
Citation: Alabbas, A.; Alomar, K.

Tayseer: A Novel AI-Powered Arabic

Chatbot Framework for Technical and

Vocational Student Helpdesk Services

and Enhancing Student Interactions.

Appl. Sci. 2024, 14, 2547. https://

doi.org/10.3390/app14062547

Academic Editors: Yu Liang,

Wenjun Wu and Ying Li

Received: 4 March 2024

Revised: 13 March 2024

Accepted: 14 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Tayseer: A Novel AI-Powered Arabic Chatbot Framework for
Technical and Vocational Student Helpdesk Services and
Enhancing Student Interactions
Abeer Alabbas 1,* and Khalid Alomar 2

1 Faculty of Computer and Information Technology, Technical and Vocational Training Corporation,
Najran 66253, Saudi Arabia

2 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
khalomar@kau.edu.sa

* Correspondence: aalabbas3@tvtc.gov.sa

Abstract: The rise of conversational agents (CAs) like chatbots in education has increased the
demand for advisory services. However, student–college admission interactions remain manual and
burdensome for staff. Leveraging CAs could streamline the admission process, providing efficient
advisory support. Moreover, limited research has explored the role of Arabic chatbots in education.
This study introduces Tayseer, an Arabic AI-powered web chatbot that enables instant access to college
information and communication between students and colleges. This study aims to improve the
abilities of chatbots by integrating features into one model, including responding with audiovisuals,
various interaction modes (menu, text, or both), and collecting survey responses. Tayseer uses deep
learning models within the RASA framework, incorporating a customized Arabic natural language
processing pipeline for intent classification, entity extraction, and response retrieval. Tayseer was
deployed at the Technical College for Girls in Najran (TCGN). Over 200 students used Tayseer during
the first semester, demonstrating its efficiency in streamlining the advisory process. It identified over
50 question types from inputs with a 90% precision in intent and entity predictions. A comprehensive
evaluation illuminated Tayseer’s proficiency as well as areas requiring improvement. This study
developed an advanced CA to enhance student experiences and satisfaction while establishing best
practices for education chatbot interfaces by outlining steps to build an AI-powered chatbot from
scratch using techniques adaptable to any language.

Keywords: Arabic chatbot; RASA; transformer model; DIET; vocational education

1. Introduction

Computer programs utilizing NLP have emerged as pivotal tools for simulating
human-like conversations in the evolving landscape of technology, chatbots, and virtual
assistants [1]. These AI-driven entities have found widespread application in automating
customer support and services [1]. The integration of artificial intelligence (AI) across
various computing and technological domains [2] notably includes the field of NLP [3].
This branch of AI facilitates human–computer interaction and communication through
natural language, enabling chatbots to converse with humans or other bots via text or
speech [4].

The utility of chatbots extends across diverse sectors, including e-commerce [5] and
education [6–10], with notable applications in customer service [5,11,12] and hospital
patient counseling [13–15]. Institutions increasingly rely on corporate websites and social
media for student services in the educational domain by utilizing web-based response
systems [4]. However, these methods are resource-intensive and time-consuming, leading
to delays in response times [5]. This issue has been further compounded by the shift
towards online education during the pandemic, intensifying the demand for efficient online

Appl. Sci. 2024, 14, 2547. https://doi.org/10.3390/app14062547 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062547
https://doi.org/10.3390/app14062547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-8032-840X
https://doi.org/10.3390/app14062547
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062547?type=check_update&version=1

Appl. Sci. 2024, 14, 2547 2 of 28

assistance and round-the-clock service availability [16]. The growing reliance on intelligent
agents, such as chatbots, in daily life makes their integration into social media and instant
messaging ecosystems increasingly commonplace and rational [17].

Conversational agents have garnered considerable interest in the education sector
because of their capacity to fulfill several educational functions, such as acting as instructors,
coaches, and learning companions [18]. These agents possess the ability to analyze and
react to human language. These have been incorporated into educational computer systems
to facilitate dynamic learning interactions with students [19,20]. Implementing AI-powered
chatbots in educational settings can significantly reduce administrative burden and enhance
the student experience, potentially boosting student retention rates and satisfaction [6].

This study proposes the Tayseer architecture to explore this field by utilizing advanced
technological innovations such as NLP, dialogue systems, and sentiment analysis, all
finely tuned for the Arabic language. This study introduces a dual-mode conversational
architecture that synergizes NLP capabilities with different interaction methods (write-
based, click-based, or both), specifically catering to technical students’ needs. Employing
the RASA framework, the system adeptly handles open-ended dialogues, whereas the
menu option paradigm offers structured guidance for various tasks. This dual approach
aims to provide flexible self-service channels that accommodate user preferences, regardless
of whether they favor structured or unstructured interactions.

Developing effective chatbots requires a solid understanding of deep learning (DL),
a subset of ML within AI [17]. DL, which is often associated with deep artificial neural
networks, involves sophisticated algorithms that model data through nonlinear function
transformations across multiple layers [21]. Deep learning chatbots are primarily catego-
rized as retrieval-based and generative bots. Retrieval-based bots leverage classification
models to discern user intent and retrieve suitable responses from a database, offering
greater flexibility than rule-based systems. In contrast, generative bots generate responses
based on both current and previous user interactions, displaying more human-like charac-
teristics but often struggling with grammatical accuracy and consistency [22–24].

Focusing on the RASA framework, a key component in chatbot development com-
prises natural language understanding (NLU) and dialogue management elements. RASA
NLU enables customizable NLP through various prebuilt components, including the Dual
Intent and Entity Transformer (DIET) [7]. DIET, a transformer-based model, efficiently
categorizes intents and extracts entities, which is compatible with pre-trained embedding
models such as BERT, GloVe, and ConveRT [8]. However, there is a notable research gap in
the application of the RASA framework to the Arabic language, which is characterized by
complex syntax and rich morphology, presenting unique challenges for NLP [25–27].

Tayseer was developed using the DIET architecture with attention-based mechanisms
to address these challenges, as shown in Figure 1. The integration of pre-trained mod-
els within DIET enables the chatbot to effectively handle intent and entity recognition
tasks [28–30].

Moreover, the system was designed to securely store individual academic backgrounds
and dialogue histories in a structured SQL database, facilitating personalized and context-
aware responses. An integrated feedback loop leveraging sentiment analysis of student
conversational experiences was employed to incrementally improve the system’s effective-
ness over time.

This applied research seeks to contribute to the field by integrating data-driven
machine-learning methods with custom knowledge representation within a modular Ara-
bic chatbot framework. The framework was specifically designed to address admission
inquiries and frequently asked questions (FAQs) in the context of higher education for tech-
nical students. The findings of this study are intended to inform the ongoing development
of effective and user-friendly conversational interfaces for the Arabic-speaking student
population in line with the identified key features and design principles.

Appl. Sci. 2024, 14, 2547 3 of 28
Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 29

(a) (b) (c)

write-based menu-based and write-based menu-based

Figure 1. Interactions of different interface methods: (a) write-based; (b) menu-based and write-
based; (c) menu-based.

Menu-based interaction simplifies user navigation with predefined options, making
it ideal for those preferring direct methods or finding natural language processing com-
plex. This facilitates switching between RASA-based and menu-based interactions to suit
user preferences, enhancing comfort and usability.

The write-based framework employs RASA, split into RASA NLU for understanding
user inputs and RASA Core for dialogue flow management, chosen for its flexibility, nat-
ural language handling, and Arabic language support. Tayseer, designed to address que-
ries about entrance and admission, among other frequent topics, incorporates multimodal
interactions, feedback mechanisms, and sentiment analysis for comprehensive user en-
gagement. It also supports diverse content types, such as images, links, and text, ensuring
a versatile communication platform.

3.1. Menu-Based Interaction
The menu-based chatbot uses JavaScript and follows a hierarchical menu structure

for user interaction.
A. Data Collection:

A comprehensive Arabic dataset encompassing intents, entities, and examples is cur-
rently being sought for menu-based and write-based modes. This initiative aims to equip
the chatbot with the capability to accurately interpret inputs in Arabic. The desired dataset
should cover a broad spectrum of college-related subjects, including but not limited to
admissions, classes, scheduling, professors, amenities, and events. This dataset is derived
from multiple authoritative sources, ensuring a rich and comprehensive compilation.
• Utilization of regulatory frameworks and procedural manuals to create a list of ques-

tions and answers for students by closely following the rules and steps found in man-
uals for technical and vocational training.

• Consultation with domain experts and faculty members to gather suggestions and
recommendations.

• A pre-survey aimed at identifying the information priorities of prospective students
was conducted among the current student population. The survey sought to under-
stand the specific pieces of information that students consider imperative to know
before and after college admission. A notable question within the survey was, “What
are the crucial pieces of information you endeavor to obtain before and after being
admitted to the college?” The survey garnered responses from 248 students, and a
chart accompanying the results delineated the most common inquiries along with
their respective percentages, as shown in Figure 2.

Figure 1. Interactions of different interface methods: (a) write-based; (b) menu-based and write-based;
(c) menu-based.

The rest of the paper is structured as follows: Section 2 offers a comprehensive
overview of pertinent prior research, providing a background for our study. Section 3
presents the methodology and the proposed model. Section 4 presents and discusses the
results and highlights the key findings. Finally, Section 5 concludes the paper and offers
recommendations for future research.

2. Related Work
2.1. Chatbot Overview

ELIZA [31] and PARRY [32] were among the first chatbots. These systems do not
employ data-driven learning but rely on a combination of rules and patterns; they work
exceptionally well when the scope of the discussion is defined, i.e., when the conversation
is focused on a specific topic or task [4]. However, learning-based alternatives have been
developed to circumvent some of the drawbacks of rule-based (handwritten rules) systems.
These technologies enable chatbots to learn from massive volumes of available human-to-
human conversations, for example, chat platforms, Twitter, or movie dialogues.

Learning-based approaches can be broadly characterized as retrieval-based or generative-
based approaches. Retrieval-based models collect candidate answers from a prebuilt
index, rank the candidates, and select the answer from the top-ranked options [22,33].
In contrast, generation-based approaches typically generate answers via deep learning
(DL) techniques [17]. The basic premise of generative-based approaches is to create a new
sentence word by word in response to a user’s query [34].

Ritter et al. [35] employed phrase-based statistical machine translation (SMT) to con-
vert a user query into a system response. They showed that the SMT method was superior
to retrieval-based models in generating responses to a Twitter dataset [35,36]. Subsequently,
it became apparent that the problem of generating responses differed from that of machine
translation [37]. While words or phrases in the source and target sentences usually match
well, a user’s speech in a coherent response may not have any words or phrases in common
with a coherent response [38].

It was later shown that another machine translation technique, sequence-to-sequence
(seq2seq) learning, performed better at generating responses [38]. The seq2seq architecture
includes an encoder model that compresses user input (query) and represents it as a
vector [24]. A decoder model decodes the vector (representing the encoded input) and
generates sentences word by word [24]. Typically, the encoder and decoder models are
based on RNNs. Attention-based methods have been developed to allow the encoder
to concentrate on certain portions of the encoded input, which is crucial for forecasting
specific segments of the output during the decoding phase [39]. Bidirectional RNN (BRNN)
models have also been used to improve the encoding of the context of the output sentence.

Appl. Sci. 2024, 14, 2547 4 of 28

A new, simple network design based on the attention mechanism was later intro-
duced, resulting in significantly improved response quality while requiring significantly
less training time [24]. This type of design is called the transformer architecture [40]. The
transformer model establishes global relationships between the input and output using
only an attention mechanism [24]. This prevents recursion and allows for greater par-
allelization; however, the transformer model retains the encoder–decoder architecture.
The development of transformer-based language models was a turning point in NLP [41].
These models, such as OpenAI GPT3, GPT4 [42], Bert [43], and T5 [44], have achieved
state-of-the-art performance in a variety of NLP tasks [41].

2.2. RASA Framework for AI Chatbots

RASA has gained significant popularity as a platform for building AI chatbots across
various disciplines [45]. RASA, an open-source framework based on machine learning, has
proven its ability to reliably detect user intentions, extract entities, and effectively handle
contextual nuances [45,46]. Researchers have examined the implementation of RASA
in diverse domains, including academic research, tourism, mental health, and customer
service [45,46].

The RASA framework has become a prominent tool in Arabic language processing.
In addition, incorporating both morphological and syntactic disambiguation in a unified
framework has shown highly favorable outcomes for languages such as Arabic [47]. An
integrated strategy is essential for efficiently handling Arabic text and comprehending user
input within the context of a chatbot. In addition, incorporating both morphological and
syntactic disambiguation in a unified framework has shown highly favorable outcomes for
languages such as Arabic [47]. An integrated method is essential for efficiently processing
Arabic text and comprehending user inputs within the context of a chatbot.

To address these issues, it is essential to utilize the available tools and technology
specifically designed for Arabic language processing. The MADA tool, also known as
morphological analysis and disambiguation for Arabic, is utilized to perform part-of-
speech tagging, stemming, and lemmatization of Arabic text [48]. Moreover, advancements
in Arabic conversational AI, such as chatbots, have broadened the range of text-based
conversational AI systems [49].

Multiple studies have focused on the research and implementation of RASA chatbots
in Arabic and other languages. Alruily [26] evaluated the performance of the ArRASA
framework, which is a deep learning-based Arabic NLU chatbot framework developed
using the RASA framework. This research demonstrates the potential of the RASA frame-
work to produce accurate and effective chatbots in Arabic language settings. A survey
by Al-Hagbani and Khan [50] emphasized the difficulties associated with creating Arabic
chatbots, mainly due to the intricacy of the language. Notwithstanding these difficulties,
RASA has been effectively implemented in several fields, including university [51,52]
and college inquiry chatbots [53]. The combination of RASA NLU and neural network
techniques has also been investigated to create an advanced chatbot system [25,54].

The creation of an Arabic RASA chatbot necessitates profound comprehension of the
distinctive linguistic attributes of the Arabic language and the employment of specialized
tools and technology specifically designed for processing the Arabic language. Utiliz-
ing open-source frameworks such as RASA and including morphological and syntactic
disambiguation greatly enhances the creation of a proficient Arabic RASA chatbot [26,53].

Despite these studies, there is still a lack of research that specifically addresses the
gaps in using the RASA framework for AI chatbots in Arabic. The existing literature
highlights the scarcity of Arabic chatbots and the need for more research on Arabic chatbot
development, linguistic complexities, and content availability [55,56].

2.3. Chatbots for Arabic Settings

Arabic is a complex language; therefore, creating Arabic chatbots has proven to be
difficult for researchers [57]. To date, only a few researchers have attempted to develop

Appl. Sci. 2024, 14, 2547 5 of 28

Arabic chatbots. According to a survey [55], Arabic chatbots are still in their infancy; all
of the current work is rule-based or retrieval-based, and the lack of accessible datasets
impedes their growth [25].

However, some studies have been able to overcome Arabic language limitations by
using translation tools. For example, Mozannar et al. [56] developed a question-answering
method, and Biltawi et al. [58] developed an Arabic language model. The authors of [57] de-
veloped MidoBot, a deep learning-based generative chatbot in Arabic that uses a sequence-
to-sequence model to generate new responses from a dataset. The performance of these
developments and that of [59] demonstrates the potential of neural models for understand-
ing the Arabic language.

In addition, Eljundi et al. [60] highlighted the potential of neural models for Arabic
language comprehension. This prompted an investigation of neural solutions for open tasks
in Arabic, such as empathic response production. Recent advances in transformer-based
models have shown that language-specific BERT-based models are incredibly efficient in
understanding language, provided they are pre-trained on an extensive corpus [59]. These
models have established new benchmarks and have achieved state-of-the-art results for
most NLP tasks [41].

Recent research has focused entirely on data-driven end-to-end systems that use neural
generative models to generate the appropriate responses [41]. The most popular choices are
seq2seq and transformer, and pre-trained models [33,37] and GPT3 [42] are two examples
of encoder–decoder models. To explore these models for Arabic, large corpora of conver-
sations with verified and cleaned annotations are needed [44] by creating contextualized
word embeddings, transformers, and pre-trained models that can compensate for data
deficiencies [33].

Their low computational cost makes them suitable for small datasets that Arabic
can handle. Recent contextualized embeddings can be taught on unannotated materials,
thereby improving various Arabic NLP tasks [41]. Multilingual BERT [61], AraT5 [62],
AraGPT2 [63], ARBERT & MARBERT [64], AraELECTRA [41], and AraBERT [59] are
contextualized embedding models that support Arabic.

Controllability is another aspect that can be used to construct sound Arabic conversa-
tional AI systems [33]. Hybrid models are an excellent alternative to this, as they integrate
the capabilities of retrieval and generative models, where returned answers can be matched
with generated answers to help retrieval models find a better answer [37].

2.4. Arabic Chatbots in University Settings

Chatbots are becoming increasingly prevalent across various industries, including
product/service domains, healthcare, medicine, and education. Two key factors driving
chatbot popularity are advancements in artificial intelligence (AI) and the growth of mobile
messaging apps [65]. Recent research reviews indicate a burgeoning focus on exploring
chatbot applications for educational purposes [33].

Based on an analysis of 80 studies on educational chatbots, the primary uses identified
were administrative services and teaching assistants for delivering information and enhanc-
ing student learning [66]. The highlighted advantages of educational chatbots include 24/7
availability, adaptability to learner needs, and individualized support.

Jooka [67] is a bilingual chatbot for education that aims to improve the university ad-
mission process in both Arabic and English. The authors of [68] developed a social chatbot
called Nabiha. Nabiha acts as an academic advisor who can support conversations with
students of the Information Technology Department, engage with them, and respond to
their queries about course options or other academic matters at King Saud University using
the Saudi Arabic dialect. Nabiha was created on the Pandorabots platform by combining a
pattern-matching approach with Artificial Intelligence Markup Language (AIML).

LANA -I [69] is an Arabic chatbot designed to help young people with autism spectrum
disorder (ASD) in their educational endeavors. The system is rule-based and performs its
functions of pattern matching and text similarity. Jordanian universities have proposed [2]

Appl. Sci. 2024, 14, 2547 6 of 28

the development of an intelligent Arabic chatbot system to overcome the outbreak of
the pandemic COVID-19 and its global consequences. This technology mainly promotes
spoken Arabic through the Jordanian dialect among students, especially at Jordan’s Al-
Zaytoonah Private University. Regrettably, it was not stated whether the students had tried
this method.

Labeeb [70] is another chatbot that helps students answer questions about education
or academic rules. This chatbot uses the Wikipedia API to retrieve the first paragraph
of each requested query in the form of XML documents. However, the authors did not
elaborate on the NLP models they used. SeerahBot is an Arabic chatbot specializing in
the biography of Prophet Muhammad [8]. It utilizes a retrieval technique incorporating
200 questions and answers, employing machine learning to identify semantic question
similarity, thereby optimizing the match between inputs and intentions. However, the
study did not address the performance outcomes of this approach. Alazzam’s [71] work
will primarily concentrate on developing a chatbot tailored to comply with educational
regulations in the UAE.

In the context of university admission helpdesks and frequently asked questions
(FAQs), chatbots can be used to answer frequently asked questions and provide informa-
tion about various university-related topics, such as courses, admissions, facilities, and
impending events [72]. Powered by artificial intelligence, these avatars can comprehend
and communicate using natural language processing techniques [72]. Using machine
learning algorithms and accessing vast amounts of data, they can perpetually learn and
evolve [72].

Al-Madi et al. [73] proposed an intelligent Arabic chatbot system to alleviate the
burden of admission departments in a separate study. The study demonstrated that the
chatbot system could provide efficient and gratifying responses to the majority of user
queries, indicating its potential to streamline the admission process and enhance the user
experience [27].

While there is a growing body of research on AI chatbots for university admission
helpdesks and FAQ inquiries, there are still gaps in our comprehension of their efficacy, partic-
ularly in Arabic-speaking environments. Future research should concentrate on designing
and evaluating chatbot systems that can effectively address the requirements of diverse stu-
dent populations and enhance the admission process. Guidelines and ethical considerations
regarding the use of chatbots in academic settings should be investigated further.

It is important to note that not all chatbots are powered by AI. Rule-based chatbots, for
instance, adhere to pre-programmed logic and have limited intelligence [72]. Frequently,
they are used to respond to inquiries regarding delivery and transportation [72]. To
date, Arabic chatbots in education have been rule-based, which means that there is a
need to develop intelligent conversational agents (CAs) capable of meeting academic and
practitioner expectations. Moreover, further research is needed to enhance conversational
quality using advanced natural language processing techniques [33]. Conversely, chatbots
powered by AI can comprehend and communicate in human language using natural
language processing techniques [74]. They provide sophisticated features and respond to
various inquiries.

However, there are still gaps in the literature regarding the use of AI chatbots in
Arabic-speaking settings for admission helpdesks and FAQ inquiries [71,73]. Fuad and
Al-Yahya [30] conducted an assessment of recent developments in Arabic conversational AI
and identified the need for further research on building human-like Arabic conversational
AI systems. Similarly, [52] examined the advancements and challenges of intelligent Arabic
chatbots and emphasized the need to surmount the linguistic complexities of Arabic.

Although chatbots have been studied for their potential educational benefits, there
is a lack of solutions that cater to the specific requirements of technical and vocational
students speaking Arabic. Our research aims to help fill some of these gaps by lever-
aging state-of-the-art NLP to enrich conversational abilities. Using previous works as a

Appl. Sci. 2024, 14, 2547 7 of 28

springboard, our framework introduces novel features that emphasize personalization and
emotional intelligence.

3. Method

Our study presents the methodology behind the development of “Tayseer”, an Arabic
AI chatbot designed for educational support, including addressing inquiries on entrance
admissions and frequently asked questions. This chatbot features both menu-based and
write-based (RASA-based) interfaces to cater to diverse user preferences; it provides a
structured navigation system through predefined options and a dynamic conversational
interface for natural language interactions, as shown in Figure 1.

Menu-based interaction simplifies user navigation with predefined options, making it
ideal for those preferring direct methods or finding natural language processing complex.
This facilitates switching between RASA-based and menu-based interactions to suit user
preferences, enhancing comfort and usability.

The write-based framework employs RASA, split into RASA NLU for understanding
user inputs and RASA Core for dialogue flow management, chosen for its flexibility, natural
language handling, and Arabic language support. Tayseer, designed to address queries
about entrance and admission, among other frequent topics, incorporates multimodal inter-
actions, feedback mechanisms, and sentiment analysis for comprehensive user engagement.
It also supports diverse content types, such as images, links, and text, ensuring a versatile
communication platform.

3.1. Menu-Based Interaction

The menu-based chatbot uses JavaScript and follows a hierarchical menu structure for
user interaction.

A. Data Collection:

A comprehensive Arabic dataset encompassing intents, entities, and examples is
currently being sought for menu-based and write-based modes. This initiative aims to
equip the chatbot with the capability to accurately interpret inputs in Arabic. The desired
dataset should cover a broad spectrum of college-related subjects, including but not limited
to admissions, classes, scheduling, professors, amenities, and events. This dataset is derived
from multiple authoritative sources, ensuring a rich and comprehensive compilation.

• Utilization of regulatory frameworks and procedural manuals to create a list of ques-
tions and answers for students by closely following the rules and steps found in
manuals for technical and vocational training.

• Consultation with domain experts and faculty members to gather suggestions and
recommendations.

• A pre-survey aimed at identifying the information priorities of prospective students
was conducted among the current student population. The survey sought to under-
stand the specific pieces of information that students consider imperative to know
before and after college admission. A notable question within the survey was, “What
are the crucial pieces of information you endeavor to obtain before and after being
admitted to the college?” The survey garnered responses from 248 students, and a
chart accompanying the results delineated the most common inquiries along with
their respective percentages, as shown in Figure 2.

Appl. Sci. 2024, 14, 2547 8 of 28Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

Figure 2. The most common inquiries.

B. Menu Structure:

The menu structure of the Taysser is represented as an object called “menu” in the code.
Each key in the “menu” object represents a “menu” item, and the corresponding value is an
object containing the “text” to display and the menu array representing the submenu items.
For example, the top-level menu items include “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

” (College Admission
and Registration), “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

” (Trainee Services), “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

” (Initiatives), and so on.
Each menu item has its own submenu, allowing for hierarchical navigation.

C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements
to display the menu items. For instance, the code may generate buttons or list items for
each menu item, with the appropriate text and event handlers to handle user interactions.
The specific UI components and rendering process would depend on the chosen frontend
framework or library.

D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding submenu
or performs the associated action. For example, if the user selects “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

”
(College Admission and Registration), the chatbot would display the submenu items related
to college admission and registration, such as “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

” (College Specializations),
“

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

” (College Admission Requirements), and so on.

E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination of
both. The chatbot renders the appropriate content based on the value of the text property.
For example, let us consider the menu item “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

” (Training Calendar). The text
property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (accessed
on 15 March 2023), representing an image URL. When the user selects this menu item, the
chatbot will display the image associated with the training calendar.

On the other hand, the menu item “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text

” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee’s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 29

Figure 2. The most common inquiries.

B. Menu Structure:
The menu structure of the Taysser is represented as an object called “menu” in the

code. Each key in the “menu” object represents a “menu” item, and the corresponding
value is an object containing the “text” to display and the menu array representing the
submenu items. For example, the top-level menu items include “القبول والتسجيل بالكلية” (Col-
lege Admission and Registration), “المتدربات -Initia) ”المبادرات “ ,(Trainee Services) ”خدمات
tives), and so on. Each menu item has its own submenu, allowing for hierarchical naviga-
tion.
C. Menu Rendering:

The “menu” options are rendered dynamically based on the “menu” object. The code
iterates over the keys of the menu object and generates the corresponding UI elements to
display the menu items. For instance, the code may generate buttons or list items for each
menu item, with the appropriate text and event handlers to handle user interactions. The
specific UI components and rendering process would depend on the chosen frontend
framework or library.
D. User Interaction:

Tayseer handles user interactions by capturing user clicks or selections on the menu
items. When a user selects a menu item, the chatbot navigates to the corresponding sub-
menu or performs the associated action. For example, if the user selects “ والتسجيل القبول
 the chatbot would display the submenu ,(College Admission and Registration) ”بالكلية
items related to college admission and registration, such as “تخصصات الكلية” (College Spe-
cializations), “شروط القبول في الكلية” (College Admission Requirements), and so on.
E. Menu Text and Links:

The text property of each menu item can contain plain text, URLs, or a combination
of both. The chatbot renders the appropriate content based on the value of the text prop-
erty. For example, let us consider the menu item “التقويم التدريبي” (Training Calendar). The
text property of this menu item is set to “https://i.postimg.cc/MKdcZjnJ/1444.jpg” (ac-
cessed on 15 March 2023), representing an image URL. When the user selects this menu
item, the chatbot will display the image associated with the training calendar.

On the other hand, the menu item “دليل المتدرب” (Trainee’s Guide) has a text value of
“https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee%27s-Guide.pdf” (accessed
on 15 March 2023). This URL points to a document or a web page containing the trainee’s
guide. When the user selects this menu item, the chatbot provides a link or redirects the
user to the specified URL, allowing them to access the trainee’s guide.

In some cases, the text property contains plain text without any links. For instance,
the menu item “معلومات أساسية للمستجدات” (Basic Information for New Students) has a text ” (Basic Information for New Students) has a text
value that consists of several paragraphs of plain text. When this menu item is selected, the

https://i.postimg.cc/MKdcZjnJ/1444.jpg
https://tvtc.gov.sa/ar/MediaCenter/Elan/Documents/Trainee's-Guide.pdf

Appl. Sci. 2024, 14, 2547 9 of 28

chatbot will display the text content directly to the user. Figure 3 illustrates an example of
how the chatbot may render different types of menu text and links.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 29

value that consists of several paragraphs of plain text. When this menu item is selected,
the chatbot will display the text content directly to the user. Figure 3 illustrates an example
of how the chatbot may render different types of menu text and links.

Figure 3. An example of how the chatbot renders different types of menu text and links.

In the example shown in Figure 3, the chatbot would handle each menu item differ-
ently based on the text property. For the “ التقويم التدريبي” (training calendar) item, it would
display the associated image. For the “دليل المتدرب” (traineeʹs guide) item, it would provide
a link or redirect the user to the trainee’s guide. And for the “معلومات أساسية للمستجدات” (basic
information for new developments) item, it would display the plain text content directly.
By leveraging the flexibility of the text property, Tayseer can accommodate various types
of content, such as images, links, and plain text, providing a rich and informative user
experience.
F. Error Handling and Fallback Mechanisms:

When the user selects an invalid or non-existent menu option, the chatbot provides
appropriate error messages or fallback responses to guide the user back to valid menu
options.

The chatbot’s menu structure is represented as an object, and the menu options are
dynamically rendered based on this structure. User interactions are handled by capturing
user selections, navigating to the corresponding submenus, or performing associated ac-
tions. The menu-based chatbot offers a user-friendly and intuitive interface for users to
interact with the system.
G. Evaluation and User Feedback:

To assess the effectiveness and usability of the Arabic AI chatbot, a comprehensive
evaluation and user feedback process was integrated into Tayseer’s front end using JavaS-
cript, as shown in Figure 4. The evaluation consisted of a feedback questionnaire.

Figure 4. User feedback process.

Figure 3. An example of how the chatbot renders different types of menu text and links.

In the example shown in Figure 3, the chatbot would handle each menu item differ-
ently based on the text property. For the “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 29

value that consists of several paragraphs of plain text. When this menu item is selected,
the chatbot will display the text content directly to the user. Figure 3 illustrates an example
of how the chatbot may render different types of menu text and links.

Figure 3. An example of how the chatbot renders different types of menu text and links.

In the example shown in Figure 3, the chatbot would handle each menu item differ-
ently based on the text property. For the “ التقويم التدريبي” (training calendar) item, it would
display the associated image. For the “دليل المتدرب” (traineeʹs guide) item, it would provide
a link or redirect the user to the trainee’s guide. And for the “معلومات أساسية للمستجدات” (basic
information for new developments) item, it would display the plain text content directly.
By leveraging the flexibility of the text property, Tayseer can accommodate various types
of content, such as images, links, and plain text, providing a rich and informative user
experience.
F. Error Handling and Fallback Mechanisms:

When the user selects an invalid or non-existent menu option, the chatbot provides
appropriate error messages or fallback responses to guide the user back to valid menu
options.

The chatbot’s menu structure is represented as an object, and the menu options are
dynamically rendered based on this structure. User interactions are handled by capturing
user selections, navigating to the corresponding submenus, or performing associated ac-
tions. The menu-based chatbot offers a user-friendly and intuitive interface for users to
interact with the system.
G. Evaluation and User Feedback:

To assess the effectiveness and usability of the Arabic AI chatbot, a comprehensive
evaluation and user feedback process was integrated into Tayseer’s front end using JavaS-
cript, as shown in Figure 4. The evaluation consisted of a feedback questionnaire.

Figure 4. User feedback process.

” (training calendar) item, it would
display the associated image. For the “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 29

value that consists of several paragraphs of plain text. When this menu item is selected,
the chatbot will display the text content directly to the user. Figure 3 illustrates an example
of how the chatbot may render different types of menu text and links.

Figure 3. An example of how the chatbot renders different types of menu text and links.

In the example shown in Figure 3, the chatbot would handle each menu item differ-
ently based on the text property. For the “ التقويم التدريبي” (training calendar) item, it would
display the associated image. For the “دليل المتدرب” (traineeʹs guide) item, it would provide
a link or redirect the user to the trainee’s guide. And for the “معلومات أساسية للمستجدات” (basic
information for new developments) item, it would display the plain text content directly.
By leveraging the flexibility of the text property, Tayseer can accommodate various types
of content, such as images, links, and plain text, providing a rich and informative user
experience.
F. Error Handling and Fallback Mechanisms:

When the user selects an invalid or non-existent menu option, the chatbot provides
appropriate error messages or fallback responses to guide the user back to valid menu
options.

The chatbot’s menu structure is represented as an object, and the menu options are
dynamically rendered based on this structure. User interactions are handled by capturing
user selections, navigating to the corresponding submenus, or performing associated ac-
tions. The menu-based chatbot offers a user-friendly and intuitive interface for users to
interact with the system.
G. Evaluation and User Feedback:

To assess the effectiveness and usability of the Arabic AI chatbot, a comprehensive
evaluation and user feedback process was integrated into Tayseer’s front end using JavaS-
cript, as shown in Figure 4. The evaluation consisted of a feedback questionnaire.

Figure 4. User feedback process.

” (trainee's guide) item, it would pro-
vide a link or redirect the user to the trainee’s guide. And for the “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 29

value that consists of several paragraphs of plain text. When this menu item is selected,
the chatbot will display the text content directly to the user. Figure 3 illustrates an example
of how the chatbot may render different types of menu text and links.

Figure 3. An example of how the chatbot renders different types of menu text and links.

In the example shown in Figure 3, the chatbot would handle each menu item differ-
ently based on the text property. For the “ التقويم التدريبي” (training calendar) item, it would
display the associated image. For the “دليل المتدرب” (traineeʹs guide) item, it would provide
a link or redirect the user to the trainee’s guide. And for the “معلومات أساسية للمستجدات” (basic
information for new developments) item, it would display the plain text content directly.
By leveraging the flexibility of the text property, Tayseer can accommodate various types
of content, such as images, links, and plain text, providing a rich and informative user
experience.
F. Error Handling and Fallback Mechanisms:

When the user selects an invalid or non-existent menu option, the chatbot provides
appropriate error messages or fallback responses to guide the user back to valid menu
options.

The chatbot’s menu structure is represented as an object, and the menu options are
dynamically rendered based on this structure. User interactions are handled by capturing
user selections, navigating to the corresponding submenus, or performing associated ac-
tions. The menu-based chatbot offers a user-friendly and intuitive interface for users to
interact with the system.
G. Evaluation and User Feedback:

To assess the effectiveness and usability of the Arabic AI chatbot, a comprehensive
evaluation and user feedback process was integrated into Tayseer’s front end using JavaS-
cript, as shown in Figure 4. The evaluation consisted of a feedback questionnaire.

Figure 4. User feedback process.

”
(basic information for new developments) item, it would display the plain text content
directly. By leveraging the flexibility of the text property, Tayseer can accommodate various
types of content, such as images, links, and plain text, providing a rich and informative
user experience.

F. Error Handling and Fallback Mechanisms:

When the user selects an invalid or non-existent menu option, the chatbot provides
appropriate error messages or fallback responses to guide the user back to valid menu options.

The chatbot’s menu structure is represented as an object, and the menu options are
dynamically rendered based on this structure. User interactions are handled by capturing
user selections, navigating to the corresponding submenus, or performing associated
actions. The menu-based chatbot offers a user-friendly and intuitive interface for users to
interact with the system.

G. Evaluation and User Feedback:

To assess the effectiveness and usability of the Arabic AI chatbot, a comprehensive eval-
uation and user feedback process was integrated into Tayseer’s front end using JavaScript,
as shown in Figure 4. The evaluation consisted of a feedback questionnaire.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 29

value that consists of several paragraphs of plain text. When this menu item is selected,
the chatbot will display the text content directly to the user. Figure 3 illustrates an example
of how the chatbot may render different types of menu text and links.

Figure 3. An example of how the chatbot renders different types of menu text and links.

In the example shown in Figure 3, the chatbot would handle each menu item differ-
ently based on the text property. For the “ التقويم التدريبي” (training calendar) item, it would
display the associated image. For the “دليل المتدرب” (traineeʹs guide) item, it would provide
a link or redirect the user to the trainee’s guide. And for the “معلومات أساسية للمستجدات” (basic
information for new developments) item, it would display the plain text content directly.
By leveraging the flexibility of the text property, Tayseer can accommodate various types
of content, such as images, links, and plain text, providing a rich and informative user
experience.
F. Error Handling and Fallback Mechanisms:

When the user selects an invalid or non-existent menu option, the chatbot provides
appropriate error messages or fallback responses to guide the user back to valid menu
options.

The chatbot’s menu structure is represented as an object, and the menu options are
dynamically rendered based on this structure. User interactions are handled by capturing
user selections, navigating to the corresponding submenus, or performing associated ac-
tions. The menu-based chatbot offers a user-friendly and intuitive interface for users to
interact with the system.
G. Evaluation and User Feedback:

To assess the effectiveness and usability of the Arabic AI chatbot, a comprehensive
evaluation and user feedback process was integrated into Tayseer’s front end using JavaS-
cript, as shown in Figure 4. The evaluation consisted of a feedback questionnaire.

Figure 4. User feedback process. Figure 4. User feedback process.

Appl. Sci. 2024, 14, 2547 10 of 28

3.2. Write-Based (RASA-Based)

The choice of RASA for the conversational framework was motivated by its open-
source nature, flexibility, and comprehensive support for Arabic. The architecture of RASA,
comprising RASA NLU for natural language understanding and RASA Core for managing
conversation flows, is particularly adept at handling the complexities of Arabic, including
dialectal variations and script nuances. This framework facilitated the development of
a chatbot capable of engaging in meaningful Arabic conversations and addressing the
specific needs of technical and vocational college inquiries. The key components of the
RASA framework are as follows:

• RASA NLU: processes and interprets user inputs in Arabic, accommodating linguistic
complexities.

• RASA Core: guides conversation flow using machine learning to provide contextually
relevant responses.

• Domain: defines the chatbot’s scope, including intents, entities, and actions tailored to
college-related queries.

• Rules and Stories: establish conversational guidelines and example paths to train
chatbots for diverse interactions.

• Actions: both predefined text messages and custom actions allow for dynamic re-
sponses and functionalities such as API calls or database queries.

A. Data Collection

The data collection process for the write-based approach followed the same methodol-
ogy described in the “Data Collection” sub-section for the menu-based approach. The same
sources, including existing college documentation, frequently asked questions (FAQs),
and expert knowledge from college staff and administrators, were utilized to gather a
diverse and comprehensive dataset. The collected data were preprocessed and prepared
for training the write-based chatbot model, ensuring consistency and compatibility with
the write-based approach.

B. Data Preprocessing:

• The collected data underwent preprocessing to prepare it for training the chat-
bot model.

• Text normalization techniques were applied to standardize the text’s format,
including converting characters to lowercase and removing irrelevant characters
or information.

• Tokenization was performed to split the text into individual words or tokens,
enabling accurate processing and analysis.

• Arabic-specific challenges, such as discretization and morphological variations,
were handled using specialized libraries and techniques to ensure proper process-
ing of the Arabic language.

C. Choosing the RASA NLU Pipeline

The fundamental role of RASA NLU is to interpret the data provided by the user to
the chatbot, which includes identifying necessary intents and entities. Within the RASA
Open Source, a series of components sequentially process incoming messages. This ordered
execution of components, known as the processing pipeline, is established in the config.yml
file [75]. The supervised embedding pipeline allows for training in any global language, as
it is designed to learn from the ground up. This type of pipeline is similar to that of the
Tayseer pipeline, as shown in Figure 5.

Appl. Sci. 2024, 14, 2547 11 of 28Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 29

Figure 5. Tayseer supervised embedding pipeline.

The open-source RASA platform provides users with a powerful toolkit for building
AI-driven agents that can chat, fine-tuned with a natural language processing pipeline.
Figure 6 illustrates the agent training process executed in RASA.

Figure 6. Illustration of the agent training process executed in RASA.

Within the scope of the Arabic language, RASA supports comprehensibility and con-
versational participation through a set of customizable components specified as follows.
First, the preprocessing phase uses the WhitespaceTokenizer for simple text segmenta-
tion. This is complemented by the RegexFeaturizer, which extracts features based on the
patterns. The LexicalSyntacticFeaturizer performs deep syntactic parsing to ease naviga-
tion through the complexities of Arabic syntax. It uses two CountVectorsFeaturizer com-
ponents: the first to produce token-level analysis using the bag of words and the second
to analyze the Arabic language’s linguistic subtleties using character models ranging from
1- to 4-g. Intent and entity recognition are handled quite well by the DIETClassifier,
which leverages transformer technology to produce iteratively updated context-sensitive
predictions, as shown in Figure 7. Subsequent levels include the EntitySynonymMapper,
which aligns terms of entities for overall consistency, and the ResponseSelector, which is
adept at sourcing suitable replies to common queries.

Figure 5. Tayseer supervised embedding pipeline.

The open-source RASA platform provides users with a powerful toolkit for building
AI-driven agents that can chat, fine-tuned with a natural language processing pipeline.
Figure 6 illustrates the agent training process executed in RASA.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 29

Figure 5. Tayseer supervised embedding pipeline.

The open-source RASA platform provides users with a powerful toolkit for building
AI-driven agents that can chat, fine-tuned with a natural language processing pipeline.
Figure 6 illustrates the agent training process executed in RASA.

Figure 6. Illustration of the agent training process executed in RASA.

Within the scope of the Arabic language, RASA supports comprehensibility and con-
versational participation through a set of customizable components specified as follows.
First, the preprocessing phase uses the WhitespaceTokenizer for simple text segmenta-
tion. This is complemented by the RegexFeaturizer, which extracts features based on the
patterns. The LexicalSyntacticFeaturizer performs deep syntactic parsing to ease naviga-
tion through the complexities of Arabic syntax. It uses two CountVectorsFeaturizer com-
ponents: the first to produce token-level analysis using the bag of words and the second
to analyze the Arabic language’s linguistic subtleties using character models ranging from
1- to 4-g. Intent and entity recognition are handled quite well by the DIETClassifier,
which leverages transformer technology to produce iteratively updated context-sensitive
predictions, as shown in Figure 7. Subsequent levels include the EntitySynonymMapper,
which aligns terms of entities for overall consistency, and the ResponseSelector, which is
adept at sourcing suitable replies to common queries.

Figure 6. Illustration of the agent training process executed in RASA.

Within the scope of the Arabic language, RASA supports comprehensibility and
conversational participation through a set of customizable components specified as follows.
First, the preprocessing phase uses the WhitespaceTokenizer for simple text segmentation.
This is complemented by the RegexFeaturizer, which extracts features based on the patterns.
The LexicalSyntacticFeaturizer performs deep syntactic parsing to ease navigation through
the complexities of Arabic syntax. It uses two CountVectorsFeaturizer components: the
first to produce token-level analysis using the bag of words and the second to analyze
the Arabic language’s linguistic subtleties using character models ranging from 1- to 4-g.
Intent and entity recognition are handled quite well by the DIETClassifier, which leverages
transformer technology to produce iteratively updated context-sensitive predictions, as
shown in Figure 7. Subsequent levels include the EntitySynonymMapper, which aligns
terms of entities for overall consistency, and the ResponseSelector, which is adept at
sourcing suitable replies to common queries.

Appl. Sci. 2024, 14, 2547 12 of 28

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 29

Figure 7. Overview of the DIET classifier architecture.

In instances where predictions may falter with low confidence, a RulePolicy steps in
to maintain conversational coherence, and there is a unique assistant ID for every part of
the pipeline to make it possible to trace any part. As indicated in Table 1, the RASA con-
figuration is designed conscientiously, especially for Arabic conversational AI, with each
unit serving a separate function. Designed with educational dialogues to be precisely
tuned, the system is engineered to offer an unbeatable, knowledgeable virtual aid for tech-
nical and vocational students. In general, RASA’s flexible pipeline combines state-of-the-
art NLP methodologies that are sensitive to producing next-generation conversational AI
abilities in Arabic.

Table 1. Summary of the responsibility of each component in the chosen configuration.

Component Functionality
Tokenizer WhitespaceTokenizer Splits text into tokens using spaces for clear whitespace languages.

Featurizer
RegexFeaturizer Uses regex to identify patterns and shapes in text for comprehension.
LexicalSyntacticFeaturizer Captures lexical and syntactic text features, like POS tags.
CountVectorsFeaturizer Converts text to numerical data using a bag-of-words model.

Classifier DIETClassifier Predicts intents and extracts entities simultaneously.
Mapper EntitySynonymMapper Maps synonyms to entities to recognize varied expressions as the same.

Selector ResponseSelector Picks appropriate responses from predefined options and trains for 100
epochs.

D. Intent and Entity Recognition:
• The intents and entities relevant to the chatbot’s domain were carefully defined

based on the collected data and the chatbot’s desired functionality.
• Intents represent the underlying purpose or goal of a user’s query, while entities

refer to specific pieces of information within the query.
• Examples of intents defined for the Arabic AI chatbot include

“user_ask_about_admission”, “user_ask_about_email”, and
“user_ask_about_major_change”.

• Each intent was associated with a set of example user expressions that capture
different ways users might express their queries so the chatbot could respond
with greater specificity, as shown in Figure 8.

Figure 7. Overview of the DIET classifier architecture.

In instances where predictions may falter with low confidence, a RulePolicy steps
in to maintain conversational coherence, and there is a unique assistant ID for every part
of the pipeline to make it possible to trace any part. As indicated in Table 1, the RASA
configuration is designed conscientiously, especially for Arabic conversational AI, with each
unit serving a separate function. Designed with educational dialogues to be precisely tuned,
the system is engineered to offer an unbeatable, knowledgeable virtual aid for technical
and vocational students. In general, RASA’s flexible pipeline combines state-of-the-art NLP
methodologies that are sensitive to producing next-generation conversational AI abilities
in Arabic.

D. Intent and Entity Recognition:

• The intents and entities relevant to the chatbot’s domain were carefully defined
based on the collected data and the chatbot’s desired functionality.

• Intents represent the underlying purpose or goal of a user’s query, while entities
refer to specific pieces of information within the query.

• Examples of intents defined for the Arabic AI chatbot include “user_ask_about
_admission”, “user_ask_about_email”, and “user_ask_about_major_change”.

• Each intent was associated with a set of example user expressions that capture
different ways users might express their queries so the chatbot could respond
with greater specificity, as shown in Figure 8.

Table 1. Summary of the responsibility of each component in the chosen configuration.

Component Functionality

Tokenizer WhitespaceTokenizer Splits text into tokens using spaces for clear whitespace languages.

Featurizer

RegexFeaturizer Uses regex to identify patterns and shapes in text for comprehension.

LexicalSyntacticFeaturizer Captures lexical and syntactic text features, like POS tags.

CountVectorsFeaturizer Converts text to numerical data using a bag-of-words model.

Classifier DIETClassifier Predicts intents and extracts entities simultaneously.

Mapper EntitySynonymMapper Maps synonyms to entities to recognize varied expressions as the same.

Selector ResponseSelector Picks appropriate responses from predefined options and trains for
100 epochs.

Appl. Sci. 2024, 14, 2547 13 of 28Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 29

Figure 8. A set of example user expressions.

• The intent is specified in the “nlu.yml” and “domain.yml” files. The “nlu.yml”
file will encompass the intent data that will be utilized for subsequent training
purposes. Table 2 displays the various contexts and quantities of intent within
each. For this research, we created 75 Arabic intents. Figure 9 illustrates the
distribution of Tayseer’s intents by context.

Figure 9. The distribution of chatbot intents by context.

Table 2. Description of intents.

Context Description
Greeting Respond to various forms of greetings from users.
College admission and registration Handle queries related to the college admissions and registration process.
Trainee services Address queries or requests related to services provided to trainees.

Initiatives
Responding to user inquiries about initiatives for trainee career guidance and
college goal achievement.

Activity participation and volunteering Responding to user inquiries or interests in extracurricular activities and vol-
unteering opportunities.

Figure 8. A set of example user expressions.

• The intent is specified in the “nlu.yml” and “domain.yml” files. The “nlu.yml” file
will encompass the intent data that will be utilized for subsequent training purposes.
Table 2 displays the various contexts and quantities of intent within each. For this
research, we created 75 Arabic intents. Figure 9 illustrates the distribution of Tayseer’s
intents by context.

Table 2. Description of intents.

Context Description

Greeting Respond to various forms of greetings from users.
College admission and registration Handle queries related to the college admissions and registration process.
Trainee services Address queries or requests related to services provided to trainees.

Initiatives Responding to user inquiries about initiatives for trainee career guidance and
college goal achievement.

Activity participation and volunteering Responding to user inquiries or interests in extracurricular activities and
volunteering opportunities.

Guidance and counseling Address user queries related to advice, support, or information on personal,
educational, or career matters.

Rewards and financial aid Respond to queries about financial support.
Global academies Inquiries on Adobe, Cisco, and Microsoft academies’ programs and courses.
Complaints and suggestions For handling user feedback and suggestions.
Access key site/system links Assist users in finding and navigating to essential website or system links.
Faculty staff contact information Assist users in obtaining faculty members’ contact details.
Trainee conduct regulations Information on trainee behavior rules.

• To manage diverse inquiries, a strategy is established in the “domain.yml” file under
“utter”, specifying conversational responses and their intents. The templates in this
file address intent-specific queries. Tayseer encompasses more than 40 functions, with
Table 3 providing samples from its diverse “utter” (user expressions or inputs).

• The training data was annotated with the corresponding intents and entities using the
RASA NLU framework, which provides a structured format for training the chatbot’s
natural language understanding component.

Appl. Sci. 2024, 14, 2547 14 of 28

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 29

Figure 8. A set of example user expressions.

• The intent is specified in the “nlu.yml” and “domain.yml” files. The “nlu.yml”
file will encompass the intent data that will be utilized for subsequent training
purposes. Table 2 displays the various contexts and quantities of intent within
each. For this research, we created 75 Arabic intents. Figure 9 illustrates the
distribution of Tayseer’s intents by context.

Figure 9. The distribution of chatbot intents by context.

Table 2. Description of intents.

Context Description
Greeting Respond to various forms of greetings from users.
College admission and registration Handle queries related to the college admissions and registration process.
Trainee services Address queries or requests related to services provided to trainees.

Initiatives
Responding to user inquiries about initiatives for trainee career guidance and
college goal achievement.

Activity participation and volunteering Responding to user inquiries or interests in extracurricular activities and vol-
unteering opportunities.

Figure 9. The distribution of chatbot intents by context.

Table 3. List of examples of utter.

Ultter Name

1 utter_greet
2 utter_goodbye
3 utter_bot_challenge
4 utter_user_ask_about_admission
5 utter_user_ask_about_major_change
6 utter_user_ask_about_transfer_college
7 utter_user_ask_about_handicapped
8 utter_user_ask_about_admission_comparison
9 utter_user_wants_to_check_marks

10 utter_user_ask_about_re-enrollment
11 utter_user_ask_about_conditions_changing_specialization
12 utter_user_ask_about_studying_in_TVTC
13 utter_user_ask_about_rewarding_for_Student_withdrawn_deferred
14 utter_user_ask_about_instances_of_nonpayment_rewarding
15 utter_user_ask_about_training_record
16 utter_user_college_disciplines
17 utter_user_Training_plans_for_specializations
18 utter_user_Training_Guide
19 utter_user_Trainee’s_Guide
20 utter_user_Training_calendar
21 utter_user_Complaints_Suggestions
22 utter_user_activities_volunteering
23 utter_user_uniform
24 utter_user_functional_coordination

E. Dialogue Management:

• The dialogue management component of the chatbot was implemented using the
RASA framework.

• The conversation flow was defined by mapping intents to appropriate responses
and actions using rules and stories.

• Rules specify the triggering intents and the corresponding actions or responses to
be executed.

• Stories represent more extended conversation flows and allow for more complex
interactions, enabling the chatbot to handle multi-turn dialogues.

Appl. Sci. 2024, 14, 2547 15 of 28

• The dialogue management component enables the chatbot to maintain context,
handle user input, and generate appropriate responses based on the identified
intents and entities, as shown in Figure 10.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 29

• Stories represent more extended conversation flows and allow for more complex
interactions, enabling the chatbot to handle multi-turn dialogues.

• The dialogue management component enables the chatbot to maintain context,
handle user input, and generate appropriate responses based on the identified
intents and entities, as shown in Figure 10.

Figure 10. Intent-based response generation.

F. Response Generation:
• Generating accurate and coherent responses in Arabic was a crucial aspect of the

chatbot’s development.
• For each intent, predefined response templates were created to provide relevant

information to users.
• These templates were designed to include specific details based on the identified

intent, such as college admission requirements, email formats, and transfer pro-
cedures.

• The response templates were written in Arabic, considering proper grammar,
gender agreement, and idiomatic expressions to ensure natural and fluent re-
sponses.

• The response generation process involved retrieving the appropriate template
based on the user’s intent and filling in any necessary dynamic information.

G. Integration and Deployment:
• Chatbot development: In this study, we explored the implementation of a web-

based chatbot, “Tayseer”, designed to enhance educational support through 24/7
accessibility, self-service convenience, interactive learning, and privacy. The
chatbot was developed using the RASA open-source platform, enabling connec-
tions with popular messaging platforms and allowing for website integration.

• Front-end development: The front-end user interface of “Tayseer” was built us-
ing Next.js, a robust framework that ensures a highly responsive and user-
friendly experience. Next.js was chosen for its ability to create dynamic and in-
teractive user interfaces, which is crucial for engaging users and providing a
seamless chatbot experience.

• Back-end development: The back end of “Tayseer” was developed using the
Nest.js framework. Nest.js was selected for its robustness and ease of integration
with the front end. It facilitates the management of critical functions such as user
authentication and feedback processing, ensuring smooth communication be-
tween the chatbot system’s front-end and back-end components.

• Deployment environment setup: To deploy “Tayseer”, we utilized Microsoft Az-
ure as the cloud platform. Azure provides a scalable and reliable production en-
vironment for hosting the chatbot. The deployment process involved setting up
the necessary virtual machine resources; configuring Nginx as a high-perfor-
mance proxy server; and deploying the RASA NLU, RASA Core, and custom
action components.

• Front-end deployment: The web-based front-end interface, built with Next.js,
was deployed separately on Vercel. Vercel is a cloud platform that specializes in

Figure 10. Intent-based response generation.

F. Response Generation:

• Generating accurate and coherent responses in Arabic was a crucial aspect of the
chatbot’s development.

• For each intent, predefined response templates were created to provide relevant
information to users.

• These templates were designed to include specific details based on the identi-
fied intent, such as college admission requirements, email formats, and transfer
procedures.

• The response templates were written in Arabic, considering proper grammar, gen-
der agreement, and idiomatic expressions to ensure natural and fluent responses.

• The response generation process involved retrieving the appropriate template
based on the user’s intent and filling in any necessary dynamic information.

G. Integration and Deployment:

• Chatbot development: In this study, we explored the implementation of a web-
based chatbot, “Tayseer”, designed to enhance educational support through 24/7
accessibility, self-service convenience, interactive learning, and privacy. The chat-
bot was developed using the RASA open-source platform, enabling connections
with popular messaging platforms and allowing for website integration.

• Front-end development: The front-end user interface of “Tayseer” was built using
Next.js, a robust framework that ensures a highly responsive and user-friendly
experience. Next.js was chosen for its ability to create dynamic and interactive
user interfaces, which is crucial for engaging users and providing a seamless
chatbot experience.

• Back-end development: The back end of “Tayseer” was developed using the
Nest.js framework. Nest.js was selected for its robustness and ease of integration
with the front end. It facilitates the management of critical functions such as
user authentication and feedback processing, ensuring smooth communication
between the chatbot system’s front-end and back-end components.

• Deployment environment setup: To deploy “Tayseer”, we utilized Microsoft Azure
as the cloud platform. Azure provides a scalable and reliable production envi-
ronment for hosting the chatbot. The deployment process involved setting up the
necessary virtual machine resources; configuring Nginx as a high-performance proxy
server; and deploying the RASA NLU, RASA Core, and custom action components.

• Front-end deployment: The web-based front-end interface, built with Next.js,
was deployed separately on Vercel. Vercel is a cloud platform that specializes
in hosting and deploying front-end applications. By deploying the front end on
Vercel, we ensure fast and efficient delivery of the user interface to end users.

• Back-end deployment: The Nest.js back-end code was uploaded to a DigitalOcean
Droplet. DigitalOcean is a cloud infrastructure provider that offers scalable and

Appl. Sci. 2024, 14, 2547 16 of 28

secure hosting solutions. Hosting the back-end on a DigitalOcean Droplet ensures
reliable and efficient processing of user requests and interactions with the chatbot.

• System integration: The final deployment step involved tying the front-end
and back-end systems together. This integration ensures the user interface (UI)
seamlessly communicates with the back-end components, enabling a unified and
effective chatbot platform. Figure 11 depicts the Tayseer system architecture,
illustrating the integration of various components.

• User authentication: To enhance the user experience, a user authentication process
utilizing an SQL database was developed. User-specific information was stored
and retrieved to enable tailored responses based on individual user profiles.
Custom actions were developed for efficient data retrieval from the database,
facilitating personalized interactions. Figure 12 illustrates the user registration
process and the flow of user authentication.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 29

hosting and deploying front-end applications. By deploying the front end on
Vercel, we ensure fast and efficient delivery of the user interface to end users.

• Back-end deployment: The Nest.js back-end code was uploaded to a Digital-
Ocean Droplet. DigitalOcean is a cloud infrastructure provider that offers scala-
ble and secure hosting solutions. Hosting the back-end on a DigitalOcean Drop-
let ensures reliable and efficient processing of user requests and interactions
with the chatbot.

• System integration: The final deployment step involved tying the front-end and
back-end systems together. This integration ensures the user interface (UI)
seamlessly communicates with the back-end components, enabling a unified
and effective chatbot platform. Figure 11 depicts the Tayseer system architec-
ture, illustrating the integration of various components.

• User authentication: To enhance the user experience, a user authentication pro-
cess utilizing an SQL database was developed. User-specific information was
stored and retrieved to enable tailored responses based on individual user pro-
files. Custom actions were developed for efficient data retrieval from the data-
base, facilitating personalized interactions. Figure 12 illustrates the user regis-
tration process and the flow of user authentication.

Figure 11. Tayseer system architecture.

Figure 11. Tayseer system architecture.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 29

hosting and deploying front-end applications. By deploying the front end on
Vercel, we ensure fast and efficient delivery of the user interface to end users.

• Back-end deployment: The Nest.js back-end code was uploaded to a Digital-
Ocean Droplet. DigitalOcean is a cloud infrastructure provider that offers scala-
ble and secure hosting solutions. Hosting the back-end on a DigitalOcean Drop-
let ensures reliable and efficient processing of user requests and interactions
with the chatbot.

• System integration: The final deployment step involved tying the front-end and
back-end systems together. This integration ensures the user interface (UI)
seamlessly communicates with the back-end components, enabling a unified
and effective chatbot platform. Figure 11 depicts the Tayseer system architec-
ture, illustrating the integration of various components.

• User authentication: To enhance the user experience, a user authentication pro-
cess utilizing an SQL database was developed. User-specific information was
stored and retrieved to enable tailored responses based on individual user pro-
files. Custom actions were developed for efficient data retrieval from the data-
base, facilitating personalized interactions. Figure 12 illustrates the user regis-
tration process and the flow of user authentication.

Figure 11. Tayseer system architecture.

Figure 12. Registering a new user profile.

Appl. Sci. 2024, 14, 2547 17 of 28

4. Experiment
4.1. Training and Validation

In this work, we experimented with a dataset with 75 intents, inquiring about main
issues such as college admission and registration, trainee services, initiatives, guidance
and counseling, rewards and financial aid, faculty staff contact information, and trainee
conduct regulations. The dataset consisted of approximately 265 examples.

If you want to ask about the conditions for changing specialization at the Technical Col-
lege for Girls in Najran, you can send the message “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 29

Figure 12. Registering a new user profile.

4. Experiment
4.1. Training and Validation

In this work, we experimented with a dataset with 75 intents, inquiring about main
issues such as college admission and registration, trainee services, initiatives, guidance
and counseling, rewards and financial aid, faculty staff contact information, and trainee
conduct regulations. The dataset consisted of approximately 265 examples.

If you want to ask about the conditions for changing specialization at the Technical
College for Girls in Najran, you can send the message “ماهي شروط تغيير التخصص” (“What
are the conditions for changing specialization?”). RASA NLU will then extract all the nec-
essary information and identify the user’s intent as “user_ask_about_conditions_chang-
ing_specialization”. This enables Tayseer to provide an accurate and relevant response to
the user’s query.

We created a global 80% train and 20% test split from the nlu.yml file to ensure ro-
bustness and reliability. This split was performed to evaluate the model’s performance on
unseen data and assess its generalization ability. Additionally, we applied k-fold cross-
validation to the training data to obtain a more comprehensive assessment of the model’s
performance.

The training data were divided into five equal-sized groups for k-fold cross-valida-
tion. In each iteration, one-fold was used as the testing set, while the remaining folds were
used for training. This process was repeated until each of the five folds had been used for
testing. Although computationally expensive, this cross-validation strategy provides an
adequate evaluation of the model’s performance, especially when the dataset is not exces-
sively large.

To handle the scenario where the conversation can start with any intent, we added
each story to the stories.yml file with a single intent mentioned in the domain.yml file.
This ensured that Tayseer could respond appropriately, regardless of the user’s initial in-
tent. The pipeline and policies for the chatbot were defined in the config.yml file.

4.2. User Testing
A user testing phase assessed the chatbot’s usability and effectiveness in a real-world

scenario. College students and staff members were invited to interact with the chatbot and
provide feedback. The objectives of user testing were to evaluate the chatbot’s ability to
understand user queries, provide relevant and accurate information, and enhance user
satisfaction.

Users were given specific tasks to perform, such as asking about admission require-
ments, requesting information about email formats, or inquiring about major change pro-
cedures. Feedback was collected through surveys and interviews, capturing users’ expe-
riences, opinions, and suggestions for improvement.

4.3. Sentiment Analysis
After conducting user testing, sentiment analysis was performed on the collected

user feedback to gain insights into users’ sentiments and opinions regarding their inter-
action with the chatbot. The sentiment analysis process involved the following steps:
A. Data collection: The user feedback data, including survey responses and interview

transcripts, were collected and preprocessed for analysis. The relevant feedback
questions and responses were extracted and organized in a structured format.

B. Data preprocessing: The feedback data underwent preprocessing to prepare for sen-
timent analysis. This involved cleaning the text, removing any irrelevant characters
or information, and handling Arabic-specific challenges such as discretization and
morphological variations.

” (“What are the
conditions for changing specialization?”). RASA NLU will then extract all the necessary infor-
mation and identify the user’s intent as “user_ask_about_conditions_changing_specialization”.
This enables Tayseer to provide an accurate and relevant response to the user’s query.

We created a global 80% train and 20% test split from the nlu.yml file to ensure
robustness and reliability. This split was performed to evaluate the model’s performance
on unseen data and assess its generalization ability. Additionally, we applied k-fold
cross-validation to the training data to obtain a more comprehensive assessment of the
model’s performance.

The training data were divided into five equal-sized groups for k-fold cross-validation.
In each iteration, one-fold was used as the testing set, while the remaining folds were used
for training. This process was repeated until each of the five folds had been used for testing.
Although computationally expensive, this cross-validation strategy provides an adequate
evaluation of the model’s performance, especially when the dataset is not excessively large.

To handle the scenario where the conversation can start with any intent, we added
each story to the stories.yml file with a single intent mentioned in the domain.yml file. This
ensured that Tayseer could respond appropriately, regardless of the user’s initial intent.
The pipeline and policies for the chatbot were defined in the config.yml file.

4.2. User Testing

A user testing phase assessed the chatbot’s usability and effectiveness in a real-world
scenario. College students and staff members were invited to interact with the chatbot
and provide feedback. The objectives of user testing were to evaluate the chatbot’s ability
to understand user queries, provide relevant and accurate information, and enhance
user satisfaction.

Users were given specific tasks to perform, such as asking about admission require-
ments, requesting information about email formats, or inquiring about major change
procedures. Feedback was collected through surveys and interviews, capturing users’
experiences, opinions, and suggestions for improvement.

4.3. Sentiment Analysis

After conducting user testing, sentiment analysis was performed on the collected user
feedback to gain insights into users’ sentiments and opinions regarding their interaction
with the chatbot. The sentiment analysis process involved the following steps:

A. Data collection: The user feedback data, including survey responses and interview
transcripts, were collected and preprocessed for analysis. The relevant feedback
questions and responses were extracted and organized in a structured format.

B. Data preprocessing: The feedback data underwent preprocessing to prepare for sen-
timent analysis. This involved cleaning the text, removing any irrelevant characters
or information, and handling Arabic-specific challenges such as discretization and
morphological variations.

C. Sentiment lexicon: A sentiment lexicon specific to Arabic was utilized to assign senti-
ment scores to words and phrases. The lexicon contained a list of words along with
their associated sentiment scores, ranging from positive to negative.

D. Sentiment scoring: Each feedback response was tokenized, and the sentiment score
for each word was calculated using the sentiment lexicon. The overall sentiment score

Appl. Sci. 2024, 14, 2547 18 of 28

for each response was determined by aggregating the sentiment scores of individ-
ual words.

E. Sentiment classification: Based on the sentiment scores, each feedback response was
classified as positive, negative, or neutral. Responses with scores above a certain
threshold were considered positive, those below a threshold were considered harmful,
and those within a specific range were considered neutral.

F. Analysis and visualization: The sentiment analysis results were analyzed to identify
patterns, trends, and insights regarding users’ sentiments towards the chatbot. The
distribution of positive, negative, and neutral sentiments was visualized using charts
and graphs to provide a clear overview of user opinions.

By conducting sentiment analysis on the user feedback, valuable insights were gained
into the users’ perceptions and experiences with the chatbot. The sentiment analysis results
complemented the user testing findings, providing a comprehensive understanding of user
satisfaction and areas for improvement.

5. Evaluation and Discussion

We employed a comprehensive evaluation methodology to ensure Tayseer’s effi-
cacy and efficiency. This methodology was designed to assess the chatbot’s performance
across multiple dimensions, ensuring that it understands user inputs accurately, responds
promptly, and can scale to handle many queries. The conversational agent was evaluated on
several key performance metrics to assess its natural language understanding capabilities
and scalability.

5.1. Accuracy

To calculate the accuracy of our chatbot, we evaluated the two main components of
every chatbot using multiple evaluation metrics:

• NLU model evaluation: The chatbot’s natural language understanding (NLU) com-
ponent was rigorously tested using a held-out test set. This test set comprised user
inputs that the model had not seen previously during training, simulating real-world
interactions. The model’s predictions on this test set were then compared with the
actual intents and entities to determine their accuracy.

• Dialogue model evaluation: The dialogue management component was evaluated
using test stories. These stories represent potential user–bot interactions, and the
chatbot’s responses in these stories were compared to the expected actions to determine
their accuracy in managing dialogues.

To calculate the accuracy of the NLU and dialogue models, we used multiple eval-
uation metrics: confusion matrix, precision, recall, F1 score, and support. By leveraging
these metrics, we were able to gain a holistic understanding of our chatbot’s performance,
pinpointing areas of strength and potential improvement. Figure 13 shows the results of
the intent confusion matrix. This table shows the performance of the classification model.
It compares actual and predicted classifications. Our chatbot shows how often each action
or intent was correctly predicted and how often an incorrect action or intent was predicted.

The histogram in Figure 14 shows the distribution of confidence scores for correct
and incorrect intent predictions made using the conversational AI model. The vertical axis
displays the confidence probability, ranging from 0 to 1. The horizontal axis represents
the number of predictions within each confidence interval. Conversely, a notable number
of incorrect predictions (red bar) align with a confidence level just below the midpoint
of 0.5, indicating a higher likelihood of error as the model’s confidence diminishes. This
distribution illustrates the model’s ability to align prediction confidence with accuracy, a
desirable characteristic indicating effective model calibration. Figure 15 shows the results
of the intent error.

Appl. Sci. 2024, 14, 2547 19 of 28Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 29

Figure 13. Intent confusion matrix.

The histogram in Figure 14 shows the distribution of confidence scores for correct
and incorrect intent predictions made using the conversational AI model. The vertical axis
displays the confidence probability, ranging from 0 to 1. The horizontal axis represents
the number of predictions within each confidence interval. Conversely, a notable number
of incorrect predictions (red bar) align with a confidence level just below the midpoint of
0.5, indicating a higher likelihood of error as the model’s confidence diminishes. This dis-
tribution illustrates the model’s ability to align prediction confidence with accuracy, a

Figure 13. Intent confusion matrix.

Appl. Sci. 2024, 14, 2547 20 of 28

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 29

desirable characteristic indicating effective model calibration. Figure 15 shows the results
of the intent error.

Figure 14. Intent prediction confidence distribution.

Figure 15. Intent_Error.json.

The sentence “ التخصصماهي شروط تغيير ” is meant to go on the user_ask_major_change
intent but is predicted to go on the user_ask_about_conditions_changing_specialization
intent. This will affect the confidence level of the intent prediction, resulting in responses
that do not align with the inquirer’s intended question. Table 4 shows the test result value
of F1, recall, support, and precision score of the Tayseer intent.

Table 4. Test results.

Intent
Result

Precision Recall F1 Score Support
Access_links 1.0 1.0 1.0 6
greet 1.0 1.0 1.0 12
user_ask_about_rewarding_for_Student_withdrawn_defer
red 1.0 1.0 1.0 6

user_ask_about_re-enrollment 1.0 1.0 1.0 3
user_ask_about_admission 1.0 1.0 1.0 5
user_ask_about_rewarding_students_data 1.0 1.0 1.0 4
user_ask_major_change 1.0 0.8 0.888888888888889 5

Figure 14. Intent prediction confidence distribution.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 29

desirable characteristic indicating effective model calibration. Figure 15 shows the results
of the intent error.

Figure 14. Intent prediction confidence distribution.

Figure 15. Intent_Error.json.

The sentence “ التخصصماهي شروط تغيير ” is meant to go on the user_ask_major_change
intent but is predicted to go on the user_ask_about_conditions_changing_specialization
intent. This will affect the confidence level of the intent prediction, resulting in responses
that do not align with the inquirer’s intended question. Table 4 shows the test result value
of F1, recall, support, and precision score of the Tayseer intent.

Table 4. Test results.

Intent
Result

Precision Recall F1 Score Support
Access_links 1.0 1.0 1.0 6
greet 1.0 1.0 1.0 12
user_ask_about_rewarding_for_Student_withdrawn_defer
red 1.0 1.0 1.0 6

user_ask_about_re-enrollment 1.0 1.0 1.0 3
user_ask_about_admission 1.0 1.0 1.0 5
user_ask_about_rewarding_students_data 1.0 1.0 1.0 4
user_ask_major_change 1.0 0.8 0.888888888888889 5

Figure 15. Intent_Error.json.

The sentence “

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 29

desirable characteristic indicating effective model calibration. Figure 15 shows the results
of the intent error.

Figure 14. Intent prediction confidence distribution.

Figure 15. Intent_Error.json.

The sentence “ التخصصماهي شروط تغيير ” is meant to go on the user_ask_major_change
intent but is predicted to go on the user_ask_about_conditions_changing_specialization
intent. This will affect the confidence level of the intent prediction, resulting in responses
that do not align with the inquirer’s intended question. Table 4 shows the test result value
of F1, recall, support, and precision score of the Tayseer intent.

Table 4. Test results.

Intent
Result

Precision Recall F1 Score Support
Access_links 1.0 1.0 1.0 6
greet 1.0 1.0 1.0 12
user_ask_about_rewarding_for_Student_withdrawn_defer
red 1.0 1.0 1.0 6

user_ask_about_re-enrollment 1.0 1.0 1.0 3
user_ask_about_admission 1.0 1.0 1.0 5
user_ask_about_rewarding_students_data 1.0 1.0 1.0 4
user_ask_major_change 1.0 0.8 0.888888888888889 5

” is meant to go on the user_ask_major_change
intent but is predicted to go on the user_ask_about_conditions_changing_specialization
intent. This will affect the confidence level of the intent prediction, resulting in responses
that do not align with the inquirer’s intended question. Table 4 shows the test result value
of F1, recall, support, and precision score of the Tayseer intent.

The F1 score measures the test accuracy by combining precision and recall metrics,
with maximum and minimum values of 1.0 and 0, respectively. Testing of the developed
chatbot model revealed near-perfect F1 scores of 1.0 for most intent classes. However, two
intents, user_ask_major_change and user_ask_about_conditions_changing_specialization,
exhibited suboptimal F1 scores below 1.0. As illustrated in Table 4, the reduced F1 scores for
these minority classes stem from sporadic errors in the model predictions. The confusion
between these intents with similar semantic meanings contributed to diminished precision
and recall. While most intents were classified with high accuracy, optimization of the
model could potentially improve identification of the more easily confused intents, thereby
increasing their F1 scores towards the optimal value of 1.0. Targeted augmentation of the
training data for those specific intents may help enhance the precision and recall of the
model for those classes. Overall, the F1 metric highlights strengths in broad classification
accuracy while revealing specific areas for improvement in minority intents that could
benefit from focused refinement.

Appl. Sci. 2024, 14, 2547 21 of 28

Table 4. Test results.

Intent
Result

Precision Recall F1 Score Support

Access_links 1.0 1.0 1.0 6
greet 1.0 1.0 1.0 12
user_ask_about_rewarding_for_Student_withdrawn_deferred 1.0 1.0 1.0 6
user_ask_about_re-enrollment 1.0 1.0 1.0 3
user_ask_about_admission 1.0 1.0 1.0 5
user_ask_about_rewarding_students_data 1.0 1.0 1.0 4
user_ask_major_change 1.0 0.8 0.888888888888889 5
user_ask_about_rayat_problems 1.0 1.0 1.0 4
mood_great 1.0 1.0 1.0 5
user_ask_about_admission_comparison 1.0 1.0 1.0 3
uniform 1.0 1.0 1.0 3
activities_volunteering 1.0 1.0 1.0 3
Complaints_Suggestions 1.0 1.0 1.0 7
bot_challenge 1.0 1.0 1.0 4
get_guide 1.0 1.0 1.0 5
user_ask_about_riyadah 1.0 1.0 1.0 4
mood_unhappy 1.0 1.0 1.0 6
user_ask_about_submit_application_rayat 1.0 1.0 1.0 5
get_phone_number 1.0 1.0 1.0 5
user_ask_about_rayat_username_mobile_password 1.0 1.0 1.0 8
get_name 1.0 1.0 1.0 6
deny 1.0 1.0 1.0 5
user_ask_about_email 1.0 1.0 1.0 5
user_ask_about_transfer_college 1.0 1.0 1.0 5
get_level” 1.0 1.0 1.0 3
functional_coordination 1.0 1.0 1.0 4
Training_plans_for_specializations 1.0 1.0 1.0 6
goodbye 1.0 1.0 1.0 6
college_disciplines 1.0 1.0 1.0 4
Rafid_Initiative 1.0 1.0 1.0 2
Training_Guide 1.0 1.0 1.0 4
user_ask_about_instances_of_nonpayment_rewarding 1.0 1.0 1.0 3
user_ask_about_cancel_application_rayat 1.0 1.0 1.0 5
get_education_number 1.0 1.0 1.0 4
user_ask_about_training_record 1.0 1.0 1.0 4
get_email 1.0 1.0 1.0 3
Trainee’s_Guide 1.0 1.0 1.0 4
get_class 1.0 1.0 1.0 3
user_wants_to_check_marks 1.0 1.0 1.0 4
Directory_of_Special 1.0 1.0 1.0 3
user_ask_about_conditions_changing_specialization 0.8333333333333334 1.0 0.9090909090909091 5
Training_calendar 1.0 1.0 1.0 8
affirm 1.0 1.0 1.0 5
user_ask_about_handicapped 1.0 1.0 1.0 10
user_request_trainer_name 1.0 1.0 1.0 12
Basic_Information_for_New_Students 1.0 1.0 1.0 6
user_ask_about_register_schedule_continuing_students 1.0 1.0 1.0 14
user_ask_about_course_equivalence 1.0 1.0 1.0 7
user_ask_about_add_and_drop 1.0 1.0 1.0 4
user_ask_about_studying_in_TVTC 1.0 1.0 1.0 8

5.2. Response Time

Chatbot responsiveness is crucial for user satisfaction. To evaluate this, we logged
the timestamp when a user sent a message and the bot responded. The difference be-
tween these timestamps provided the response time, allowing us to assess the chatbot’s
speed in generating and delivering responses. The response times for intents averaged

Appl. Sci. 2024, 14, 2547 22 of 28

under 1 s (967 ms), providing reasonably fast interactions, as shown in Figure 16. Any
responses above 1 s, such as for user_ask_about_course_equivalence, present optimization
opportunities.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 22 of 29

confused intents, thereby increasing their F1 scores towards the optimal value of 1.0. Targeted aug-
mentation of the training data for those specific intents may help enhance the precision and recall
of the model for those classes. Overall, the F1 metric highlights strengths in broad classification
accuracy while revealing specific areas for improvement in minority intents that could benefit from
focused refinement.

5.2. Response Time

Chatbot responsiveness is crucial for user satisfaction. To evaluate this, we logged
the timestamp when a user sent a message and the bot responded. The difference between
these timestamps provided the response time, allowing us to assess the chatbot’s speed in
generating and delivering responses. The response times for intents averaged under 1 s
(967 ms), providing reasonably fast interactions, as shown in Figure 16. Any responses
above 1 s, such as for user_ask_about_course_equivalence, present optimization opportu-
nities.

Figure 16. Response time for different intents.

5.3. Scalability
Scalability is a vital metric in chatbot solutions. It determines the chatbot’s ability to

handle many simultaneous user queries without performance degradation or increased
response time. Scalability tests involved subjecting the chatbot to a high volume of user
queries in a short timeframe and observing its performance. Testing up to six concurrent
users showed minor increases in the average response times from 981 to 1023 ms, as
shown in Figure 17. This linear scalability indicates the potential for maintaining perfor-
mance with higher request volumes.

Figure 16. Response time for different intents.

5.3. Scalability

Scalability is a vital metric in chatbot solutions. It determines the chatbot’s ability to
handle many simultaneous user queries without performance degradation or increased
response time. Scalability tests involved subjecting the chatbot to a high volume of user
queries in a short timeframe and observing its performance. Testing up to six concurrent
users showed minor increases in the average response times from 981 to 1023 ms, as shown
in Figure 17. This linear scalability indicates the potential for maintaining performance
with higher request volumes.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 23 of 29

Figure 17. Average response time vs. number of users.

5.4. User Feedback and Sentiment Analysis
A. Collecting User Feedback

Our system integrates a feedback mechanism post-interaction to ascertain the chat-
bot’s effectiveness and enhance user experience. At the conclusion of their chat sessions,
users were invited to rate their experiences or offer comments and suggestions. This feed-
back was then cataloged within an SQL database for subsequent analysis and enhance-
ment.
B. Sentiment Analysis Procedure

We employed sentiment analysis to extract insights into user satisfaction and discern
general sentiments from the feedback. This involved utilizing a sentiment analysis model
to classify feedback sentiment as positive, negative, or neutral, aiding in identifying areas
for improvement and directing future chatbot enhancements.
C. Data Preprocessing Steps

Data preprocessing involved several critical steps, initiated by importing feedback
data into a panda DataFrame for the initial analysis. Subsequently, entries marked as
“None” in specific columns were excluded to ensure the integrity of the data. The process
then focused on refining the dataset for sentiment analysis by filtering out columns, spe-
cifically isolating those related to the “rate”, and textual responses ranging from “an-
swer1” to “answer19.
D. Sentiment Analysis Model Development

Developing the sentiment analysis model involved creating a lexicon-based ap-
proach that utilized a compilation of positive and negative terms in both Arabic and Eng-
lish, with each term assigned a specific sentiment score. This model operated through a
series of steps. Initially, feedback texts underwent tokenization, breaking down the con-
tent into individual terms for detailed analysis. Subsequently, each term received a senti-
ment score based on the lexicon, with the collective scores of the terms used to ascertain
the overall sentiment of the feedback. Finally, aggregate scores were categorized into three
sentiment classes.
• Positive (score > 0)
• Neutral (score = 0)
• Negative (score < 0)
E. Sentiment Analysis of User Feedback Results

The analysis of the sentiment results was structured to provide a comprehensive
overview of the feedback sentiments, as shown in Figure 13. We began by calculating the
frequency of positive, negative, and neutral sentiments for each item under review. Fol-
lowing this, an overall sentiment distribution analysis was carried out to understand the
cumulative sentiment trends across all the received feedback. Specific to the nature of the
questions, the analysis included distribution analyses for responses in the “rate” column,
categorizing them into classifications such as “Good” and “Normal”. The percentages of

Figure 17. Average response time vs. number of users.

5.4. User Feedback and Sentiment Analysis

A. Collecting User Feedback

Our system integrates a feedback mechanism post-interaction to ascertain the chatbot’s
effectiveness and enhance user experience. At the conclusion of their chat sessions, users

Appl. Sci. 2024, 14, 2547 23 of 28

were invited to rate their experiences or offer comments and suggestions. This feedback
was then cataloged within an SQL database for subsequent analysis and enhancement.

B. Sentiment Analysis Procedure

We employed sentiment analysis to extract insights into user satisfaction and discern
general sentiments from the feedback. This involved utilizing a sentiment analysis model
to classify feedback sentiment as positive, negative, or neutral, aiding in identifying areas
for improvement and directing future chatbot enhancements.

C. Data Preprocessing Steps

Data preprocessing involved several critical steps, initiated by importing feedback data
into a panda DataFrame for the initial analysis. Subsequently, entries marked as “None” in
specific columns were excluded to ensure the integrity of the data. The process then focused
on refining the dataset for sentiment analysis by filtering out columns, specifically isolating
those related to the “rate”, and textual responses ranging from “answer1” to “answer19”.

D. Sentiment Analysis Model Development

Developing the sentiment analysis model involved creating a lexicon-based approach
that utilized a compilation of positive and negative terms in both Arabic and English, with
each term assigned a specific sentiment score. This model operated through a series of steps.
Initially, feedback texts underwent tokenization, breaking down the content into individual
terms for detailed analysis. Subsequently, each term received a sentiment score based on
the lexicon, with the collective scores of the terms used to ascertain the overall sentiment of
the feedback. Finally, aggregate scores were categorized into three sentiment classes.

• Positive (score > 0)
• Neutral (score = 0)
• Negative (score < 0)

E. Sentiment Analysis of User Feedback Results

The analysis of the sentiment results was structured to provide a comprehensive
overview of the feedback sentiments, as shown in Figure 13. We began by calculating
the frequency of positive, negative, and neutral sentiments for each item under review.
Following this, an overall sentiment distribution analysis was carried out to understand the
cumulative sentiment trends across all the received feedback. Specific to the nature of the
questions, the analysis included distribution analyses for responses in the “rate” column,
categorizing them into classifications such as “Good” and “Normal”. The percentages of
“Yes/No” responses were computed for the binary questions. In addition, for the open-
ended questions, prevalent responses were identified to gauge common themes or opinions.
The findings are summarized in Figures 18 and 19, showing the sentiment analysis results
and overall sentiment distribution across the feedback dataset.

The evaluation of 210 users’ feedback following their interaction with the chatbot
prototype revealed favorable outcomes. Among the 1460 sentiment expressions identified
in all the questions, 1206 were positive, 184 were negative, and 70 were neutral. These
findings suggest that most participants had a favorable encounter when engaging with the
chatbot.

The specific characteristic emphasized was the chatbot’s ability to provide clear and
easily comprehensible responses, which received a favorable sentiment score of 68.

• Prompt and efficient response times to inquiries were recorded (69 good attitudes);
• Seamless and effortless engagement in interactive chats with the chatbot resulted in a

favorable sentiment score of 70.

Areas requiring enhancement encompassed the following: encountering specific chal-
lenges in engaging with the chatbot resulted in 48 instances of negative sentiment responses.
Moreover, the sentiment on the extent of comprehensiveness in the FAQ subjects and alter-
natives varied, with only 36 instances of positive sentiment compared to 32 instances of

Appl. Sci. 2024, 14, 2547 24 of 28

negative sentiment. Overall, the sentiment and reaction towards the customized academic
support chatbot concept and existing prototype were pretty favorable, with particular areas
for enhancing the user experience.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 24 of 29

“Yes/No” responses were computed for the binary questions. In addition, for the open-
ended questions, prevalent responses were identified to gauge common themes or opin-
ions. The findings are summarized in Figures 18 and 19, showing the sentiment analysis
results and overall sentiment distribution across the feedback dataset.

Figure 18. Sentiment analysis results.

Figure 19. Overall sentiment distribution.

The evaluation of 210 users’ feedback following their interaction with the chatbot
prototype revealed favorable outcomes. Among the 1460 sentiment expressions identified
in all the questions, 1206 were positive, 184 were negative, and 70 were neutral. These
findings suggest that most participants had a favorable encounter when engaging with
the chatbot.

The specific characteristic emphasized was the chatbot’s ability to provide clear and
easily comprehensible responses, which received a favorable sentiment score of 68.
• Prompt and efficient response times to inquiries were recorded (69 good attitudes);
• Seamless and effortless engagement in interactive chats with the chatbot resulted in

a favorable sentiment score of 70.
Areas requiring enhancement encompassed the following: encountering specific

challenges in engaging with the chatbot resulted in 48 instances of negative sentiment
responses. Moreover, the sentiment on the extent of comprehensiveness in the FAQ sub-
jects and alternatives varied, with only 36 instances of positive sentiment compared to 32
instances of negative sentiment. Overall, the sentiment and reaction towards the custom-
ized academic support chatbot concept and existing prototype were pretty favorable, with
particular areas for enhancing the user experience.

Figure 18. Sentiment analysis results.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 24 of 29

“Yes/No” responses were computed for the binary questions. In addition, for the open-
ended questions, prevalent responses were identified to gauge common themes or opin-
ions. The findings are summarized in Figures 18 and 19, showing the sentiment analysis
results and overall sentiment distribution across the feedback dataset.

Figure 18. Sentiment analysis results.

Figure 19. Overall sentiment distribution.

The evaluation of 210 users’ feedback following their interaction with the chatbot
prototype revealed favorable outcomes. Among the 1460 sentiment expressions identified
in all the questions, 1206 were positive, 184 were negative, and 70 were neutral. These
findings suggest that most participants had a favorable encounter when engaging with
the chatbot.

The specific characteristic emphasized was the chatbot’s ability to provide clear and
easily comprehensible responses, which received a favorable sentiment score of 68.
• Prompt and efficient response times to inquiries were recorded (69 good attitudes);
• Seamless and effortless engagement in interactive chats with the chatbot resulted in

a favorable sentiment score of 70.
Areas requiring enhancement encompassed the following: encountering specific

challenges in engaging with the chatbot resulted in 48 instances of negative sentiment
responses. Moreover, the sentiment on the extent of comprehensiveness in the FAQ sub-
jects and alternatives varied, with only 36 instances of positive sentiment compared to 32
instances of negative sentiment. Overall, the sentiment and reaction towards the custom-
ized academic support chatbot concept and existing prototype were pretty favorable, with
particular areas for enhancing the user experience.

Figure 19. Overall sentiment distribution.

To summarize the evaluation metrics and results, conversational AI underwent an
evaluation to assess its proficiency in comprehending natural language by employing a
sense test.

• The confusion matrix for intent classification and the distribution of prediction confi-
dence demonstrated robust overall performance, albeit with scope for enhancement in
differentiating between particular comparable intentions.

• The F1 score for the majority of intentions was high, approaching 1.0, indicating a
robust level of precision and recall. However, two semantically similar intentions
exhibited lower F1 scores, suggesting occasional confusion errors. Additional training
data augmentation can enhance the optimization of these less common intentions.

• The average response time for user interactions was 967 ms, which is considered
reasonably fast. However, certain specific intents, such as course equivalency, had
longer response times, indicating areas that could be optimized.

• Scalability testing involved up to six concurrent users and demonstrated satisfactory
performance, with only slight increments in response times from 981 to 1023 ms. This
suggests an ability to manage large quantities without a decrease in performance.

• Positive user sentiment expressions were predominant, accounting for 83% of interac-
tions. The main advantages were the respondents’ clear and comprehensible answers
as well as seamless interaction.

Appl. Sci. 2024, 14, 2547 25 of 28

• Areas for improvement included difficulties faced with the chatbot and limitations in
the range of FAQ topics addressed.

• The positive user response underscores the need for more chatbot improvements to
assist students with typical academic inquiries and procedures.

Through the application of these metrics, a comprehensive evaluation of the chatbot’s
performance was achieved, illuminating its proficiency and areas that necessitate enhance-
ment. This rigorous analysis not only underscores the chatbot’s current capabilities but
also guides future refinements to augment its effectiveness in user interaction.

6. Conclusions

To summarize, this study has highlighted the vast potential of AI-driven conversa-
tional agents in efficiently managing academic student inquiries through natural language
processing of the Arabic language. With DL techniques made by the RASA framework and
implemented on the web, over 75 data intents in the dataset were handled with care by
Tayseer and used in multiple ways to be processed into an effective pipeline and a strategy
for data pre-processing.

A thorough assessment suggests that the prototype chatbot created offers precise
predictions of user intentions for most scenarios, achieving F1 scores close to 1.0 and
delivering rapid responses in less than a second. Scalability tests demonstrate the capacity to
sustain performance even when faced with increased levels of requests. Nevertheless, there
are still opportunities for improvement, specifically for minority intentions that occasionally
have misunderstandings caused by semantic resemblance. We can increase precision and
recall by focusing on improving the training data for those particular intentions. There is
also the possibility of broadening the chatbot’s knowledge base to encompass additional
academic question categories that interest pupils and enhancing the dialog system to be
more context-aware.

Significantly, user sentiment analysis indicated primarily favorable perceptions of
utilizing the chatbot for acquiring university admission and registration aid. Students
expressed positive feedback regarding the chatbot’s clear and user-friendly responses.
However, certain difficulties were faced while dealing with increasingly complex questions,
which emphasizes the necessity for continuous improvements in a particular area.

Chatbots with AI are meaningful tools for highly individualized and accessible aca-
demic support, leaving no doubt about discovering new ways to achieve a more elevated
level of experience through effective management of internal functions. Future work will
focus on refining chatbots using user feedback to better adapt to changing educational
needs. Open-ended input from students could provide specific suggestions that could
be used to determine new question subjects. Moreover, the knowledge base should be
expanded, and advanced language models should be integrated. By implementing these
enhancements, chatbots have significant potential to function as an exceptionally valuable
self-service tool, effectively reducing the time consumption for both students and college
administrators. This study highlights the importance of user-centric approaches in creating
engaging chatbot experiences that align with human preferences.

Author Contributions: The presented idea was planned by A.A., who also wrote the manuscript
with the help of K.A., who supervised the final revisions and contributed to preparing the original
draft. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This research project has received approval from the Insti-
tutional Review Board (IRB) at the Technical and Vocational Training Corporation of Saudi Arabia,
thereby guaranteeing that the study follows ethical guidelines and conforms to the necessary require-
ments for conducting research with participants.

Informed Consent Statement: Not applicable.

Appl. Sci. 2024, 14, 2547 26 of 28

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shawar, B.A.; Atwell, E. Chatbots: Are they really useful? LDV-Forum Z. Comput. Sprachtechnol. 2007, 22, 29–49.
2. Al-Madi, N.A.; Maria, K.A.; Al-Madi, M.A.; Alia, M.A.; Maria, E.A. An Intelligent Arabic Chatbot System Proposed Framework.

In Proceedings of the 2021 International Conference on Information Technology, ICIT 2021, Amman, Jordan, 14–15 July 2021;
pp. 592–597. [CrossRef]

3. Russell, S.; Nilsson, P.; Nilsson, N.J. Artificial Intelligence: A Modern Approach. Artif. Intell. 1996, 82, 369–380.
4. Adamopoulou, E.; Moussiades, L. Chatbots: History, technology, and applications. Mach. Learn. Appl. 2020, 2, 100006. [CrossRef]
5. Skjuve, M.; Brandzaeg, P.B. Measuring user experience in chatbots: An approach to interpersonal communication competence.

In Internet Science; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Springer: Cham, Switzerland, 2019; pp. 113–120. [CrossRef]

6. Crisp, G.; Baker, V.L.; Griffin, K.A.; Lunsford, L.G.; Pifer, M.J. Mentoring Undergraduate Students. ASHE High. Educ. Rep. 2017,
43, 7–103. [CrossRef]

7. Wardhana, A.K.; Ferdiana, R.; Hidayah, I. Empathetic Chatbot Enhancement and Development: A Literature Review. In
Proceedings of the AIMS 2021, International Conference on Artificial Intelligence and Mechatronics Systems, Jakarta, Indonesia,
28–30 April 2021; pp. 1–6. [CrossRef]

8. Yassin, S.M.; Khan, M.Z. SeerahBot: An Arabic Chatbot About Prophet’s Biography SeerahBot: An Arabic Chatbot About
Prophet’s Biography. Int. J. Innov. Res. Comput. Sci. Technol. 2021, 9, 89–97. [CrossRef]

9. Moshuber, L. Grätzelbot: Using a Chatbot-Based Scavenger Hunt to Support Students’ Transition to University. Master’s Thesis,
University of Vienna, Vienna, Austria, 2020.

10. Dibitonto, M.; Leszczynska, K.; Tazzi, F.; Medaglia, C.M. Chatbot in a campus environment: Design of LiSa, a virtual assistant
to help students in their university life. In Human-Computer Interaction: Interaction Technologies; Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International
Publishing: Berlin/Heidelberg, Germany, 2018; pp. 103–116. [CrossRef]

11. Agarwal, A.; Maiya, S.; Aggarwal, S. Evaluating Empathetic Chatbots in Customer Service Settings. arXiv 2021. [CrossRef]
12. Xu, A.; Liu, Z.; Guo, Y.; Sinha, V.; Akkiraju, R. A new chatbot for customer service on social media. In Proceedings of the

Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 3506–3510. [CrossRef]
13. Fadhil, A.; AbuRa’Ed, A. Ollobot—Towards a text-based Arabic health conversational agent: Evaluation and results. In

Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP, Varna, Bulgaria, 2–8
September 2019; pp. 295–303. [CrossRef]

14. Høiland, C.G.; Følstad, A.; Karahasanovic, A. Hi, Can I Help? Exploring How to Design a Mental Health Chatbot for Youths.
Hum. Technol. 2020, 16, 139–169. [CrossRef]

15. Vaidyam, A.N.; Wisniewski, H.; Halamka, J.D.; Kashavan, M.S.; Torous, J.B.; Torous, J. Chatbots and Conversational Agents in
Mental Health: A Review of the Psychiatric Landscape. Can. J. Psychiatry 2019, 64, 456–464. [CrossRef]

16. Von Wolff, R.M.; Hobert, S.; Schumann, M. How May I Help You?—State of the Art and Open Research Questions for Chatbots at
the Digital Workplace. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11
January 2019; Volume 6, pp. 95–104.

17. Agarwal, R.; Wadhwa, M. Review of State-of-the-Art Design Techniques for Chatbots. SN Comput. Sci. 2020, 1, 246. [CrossRef]
18. Kuhail, M.A.; Alturki, N.; Alramlawi, S.; Alhejori, K. Interacting with Educational Chatbots: A Systematic Review. Educ. Inf.

Technol. 2022, 28, 973–1018. [CrossRef]
19. Pérez-Marín, D. A Review of the Practical Applications of Pedagogic Conversational Agents to Be Used in School and University

Classrooms. Digital 2021, 1, 18–33. [CrossRef]
20. Briel, A. Toward an Eclectic and Malleable Multiagent Educational Assistant. Comput. Appl. Eng. Educ. 2021, 30, 163–173.

[CrossRef]
21. Gupta, M.; Verma, S.K.; Jain, P. Detailed Study of Deep Learning Models for Natural Language Processing. In Proceedings of

the IEEE 2020 2nd International Conference on Advances in Computing, Communication Control and Networking, ICACCCN,
Greater Noida, India, 18–19 December 2020; pp. 249–253. [CrossRef]

22. Luo, B.; Lau, R.Y.K.; Li, C.; Si, Y. A critical review of state-of-the-art chatbot designs and applications. Wiley Interdiscip. Rev. Data
Min. Knowl. Discov. 2022, 12, e1434. [CrossRef]

23. Palasundram, K.; Sharef, N.M.; Nasharuddin, N.A.; Kasmiran, K.A.; Azman, A. Sequence to sequence model performance for
education chatbot. Int. J. Emerg. Technol. Learn. 2019, 14, 56–68. [CrossRef]

24. Sojasingarayar, A. Seq2Seq AI Chatbot with Attention Mechanism. arXiv 2020, arXiv:2006.02767.
25. Alkhurayyif, Y.; Sait, A.R.W. A comprehensive survey of techniques for developing an Arabic question answering system. PeerJ

Comput. Sci. 2023, 9, e1413. [CrossRef] [PubMed]

https://doi.org/10.1109/ICIT52682.2021.9491699
https://doi.org/10.1016/j.mlwa.2020.100006
https://doi.org/10.1007/978-3-030-17705-8_10
https://doi.org/10.1002/aehe.20117
https://doi.org/10.1109/AIMS52415.2021.9466027
https://doi.org/10.21276/ijircst.2021.9.2.13
https://doi.org/10.1007/978-3-319-91250-9_9
https://doi.org/10.48550/arxiv.2101.01334
https://doi.org/10.1145/3025453.3025496
https://doi.org/10.26615/978-954-452-056-4_034
https://doi.org/10.17011/ht/urn.202008245640
https://doi.org/10.1177/0706743719828977
https://doi.org/10.1007/s42979-020-00255-3
https://doi.org/10.1007/s10639-022-11177-3
https://doi.org/10.3390/digital1010002
https://doi.org/10.1002/cae.22449
https://doi.org/10.1109/ICACCCN51052.2020.9362989
https://doi.org/10.1002/widm.1434
https://doi.org/10.3991/ijet.v14i24.12187
https://doi.org/10.7717/peerj-cs.1413
https://www.ncbi.nlm.nih.gov/pubmed/37346617

Appl. Sci. 2024, 14, 2547 27 of 28

26. Alruily, M. ArRASA: Channel Optimization for Deep Learning-Based Arabic NLU Chatbot Framework. Electronics 2022, 11, 3745.
[CrossRef]

27. Ahmed, A.; Ali, N.; Alzubaidi, M.; Zaghouani, W.; Abd-alrazaq, A.; Househ, M. Arabic chatbot technologies: A scoping review.
Comput. Methods Programs Biomed. Update 2022, 2, 100057. [CrossRef]

28. Vo, V.M.N.; Ngo, V.S. An Integrated DIET-BO Model for Intent Classification and Entity Extraction. Int. J. Intell. Syst. Appl. Eng.
2023, 11, 666–673.

29. Arevalillo-Herraez, M.; Arnau-Gonzalez, P.; Ramzan, N. On Adapting the DIET Architecture and the Rasa Conversational Toolkit
for the Sentiment Analysis Task. IEEE Access 2022, 10, 107477–107487. [CrossRef]

30. Fuad, A.; Al-Yahya, M. Recent Developments in Arabic Conversational AI: A Literature Review. IEEE Access 2022, 10, 23842–23859.
[CrossRef]

31. Weizenbaum, J. ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine.
Commun. ACM 1983, 26, 23–28. [CrossRef]

32. Colby, K.M. Modeling a paranoid mind. Behav. Brain Sci. 1981, 4, 515–534. [CrossRef]
33. Rashkin, H.; Smith, E.M.; Li, M.; Boureau, Y.L. Towards empathetic open-domain conversation models: A new benchmark and

dataset. In Proceedings of the ACL 2019—57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy,
28 July–2 August 2019; pp. 5370–5381. [CrossRef]

34. Hussain, S.; Sianaki, O.A.; Ababneh, N. A Survey on Conversational Agents/Chatbots Classification and Design Techniques; Springer
International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 927. [CrossRef]

35. Ritter, A.; Cherry, C.; Dolan, W.B. Data-driven response generation in social media. In Proceedings of the EMNLP 2011—
Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011; pp. 583–593.

36. Unsupervised Modeling of Twitter Conversations—ACL Anthology. Available online: https://aclanthology.org/N10-1020/
(accessed on 21 February 2022).

37. Huang, M.; Zhu, X.; Gao, J. Challenges in Building Intelligent Open-domain Dialog Systems. ACM Trans. Inf. Syst. 2020, 38, 21.
[CrossRef]

38. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 4,
3104–3112.

39. Smith, J. Empathetic Dialogue Generation Using Generation-Based Models. Diploma Thesis, Dept. Signals, Control, and Robotics,
School of Electrical and Computer Eng., National Technical Univ. of Athens, Athens, Greece, 2020.

40. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 5998–6008.

41. Farha, I.A.; Magdy, W. Benchmarking Transformer-based Language Models for Arabic Sentiment and Sarcasm Detection. In
Proceedings of the Arabic Natural Language Processing Workshop, Virtual, 19 April 2021; pp. 21–31.

42. Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, K.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Lundberg, S.; Nori, H.; et al. Sparks
of Artificial General Intelligence: Early experiments with GPT-4. arXiv 2023, arXiv:2303.12712.

43. Devlin, K.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

44. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P. Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67.

45. Escall, F.; Mello, D.A.A.; Arantes, D.S.; Rothenberg, C.E. Chat-IBN-RASA: Building an Intent Translator for Packet-Optical
Networks based on RASA. In Proceedings of the IEEE 9th International Conference on Network Softwarization (NetSoft), Madrid,
Spain, 19–23 June 2023; pp. 534–538. [CrossRef]

46. Bocklisch, T.; Faulkner, J.; Pawlowski, N.; Nichol, A. Rasa: Open Source Language Understanding and Dialogue Management.
arxiv 2017. [CrossRef]

47. Mishra, D.S.; Agarwal, A.; Swathi, B.; Akshay, K.C. Natural Language Query Formalization to SPARQL for Querying Knowledge
Bases Using Rasa. Prog. Artif. Intell. 2022, 11, 193–206. [CrossRef]

48. Tsarfaty, R. Integrated Morphological and Syntactic Disambiguation for Modern Hebrew. In Proceedings of the COLING/ACL
2006 Student Research Workshop, Sydney, Australia, 20 July 2006. [CrossRef]

49. Almasoud, A.M.; Al-Khalifa, H.S. SemSignWriting: A Proposed Semantic System for Arabic Text-to-Sign Writing Translation.
J. Softw. Eng. Appl. 2012, 5, 604–612. [CrossRef]

50. AL-Hagbani, E.S.; Khan, M.B. Support of Existing Chatbot Development Framework for Arabic Language: A Brief Survey. In
Advances in Intelligent Systems and Computing; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 26–35.

51. Alqahtani, Q.; Alrwais, O. Building a Machine Learning Powered Chatbot for KSU Blackboard Users. Int. J. Adv. Comput. Sci.
Appl. 2023, 14, 781–789. [CrossRef]

52. Abdulkader, Z.; Al-Irhayim, Y. A Review of Arabic Intelligent Chatbots: Developments and Challenges. Al-Rafidain Eng. J. 2022,
27, 178–189. [CrossRef]

53. Aloqayli, A.; Abdelhafez, H. Intelligent Chatbot for Admission in Higher Education. Int. J. Inf. Educ. Technol. 2023, 13, 1348–1357.
[CrossRef]

54. Jiao, A. An Intelligent Chatbot System Based on Entity Extraction Using RASA NLU and Neural Network. J. Phys. Conf. Ser. 2020,
1487, 012014. [CrossRef]

https://doi.org/10.3390/electronics11223745
https://doi.org/10.1016/j.cmpbup.2022.100057
https://doi.org/10.1109/ACCESS.2022.3213061
https://doi.org/10.1109/ACCESS.2022.3155521
https://doi.org/10.1145/357980.357991
https://doi.org/10.1017/S0140525X00000030
https://doi.org/10.18653/v1/p19-1534
https://doi.org/10.1007/978-3-030-15035-8_93
https://aclanthology.org/N10-1020/
https://doi.org/10.1145/3383123
https://doi.org/10.1109/NetSoft57336.2023.10175491
https://doi.org/10.48550/arxiv.1712.05181
https://doi.org/10.1007/s13748-021-00271-1
https://doi.org/10.3115/1557856.1557867
https://doi.org/10.4236/jsea.2012.58069
https://doi.org/10.14569/IJACSA.2023.0140290
https://doi.org/10.33899/rengj.2022.132550.1148
https://doi.org/10.18178/ijiet.2023.13.9.1937
https://doi.org/10.1088/1742-6596/1487/1/012014

Appl. Sci. 2024, 14, 2547 28 of 28

55. Alhumoud, S.; Al Wazrah, A.; Aldamegh, W. Arabic Chatbots: A Survey. Int. J. Adv. Comput. Sci. Appl. 2018, 9. [CrossRef]
56. Mozannar, H.; El Hajal, K.; Maamary, E.; Hajj, H. Neural Arabic question answering. In Proceedings of the Fourth Arabic Natural

Language Processing Workshop, Florence, Italy, 1 August 2019; pp. 108–118. [CrossRef]
57. Boussakssou, M.; Ezzikouri, H.; Erritali, M. Chatbot in Arabic language using seq to seq model. Multimed. Tools Appl. 2022, 81,

2859–2871. [CrossRef]
58. Biltawi, M.; Awajan, A.; Tedmori, S. Towards Building an Open-Domain Corpus for Arabic Reading Comprehension Towards

Building an Open-Domain Corpus for Arabic Reading Comprehension. In Proceedings of the 35th IBIMA Conference, Seville,
Spain, 1–2 April 2020.

59. Antoun, W.; Baly, F.; Hajj, H. AraBERT: Transformer-based Model for Arabic Language Understanding. arXiv 2021,
arXiv:2003.00104.

60. Eljundi, O.; Antoun, W.; El, E. Hulmona: The Universal Language Model in Arabic. In Proceedings of the Fourth Arabic Natural
Language Processing Workshop, Florence, Italy, 1 August 2019; Eljundi, O., Antoun, W., El, E., Hajj, H., El-Hajj, W., Shaban, K.,
Eds.; Association for Computational Linguistics: Kerrville, TX, USA, 2019; pp. 68–77.

61. Kushwaha, A.K.; Kar, A.K. MarkBot—A Language Model-Driven Chatbot for Interactive Marketing in Post-Modern World. Inf.
Syst. Front. 2021, 1–18. [CrossRef]

62. Nagoudi, E.M.B.; Elmadany, A.; Abdul-Mageed, M. AraT5: Text-to-Text Transformers for Arabic Language Understanding and
Generation. arXiv 2021, arXiv:2109.12068.

63. Antoun, W.; Baly, F.; Hajj, H. AraGPT2: Pre-Trained Transformer for Arabic Language Generation. In Proceedings of the Sixth
Arabic Natural Language Processing Workshop, Kiev, Ukraine, 19 April 2021; pp. 196–207.

64. Abdul-Mageed, M.; Elmadany, A.; Nagoudi, E.M.B. ARBERT&MARBERT: Deep bidirectional transformers for Arabic. arXiv 2020,
arXiv:2101.01785.

65. Brandtzaeg, P.; Følstad, A. Chatbots: Changing user needs and motivations. Interactions 2018, 25, 38–43. [CrossRef]
66. Pérez, J.Q.; Daradoumis, T.; Puig, J.M.M. Rediscovering the use of chatbots in education: A systematic literature review. Comput.

Appl. Eng. Educ. 2020, 28, 1549–1565. [CrossRef]
67. El Hefny, W.; Mansy, Y.; Abdallah, M.; Abdennadher, S. Jooka: A Bilingual Chatbot for University Admission. In Advances in

Intelligent Systems and Computing; Springer: Cham, Switzerland, 2021; pp. 671–681. [CrossRef]
68. Al-Ghadhban, D.; Al-Twairesh, N. Nabiha: An Arabic Dialect Chatbot. Int. J. Adv. Comput. Sci. Appl. 2020, 11. [CrossRef]
69. Aljameel, S.; O’Shea, J.; Crockett, K.; Latham, A.; Kaleem, M. LANA-I: An Arabic Conversational Intelligent Tutoring System for

Children with ASD. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 498–516.
[CrossRef]

70. Almurtadha, Y. LABEEB: Intelligent Conversational Agent Approach to Enhance Course Teaching and Allied Learning Outcomes
Attainment. J. Appl. Comput. Sci. Math. 2019, 13, 9. [CrossRef]

71. Alazzam, B.A.; Alkhatib, M.; Shaalan, K. Arabic Educational Neural Network Chatbot. Inf. Sci. Lett. 2023, 12, 2579–2589.
72. Tuning Your NLU Model. Available online: https://rasa.com/docs/rasa/tuning-your-model/ (accessed on 4 February 2024).
73. Al-madi, N.A.; Maria, K.A.A.; Al-madi, M.A.; Maria, E.A.A. An Intelligent Arabic Chatbot System to Reduce Admissions

Department Burdens. Authorea 2023. [CrossRef]
74. Castillo, D.; Canhoto, A.I.; Said, E. The Dark Side of AI-powered Service Interactions: Exploring the Process of Co-Destruction

from the Customer Perspective. Serv. Ind. J. 2020, 41, 900–925. [CrossRef]
75. Nguyen, T.T.; Le, A.D.; Hoang, H.T.; Nguyen, T. NEU-chatbot: Chatbot for admission of National Economics University. Comput.

Educ. Artif. Intell. 2021, 2, 100036. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.14569/IJACSA.2018.090867
https://doi.org/10.18653/v1/w19-4612
https://doi.org/10.1007/s11042-021-11709-y
https://doi.org/10.1007/s10796-021-10184-y
https://doi.org/10.1145/3236669
https://doi.org/10.1002/cae.22326
https://doi.org/10.1007/978-3-030-72660-7_64
https://doi.org/10.14569/IJACSA.2020.0110357
https://doi.org/10.1007/978-3-030-22871-2_34
https://doi.org/10.4316/JACSM.201901001
https://rasa.com/docs/rasa/tuning-your-model/
https://doi.org/10.22541/au.168302932.22818952/v1
https://doi.org/10.1080/02642069.2020.1787993
https://doi.org/10.1016/j.caeai.2021.100036

	Introduction
	Related Work
	Chatbot Overview
	RASA Framework for AI Chatbots
	Chatbots for Arabic Settings
	Arabic Chatbots in University Settings

	Method
	Menu-Based Interaction
	Write-Based (RASA-Based)

	Experiment
	Training and Validation
	User Testing
	Sentiment Analysis

	Evaluation and Discussion
	Accuracy
	Response Time
	Scalability
	User Feedback and Sentiment Analysis

	Conclusions
	References

