operating systems Windows 10
CPU Intel core i5-6700HQ

Video Cards NVIDIA GTX 960
RAM 16 GB
DISK 1T SSD

Programming Languages Python 3.6
Framework Scikit-learn 0.24.2 + Pytorch 1.10.2

5.3. Experimental Results and Analysis

This section provides a detailed description of the experimental results of the MTAPSP
model and the benchmark model for two scenarios: firstly, the multi-classification predic-
tion performance. In the experiments, the “Distinction”, “Fail”, “Pass”, and “Withdrawn”
categories of samples are selected for verification. Second, the performance of the model in
terms of binary prediction performance is explored, specifically validating the effectiveness
of the MTAPSP model in predicting students who may be at risk in the first few weeks of
school and its potential benefits. In addition, ablation experiments aimed at exploring the
role and impact of MHSA and ANNs in the MTAPSP model.

5.3.1. Multi-Classification Prediction Performance

To validate the advantages of the MTAPSP model for multi-classification prediction,
four benchmark models, random forest (RF), naive Bayes (NB), deep feedforward neural
network (DFFNN) [34], and sequential engagement-based prediction network for academic
performance (SEPN) [26], were used for comparative experiments, using the students’
clickstream data, their assessment scores, and the data of the students’ demographic
characteristics, and each of these models’ performance is shown in Table 5.

Table 5. Comparison of model multi-classification prediction performance.

Precision RF NB DFFNN SEPN MTAPSP

Distinction 0.66 0.24 0.66 0.40 0.58
Fail 0.59 0.34 0.55 0.55 0.62
Pass 0.78 0.62 0.74 0.71 0.79

Withdrawn 0.73 0.72 0.76 0.74 0.78
Macro avg. 0.69 0.48 0.68 0.60 0.69

Weighted avg. 0.71 0.55 0.70 0.66 0.73

Recall RF NB DFFNN SEPN MTAPSP

Distinction 0.54 0.57 0.47 0.07 0.40
Fail 0.43 0.37 0.36 0.29 0.51
Pass 0.89 0.454 0.90 0.96 0.89

Withdrawn 0.77 0.65 0.80 0.83 0.83
Macro avg. 0.66 0.51 0.63 0.54 0.66

Weighted avg. 0.72 0.50 0.71 0.70 0.74

F1-score RF NB DFFNN SEPN MTAPSP

Distinction 0.59 0.34 0.55 0.12 0.47
Fail 0.50 0.36 0.44 0.38 0.56
Pass 0.83 0.52 0.81 0.82 0.84

Withdrawn 0.75 0.68 0.78 0.79 0.80
Macro avg. 0.67 0.47 0.64 0.53 0.67

Weighted avg. 0.71 0.52 0.70 0.65 0.73
Accuracy 0.72 0.50 0.71 0.70 0.74

Table 5 shows that the MTAPSP model obtained the best performance in most cases.
Although the RF model performs best in differentiating between “Distinction” performance
categories, given the imbalance of the data, we must consider evaluation metrics based
on F1 scores. The MTAPSP model has slightly higher F1 scores than the RF model for
the categories “Failed”, “Passed”, and “Withdrawn”, indicating that the MTAPSP model
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has better predictive power in the face of data imbalance. Compared to the deep learning
models DFFNN and SEPN, the MTAPSP model achieved superior results in all metrics,
which confirms that it is more capable of capturing temporal features of learning behaviors
and integrating multidimensional features to more accurately predict student performance.

The multi-classification prediction experiments clearly demonstrate the excellent
performance of the MTAPSP model in this area. Teachers can predict student performance
by utilizing the MTAPSP model and are able to gain insight into the academic level of their
students and develop targeted instructional programs accordingly. For instance, students
who are predicted to have “Distinction” results are recommended higher-level courses to
deepen their learning and improve their abilities; students who are predicted to withdraw
from school are provided with the necessary support and assistance by finding out whether
they have any difficulties in their academic life. The application of the MTAPSP model
not only provides an effective tool for predicting student performance but also provides
a powerful means of guidance for educators, enabling them to counsel students in a
more comprehensive and individualized manner, and promoting the improvement of
teaching quality.

5.3.2. Early Risk Prediction

To validate the performance of the MTAPSP model in terms of binary prediction
performance, three validation methods were used in this study based on relying only on
students’ clickstream data and assessment score information:

1. The WF-PD task, which categorizes “Distinction” and “Pass” as one category and
“Fail” and “Withdrawn” as another. The purpose of the WF-PD task is to identify
whether a student has passed the course.

2. The F-PD task, which identifies students at risk of “Fail” by placing “Fail” in a separate
category and “Distinction” and “Pass” in the same category, excluding dropouts. “The
F-PD task identifies students at risk of “Fail”.

3. The W-PD task, with “Withdrawn” in a separate category and “Distinction” and “Pass”
combined in one category, excluding “Fail” students. “Fail” students were excluded,
to distinguish between students at risk of dropping out and those not at risk.

To demonstrate the early risk prediction capability of the MTAPSP model, this paper
divided the dataset by percentage of course length and created two models to predict
student performance: (1) the “daily” model using student activity data as input daily;
(2) the “weekly” model using students’ weekly activity data as input. A comparison was
made with the latest student performance prediction model, TEnc [24], and the results of
the comparison are shown in Table 6.

Table 6. Comparison of prediction performance for model binary classification.

Stages and Performance (%)

Models 20% 40% 60% 80% 100%

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

TEnc WF-PD (daily) 75.41 71.50 82.83 80.91 88.23 86.77 90.78 89.93 93.42 93.01
MTAPSP WF-PD (daily) 91.79 91.80 92.50 92.50 92.70 92.70 93.51 93.51 94.63 94.63

TEnc F-PD (daily) 77.80 52.50 82.95 67.70 87.04 75.92 89.29 81.04 91.85 86.22
MTAPSP F-PD (daily) 91.38 91.18 91.40 91.20 91.53 91.32 91.87 91.78 92.71 92.55

TEnc W-PD (daily) 83.17 68.03 90.49 83.84 94.46 90.77 96.78 94.80 98.02 96.88
MTAPSP W-PD (daily) 95.73 95.71 96.08 96.07 97.28 97.27 98.08 98.08 99.08 99.08

TEnc WF-PD (weekly) 76.76 73.37 83.93 81.87 88.96 87.62 91.81 91.10 93.57 93.21
MTAPSP WF-PD (weekly) 91.02 91.03 91.99 91.99 92.59 92.59 93.17 93.18 94.32 94.33

TEnc F-PD (weekly) 78.53 55.68 83.73 69.20 87.85 77.41 90.43 83.09 91.75 86.27
MTAPSP F-PD (weekly) 91.00 90.77 91.17 91.00 91.15 91.01 91.95 91.83 92.71 92.54

TEnc W-PD (weekly) 83.79 70.63 91.01 84.79 95.51 92.61 97.22 95.58 98.14 97.10
MTAPSP W-PD (weekly) 94.46 94.43 96.10 96.09 96.85 96.84 97.94 97.94 98.92 98.92
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An analysis of Table 6 reveals the following:

1. The proposed method in this paper achieved optimal performance across various
course durations, demonstrating the superior effectiveness of MTAPSP in binary
predicting student performance.

2. Compared with the TEnc model, the three-layer LSTM network owned by MTAPSP
performs better in dealing with long sequence data, indicating that the three-layer
LSTM is more adept at capturing the patterns of long sequence data.

3. Within the first 20% of the course start time, MTAPSP embodies a high prediction
performance, which indicates that the ANN in the MTAPSP model can more accu-
rately map the relationship between the assessment scores characteristics and the
students’ final performance and map the potential influence of the assessment scores
characteristics on the students’ final performance.

4. Numerically, MTAPSP’s daily model performs better than the weekly model, with
performance improvements ranging from 0.1% to 1%, which suggests that the aggrega-
tion of student activity data changes important feature values, resulting in MTAPSP’s
inability to learn better features from this aggregated data.

To further demonstrate the early prediction ability of MTAPSP, the prediction per-
formance of the MTAPSP model was compared with that of the TEnc model over three
months after the start of the course, and the results are shown in Figures 5 and 6.

Figure 5. (a) Comparison of the accuracy of “daily” models based on the WF-PD task, based on the
F-PD task, and based on the W-PD task three months after the start of the course; (b) comparison of
the F1-scores of “daily” models based on the WF-PD task, based on the F-PD task, and based on the
W-PD task three months after the start of the course.

As can be seen from Figures 5 and 6, in the WF-PD, F-PD, and W-PD tasks, at the
beginning of the course, the daily and weekly models of MTAPSP achieve more than 85%
in terms of accuracy and recall in predicting students’ performance, and gradually increase
the indexes over time, outperforming the TEnc model.

In the early risk prediction experiment, the MTAPSP model demonstrated excellent
early prediction capabilities, enabling instructors to predict final student performance early
in the course. Once the model predicts that a student is likely to end up with a “fail”
performance, the instructor can develop an intervention plan to support these students to
adjust their learning before the end of the course to ensure that they can successfully pass
the exam. With the predictive results of the MTAPSP model, teachers can identify potential
student problems ahead of time and help them overcome their difficulties through effective
measures, thus improving overall student performance and learning experience. This early
prediction and intervention approach helps to maximize the optimization of the student
learning process and improve teaching and learning outcomes.
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Figure 6. (a) Comparison of the accuracy of “weekly” models based on the WF-PD task, based on the
F-PD task, and based on the W-PD task three months after the start of the course; (b) comparison of
the F1-scores of “weekly” models based on the WF-PD task, based on the F-PD task, and based on
the W-PD task three months after the start of the course.

5.3.3. Ablation Experiments

To verify the effect of different modules on MTAPSP, ablation experiments were
performed on MTAPSP models. Where MTAPSP-M-A denotes the MTAPSP model after
removing MHSA and ANN, MTAPSP-A denotes the MTAPSP model after removing
ANN, and the MTAPSP-M model denotes the MTAPSP model after removing MHSA. The
experimental results are shown in Table 7.

Table 7. Results of ablation experiments.

Model Precision Recall F1-Score Accuracy

MTAPSP-M-A 0.643 0.641 0.626 0.703
MTAPSP-A 0.650 0.588 0.594 0.719
MTAPSP-M 0.697 0.576 0.572 0.723

MTAPSP 0.692 0.656 0.668 0.744

Figure 7a–d shows the confusion matrix of the predictive model at the time of the abla-
tion experiment, with the diagonal line being the number of correctly predicted categories.
Combined with Table 7, it can be seen that compared to MTAPSP-M-A, MTAPSP-A’s accu-
racy and precision are increased, but its recall and F1 score are decreased, a phenomenon
that stems from the problem of imbalance in the distribution of the sample categories in
the dataset. As shown in Figure 7b, MTAPSP-A is inferior to MTAPSP-M-A in identifying
the categories “Distinction” and “Withdrawn”, while the number of correct identifications
is significantly higher than that of MTAPSP-M-A in the categories “Fail” and “Pass”, and
“Pass” is significantly higher than in MTAPSP-M-A. Although the overall accuracy in-
creased, the overall recall and F1 score decreased due to the decrease in the performance
of the metrics in the other categories. The significant difference in precision and accuracy
of the MTAPSP-M model compared to the MTAPSP-M-A model is because the ANN can
fit arbitrary nonlinear functions, which allows it to learn the assessment scores and demo-
graphic features well and improve the model performance. Compared with MTAPSP-M-A,
the overall number of correctly predicted categories of MTAPSP is substantially increased
and the overall performance metrics are significantly improved. This is because MHSA can
focus on different dimensions of features such as student learning behavior, assessment
scores, and demographic information, and, when paired with ANN, can better integrate
student learning behavior features, assessment scores, and demographic features to further
improve model performance.
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Figure 7. (a) Normalized confusion matrix for MTAPSP-M-A model predictions; (b) normalized
confusion matrix for MTAPSP-A model predictions; (c) normalized confusion matrix for MTAPSP-M
model predictions; (d) normalized confusion matrix for MTAPSP model predictions.

6. Conclusions

This paper proposes a student performance prediction model (MTAPSP) based on
multidimensional time-series data analysis. The model incorporates multidimensional data
such as students’ learning behaviors, assessment scores, and demographic information
(e.g., age group, place of residence) to achieve the multi-classification prediction of stu-
dents’ performance, and the multi-classification prediction performance of the MTAPSP
model is verified by comparison with the baseline model. In addition, this paper tests the
model’s binary early prediction ability by dividing the dataset by course duration, and
the experimental results show that it exhibits excellent performance in multi-classification
prediction and binary early prediction. In future research, there is a need to address the
imbalance in the data sample and to explore the impact of student–teacher interaction and
student-to-student interaction data on student academic performance.
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