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Abstract: The local independence assumption is crucial for the consistent estimation of item pa-
rameters in item response theory models. This article explores a pairwise likelihood estimation
approach for the two-parameter logistic (2PL) model that treats the local dependence structure as a
nuisance in the optimization function. Hence, item parameters can be consistently estimated without
explicit modeling assumptions of the dependence structure. Two simulation studies demonstrate
that the proposed pairwise likelihood estimation approach allows nearly unbiased and consistent
item parameter estimation. Our proposed method performs similarly to the marginal maximum
likelihood and pairwise likelihood estimation approaches, which also estimate the parameters for the
local dependence structure.
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1. Introduction

Item response theory (IRT) models [1,2] are central to analyzing multivariate dichoto-
mous random variables. IRT models summarize a high-dimensional contingency table by a
low-dimensional latent factor variable of interest. In many cases, a reduction to a unidi-
mensional variable is required. The application of IRT models in educational large-scale
assessments [3] like the Programme for International Student Assessment (PISA; [4]) and
the testing industry is of particular importance.

Let X = (X1, . . . , XI) be the vector of I dichotomous items Xi ∈ {0, 1}. A unidimen-
sional IRT model [5,6] is a statistical model for the probability distribution P(X = x) for
x ∈ {0, 1}I , where

P(X = x; γ) =
∫ ∞

−∞

I

∏
i=1

Pi(xi, θ; γi) f (θ)dθ. (1)

In Equation (1), a latent variable θ with density function f is involved . The variable (also
referred to as a trait or ability) can be interpreted as a unidimensional summary of the test
items X. The distribution of θ is frequently fixed to a normal distribution (but see [7,8]).
The item response functions (IRF) Pi(x, θ; γi) = P(Xi = x|θ) model the relationship of the
dichotomous item with θ. Let γ = (γ1, . . . , γI). Note that Pi(0, θ; γi) + Pi(1, θ; γi) = 1.

Importantly, item responses Xi are assumed to be conditionally independent on θ
in (1). Therefore, pairs of items Xi and Xj are conditionally uncorrelated after controlling
the latent ability θ. More formally, it is assumed that

P(X|θ) =
I

∏
i=1

P(Xi|θ). (2)

The property (2) is also known as the local independence assumption that can be statistically
tested [6,9].

The vector of item parameters γ of the IRFs in Equation (1) can be estimated by
marginal maximum likelihood (MML) using an expectation–maximization (EM) algo-
rithm [10,11]. A variety of statistical software packages exist to estimate IRT models [12].
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This article focuses on the estimation of IRT models in the violation of the local
independence condition in (2). This situation refers to locally dependent item responses.
For example, in an educational test, students respond to items referring to several reading
texts. However, items that refer to the same reading text are likely more dependent on
each other than items from different reading texts. Hence, the local dependence of item
responses of items within the same item stimulus (i.e., the reading text) can be expected.
In this article, we confine ourselves to estimating the two-parameter logistic (2PL) IRT
model [13]. The IRF for item Xi in the 2PL model is defined as

Pi(x, θ; ai, bi) = Ψ((2x − 1)(aiθ − bi)) =
exp(x(aiθ − bi))

1 + exp(aiθ − bi)
for x = 0, 1, (3)

where the vector of item parameters γi = (ai, bi) contains the item discrimination ai and
the item intercept bi. The logistic distribution function is denoted by Ψ and it holds
1 − Ψ(x) = Ψ(−x) for real-valued x.

This article reviews different estimation techniques for unidimensional IRT models
under local dependence. It is demonstrated that MML estimation will lead to biased
item parameter estimates if local dependence is ignored in the estimation. A variant of
pairwise likelihood estimation is presented that treats the local dependence structure as a
nuisance structure in the estimation and effectively removes these pieces of information
in model estimation. Hence, our proposed modified estimation approach is unaffected
by the presence of local dependence. Our proposed method is compared with other
estimation methods in which the parameters of local dependence are simultaneously
estimated alongside the item parameters.

The rest of the article is structured as follows. In Section 2, we review the pairwise
likelihood estimation approach. We describe a particular choice of weights in pairwise like-
lihood estimation and the contribution of local dependence in model estimation. Section 3
presents the results from two simulation studies in which we compare estimation methods
that ignore local dependence with our modified pairwise likelihood method and other
methods that handle local dependence. Three empirical datasets with local dependence are
analyzed in Section 4. Finally, the paper closes with a discussion in Section 5.

2. Pairwise Maximum Likelihood (PML) and Maximum Marginal Likelihood (MML)
Estimation with Local Dependence
2.1. Pairwise Likelihood Estimation (PML)

In this section, we review pairwise (maximum) likelihood (PML) estimation for IRT
models [14–17]. For item responses Xi with IRFs Pi(x, θ; γi) (i = 1, . . . , I), marginal univari-
ate probabilities are given by

L1,Xi (x; γi) = P(Xi = x) =
∫

Pi(x, θ; γi)ϕ(θ)dθ, (4)

where ϕ denotes the density of the standard normal distribution. PML estimation also
relies on the evaluation of bivariate probabilities for an item pair (Xi, Xj)

L2,XiXj(x, y; γi, γj) = P(Xi = x, Xj = y) =
∫

Pi(x, θ; γi)Pj(y, θ; γj)ϕ(θ)dθ. (5)

In PML estimation, item parameters γ = (γ1, . . . , γI) are computed by maximizing the
weighted sum of the likelihood contributions of univariate and bivariate frequencies. In
more detail, the PML optimization function is given by

l(γ) =
I

∑
i=1

w1,Xi

(
1

∑
x=0

nXi ,x log L1,Xi (x; γi)

)
+

I−1

∑
i=1

I

∑
j=i

w2,XiXj

(
1

∑
x=0

1

∑
y=0

nXiXj ,xy log L2,XiXj(x, y; γi, γj)

)
, (6)

where nXi ,x is the univariate frequency with which item Xi takes the value x. Moreover,
nXiXj ,xy denotes the bivariate frequency in the sample with which item Xi has the value
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x ∈ {0, 1} and item Xj has the value y ∈ {0, 1}. The choice of the weights w1,Xi and w2,XiXj
can be determined by the researcher’s objectives (see also [18]). In the simulation study and
the empirical example, we focus on PML estimation that involves all item pairs with the
weights w1,Xi = 1/I and w2,XiXj = 2I−1(I − 1)−1. By doing so, the univariate and bivariate
frequencies equally contribute to the analysis.

2.2. Local Dependence in IRT Models

Assume that there is local dependence in an IRT model, and the items are arranged
in testlets that reflect the dependency structure of items in groups of items [19]. In other
words, there exist testlets t such that items Xit are locally independent between testlets
but dependent within testlets. Define Xt = (X1t, . . . , XItt), where It denotes the number of
items in testlet t.

The joint distribution of all item responses X = (X1, . . . , XT) fulfills

P(X|θ) = P(X1, . . . , XT |θ) =
T

∏
t=1

P(Xt|θ). (7)

However, local dependence means that the items within a testlet are not conditionally
independent (i.e., local dependence exists):

P(Xt|θ) = P(X1t, . . . , XItt|θ) ̸=
It

∏
i=1

P(Xit|θ). (8)

Consequently, we obtain, for an item pair (Xit, Xjt) of items within the same testlet t,

P(Xit, Xjt|θ) ̸= P(Xit|θ)P(Xjt|θ). (9)

This property reflects the residual dependence of the items within a testlet and potentially
biases the estimation of IRT models that incorrectly attribute the residual dependence
to the ability variable θ. In general, item discriminations are distorted and positively
biased in many instances [20]. The neglected local dependence entails inflated reliability
estimates [21,22].

However, it should be noted that there is local independence among items Xit and Xju
within different testlets t and u

P(Xit, Xju|θ) = P(Xit|θ)P(Xju|θ), (10)

Local dependence can be detected at the level of item pairs by means of standardized
correlations of item residuals. This Q3 statistic [9] can be interpreted as a measure of the
deviation from local independence, and positive residual correlations (e.g., larger than 0.1
or 0.3) can be considered non-negligible deviations from local independence [23].

2.3. Different IRT Modeling Strategies to Handle Local Dependence

The IRT literature mainly deals with the issue of local dependence through three
alternative strategies.

First, in testlet IRT models, additional latent variables are included to model the testlet
structure [19,24]. Most frequently, the local dependence of all items within a testlet is
modeled by an additional latent variable. This unidimensionality assumption might be too
restrictive to fit item response data.

Second, the dependency structure is covered by additional parameters. In this ap-
proach, a polytomous superitem is defined that decodes the combination of values of items
within a testlet in their categories [25]. For example, if a testlet consists of three items,
the superitem possesses 23 = 8 categories. The dependence is modeled by additional
parameters [26–28]. The second approach has the disadvantage that the item parameters
do not have a marginal interpretation. This issue also pertains to the first approach when
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using testlet models, although the item parameters can be transformed in order to obtain a
marginal interpretation [29].

The third approach starts with a marginal unidimensional IRT model and models the
local dependence structure by means of copula models [21,30,31]. The latter approach is
most attractive for the purpose of the marginal interpretation of item parameters. However,
copula models require the specification of the type of copula distribution of the testlets and
estimate testlet residual dependence parameters δ along with item parameters γ.

In this article, we only consider modeling strategies that allow a marginal interpreta-
tion of the item response parameters.

2.4. IRT Models with Correlated Item Residuals for Modeling of Local Dependence

We now present an IRT model with correlated item responses that accommodate local
dependence. Assume that, marginally, a 2PL model holds for items Xi (i = 1, . . . , I). It is
assumed that there is an underlying latent item response X∗

i for item Xi such that

Xi = 1(X∗
i > 0), (11)

where 1 denotes the indicator function. Specifically, Xi takes a value of 1 if X∗
i exceeds zero.

Let the item residual εi follow the logistic distribution. Then, we have

P(εi < y) = Ψ(y) for all y ∈ R. (12)

We define the latent item response X∗
i as

X∗
i = aiθ − bi − εi. (13)

Then, we obtain, using (11), (13), and (12),

P(Xi = 1) = P(X∗
i > 0) = P(εi < aiθ − bi) = Ψ(aiθ − bi). (14)

Hence, Xi marginally follows the 2PL model. Local dependence can be modeled by letting
the logistically distributed item residuals ε = (ε1, . . . , ε I) be dependent. In principle, any
dependence structure with a fixed marginal distribution to the logistic one can be assumed.
In fact, this leads to copula models [32] of correlated item residuals [21,33].

2.5. Normal Copula Model for Correlated Item Residuals

We now review the normal copula model for correlated item residuals for the 2PL
model [31]. There is an underlying latent item response X∗

i for each item Xi (see (11)). The
item residuals in (11) follow the logistic distribution. Let ε = (ε1, . . . , ε I) be the vector of
item residuals. In the normal copula model, it is assumed that the vector e = (e1, . . . , eI) of
transformed item residuals follows a multivariate normal distribution with a zero mean
vector 0 and a correlation matrix Σ∗. Note that all variables ei have standard deviations
of 1. In more detail, each component i (i = 1, . . . , I) of e is defined as

ei = Φ−1(Ψ(εi)) , (15)

where Φ denotes the distribution function of the standard normal distribution.
This definition allows the computation of item response probabilities for subsets of

items within a testlet that accommodates testlet dependence. Assume that Cor(ei, ej) = ρij
for items Xi and Xj within a testlet. Then, we have

P(Xi = 1, Xj = 1|θ)
= P(aiθ − bi − εi > 0, ajθ − bj − ε j > 0 | θ)

= P(ei < Φ−1(Ψ(aiθ − bi)) , ej < Φ−1(Ψ(ajθ − bj)) | θ)
= Φ2

(
Φ−1(Ψ(aiθ − bi)) , Φ−1(Ψ(ajθ − bj)); ρij

) , (16)
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where Φ2 is the distribution function of the bivariate normal distribution depending on the
correlation ρij. For x, y ∈ {0, 1}, the item response probabilities can be evaluated as

P(Xi = x, Xj = y|θ)
= Φ2

(
Φ−1(Ψ((2x − 1)(aiθ − bi))) , Φ−1(Ψ((2y − 1)(ajθ − bj))); ρ

x+y
ij

) . (17)

The extension to more than two items in a testlet follows the same principle [31]. How-
ever, the multidimensional normal distribution must be evaluated. There is increasing
computational complexity in this calculation with an increasing number of items within
a testlet.

2.6. Marginal Maximum Likelihood (MML) Estimation for the Normal Copula Model for
Item Residuals

The 2PL model with a normal copula for correlated item residuals (see Section 2.5) can
be estimated with MML by modeling the vector Xt of item responses Xit within a testlet t
(t = 1, . . . , T; see (8)) as

P(X = x; γ) =
∫ T

∏
t=1

P(Xt|θ; γt) f (θ)dθ. (18)

The vector γt contains all item parameters ai and bi of the items within the testlet t and the
entries of the correlation matrix of item residuals ε within the testlet.

Now, assume that there are n = 1, . . . , N independent and identically distributed realiza-
tions of X from (18), leading to item responses x1, . . . , xN ∈ {0, 1}I , where xn = (xn1, . . . , xnT)
and xnt ∈ {0, 1}It . The model parameter γ = (γ1, . . . , γT) can be obtained by maximizing
the negative log-likelihood function

l(γ) =
N

∑
n=1

log[P(X = xn; γ)] =
N

∑
n=1

log

[∫ T

∏
t=1

P(Xt = xnt|θ; γt) f (θ)dθ

]
, (19)

Note that the probabilities P(Xt = xnt|θ; γt) require the evaluation of the multivariate
normal distribution of dimension It. The variance matrix of the parameter estimate γ̂ can
be obtained by taking the inverse of the negative observed information matrix that contains
the second-order partial derivatives (i.e., the Hessian matrix)

∂2l
∂γhγk

∣∣∣∣∣
γ=γ̂

, (20)

where γh and γk are entries of the parameter vector γ.
Consistent parameter estimates of γ can be expected if the normal distribution as-

sumption of θ and the multivariate normal distribution of item residuals within a testlet
(i.e., the normal copula model) are correct.

2.7. Pairwise Maximum Likelihood (PML) Estimation for the Normal Copula Model for
Item Residuals

The MML estimation of the 2PL model with a normal copula model for item residuals
has the disadvantage that multidimensional normal probabilities must be evaluated. This
is particularly computationally demanding for many items within a testlet. Hence, PML
can be applied, which only involves bivariate normal probabilities in the estimation of the
2PL normal copula model.

The PML estimation described in Section 2.1 can now also involve correlation param-
eters ρij that capture the dependence of items i and j. For items Xi and Xj allocated to
different testlets, local independence is assumed, and no correlation is estimated.
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For items Xi and Xj in different testlets, bivariate probabilities in PML estimation are
evaluated according to (see (5))

L2,XiXj(x, y; γi, γj) =
∫

Ψ(2(x − 1)(aiθ − bi))Ψ(2(y − 1)(ajθ − bj))ϕ(θ)dθ (21)

with γi = (ai, bi). For items Xi and Xj in the same testlet, the bivariate probabilities are
given as (see (17))

L2,XiXj(x, y; γi, γj, ρij) =
∫

Φ2

(
Φ−1(Ψ((2x − 1)(aiθ − bi))) , Φ−1(Ψ((2y − 1)(ajθ − bj))); ρ

x+y
ij

)
ϕ(θ)dθ, (22)

where the term (22) now additionally includes the correlation ρij.
The model parameter γ contains all item parameters ai and bi, as well as all correlation

parameters ρij for the item pairs within a testlet. A parameter estimate is obtained by
maximizing the PML optimization function (6) with respect to γ. The standard errors of
the model parameters can be obtained with Huber–White standard errors by formalizing
PML as an M-estimation problem [14,34]. More formally, PML maximizes

l(γ) =
N

∑
n=1

ln(γ; xn), (23)

where ln are the PML contributions of case n. The parameter estimate γ̂ is obtained by
setting the partial derivative of l with respect to all components γh of γ equal to 0:

∂l
∂γh

=
N

∑
n=1

∂ln
∂γh

(γ; xn) = 0. (24)

The estimated variance matrix V̂ of γ̂ is obtained with the sandwich formula [34]

V̂ = Î−1 Ĵ Î−1 , where (25)

Ĵ =

(
N

∑
n=1

∂ln
∂γh

(γ̂; xn)
∂ln
∂γk

(γ̂; xn)

)
hk

and (26)

Î =

(
N

∑
n=1

∂2ln
∂γhγk

(γ̂; xn)

)
hk

. (27)

The partial derivatives in (24), (26), and (27) can be obtained by analytical derivations or
numerical approximations.

Like MML, PML estimation relies on the normal distribution assumption for θ. From
the first view, it seems that the normal copula model assumption for item residuals is also
crucial. However, note that a single parameter ρij is estimated for all item pairs (Xi, Xj) of
items within the same testlet.

2.8. Pairwise Maximum Likelihood (PML) Estimation with Excluded Item Pairs to Handle
Local Dependence

It has been pointed out in Section 2.4 that the specification of the dependency structure
for item residuals ε is indeterminate. Hence, the estimated item discriminations and item
difficulties will depend on the distributional assumption of the item residuals. Hence,
consistent parameter estimates of the 2PL normal copula model with MML estimation
(Section 2.6) or PML estimation (Section 2.7) cannot be guaranteed if the multivariate
vector item residuals follow a different distribution. In this section, we describe a variant
of PML estimation that does not require the specification of the dependence structure of
item residuals.

As highlighted in (10), the item responses of items from different testlets are condi-
tionally independent. Hence, it can be expected that marginal item response functions
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can be consistently estimated if weights w2,XiXj in pairwise likelihood estimation in (6) are
set to 0 for an item pair with items within the same testlet but set to 1 for items within
different testlets.

Let us illustrate the particular PML specification utilizing a toy example. The test
contains seven items arranged in three testlets. Testlet 1 contains Items 1, 2, and 3; Test-
let 2 contains Items 4 and 5; and Testlet 3 contains Items 6 and 7. The weight matrix
W2 = (w2,XiXj) for PML estimation required in (6) can be defined by

W2 = (w2,XiXj) =



0
0 0
1 1 1
1 1 1 0
1 1 1 1 1
1 1 1 1 1 0


(28)

By applying PML estimation based on only evaluating the bivariate frequencies of item
pairs for items within different testlets, the local independence assumption for the bivariate
probabilities holds. Hence, consistent item parameter estimates from this modified PML
estimation can be expected because the ability variable θ receives a marginal interpretation,
which is used in the univariate frequency PML terms L1,Xi and bivariate frequency PML
terms L2,XiXj that do not receive a weight of zero.

The standard errors can be obtained in the same way using the sandwich formula as
for PML estimation with correlation parameters in the normal copula model (see (25) in
Section 2.7).

The PML estimation with excluded item pairs is attractive because no specification of
the dependence structure and its distribution is required. In fact, the dependence parame-
ters ρ are treated as nuisance parameters that are not of interest and are therefore eliminated
from the estimation. Note that a misspecified distribution of the local dependence structure
in the IRT model can also bias the item parameters. In this regard, our proposed modified
PML estimation approach offers advantages over the copula modeling approach. However,
there is still a normal distribution assumption for θ, which might be required to obtain
consistent parameter estimates.

2.9. Software

The proposed MML and PML estimations in this paper have been implemented by
the author in the R (Version 4.3.1, [35]) software. The code has been made available at
https://osf.io/xjp54 (accessed on 18 March 2024). Various 2PL copula models have been
implemented in the R package sirt [36] in the sirt::rasch.copula2() function and in the
Matlab IRTm toolbox [37]. The R package lavaan [38] also allows PML estimation. Users
have to properly adapt the weight matrix W2 (see (28)) in this software. Moreover, the R
package pln [39] also contains PML estimation for IRT models. However, it seems that
users are not allowed to specify the weight matrix W2.

3. Simulation Study

The performance of MML with PML estimation under local dependence is compared
in various simulation conditions in two simulation studies in which the number of items
per testlet is varied.

3.1. Simulation Study 1: Two Items per Testlet
3.1.1. Method

In this simulation study, item responses with local dependence are simulated according
to the 2PL model with a normal copula model for item residuals. We study the situation
containing I = 12 items. All items are arranged in testlets consisting of two items. Hence,
there are six testlets for the case of 12 items.

https://osf.io/xjp54
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The item discriminations ai for the 12 items are 0.8, 1.5, 1.3, 1.5, 1.1, 1.6, 0.7, 0.9, 1.1, 1.7,
0.8, and 0.9. The item intercepts bi are chosen as −0.2, 0.0, 0.3, 0.7, −1.2, 2.2, 0.2, 1.1, −0.3,
1.8, 2.1, and −1.1. The item parameters can also be found in the R code for this Simulation
Study 1 located at https://osf.io/xjp54 (accessed on 18 March 2024).

Locally dependent item responses are simulated by assuming a normal copula model [31]
for the residuals. The residual correlation matrix Σ∗ is defined by

Σ∗ =



1
f 1
0 0 1
0 0 f 1
0 0 0 0 1
0 0 0 0 f 1
0 0 0 0 0 0 1
0 0 0 0 0 0 f 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 f 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 f 1



. (29)

Note that there is a dependency structure in the residuals for items within testlets. Specifi-
cally, the first two items are allocated to the first testlet. The correlation of item residuals
is assumed to be f . Items 3 and 4 belong to the second testlet. More generally, test-
let t (t = 1, . . . , 6) is composed of items X2(t−1)+1 and X2(t−1)+2. In the simulation, the
residual correlation f is varied as 0, 0.35, and 0.7. The condition f = 0 corresponds to
local independence.

In the simulation, we chose sample sizes N = 500, 1000, and 2000. We did not opt for
smaller sample sizes because the 2PL model requires a sufficiently large sample size for
stable item parameter estimation.

We now describe the simulation of item responses with local dependence in more
detail. First, we simulate a normally distributed ability variable θ with a zero mean and a
standard deviation of one. The item response functions are defined according to the 2PL
model such that they marginally follow

P(Xi = 1|θ) = Pi(1, θ; γi) = Ψ(aiθ − bi) (30)

with γi = (ai, bi). Next, we simulate a multivariate random vector R∗ = (R∗
1 , . . . , R∗

I )
that follows a multivariate normal distribution with zero mean vector 0 and covariance
matrix Σ∗, defined in (34). Note that all variables R∗

i are standardized and normally
distributed. In the next step, we compute the vector R = (R1, . . . , RI) with uniformly
distributed correlated variables by

R = (R1, . . . , RI) = (Φ(R1), . . . , Φ(RI)), (31)

where Φ denotes the standard normal distribution. In the last step, dichotomous item
responses Xi (i = 1, . . . , I) are determined by

Xi = 1 if and only if Ri < Pi(1, θ; γi) . (32)

In fact, one can show that item responses Xi marginally follow the assumed item response
function Pi. Due to the simulation procedure, we obtain

P(Xi = 1|θ) = P(Ri < Pi(1, θ; γi)) = Pi(1, θ; γi) (33)

because Ri is uniformly distributed.
The simulated datasets are analyzed with the 2PL model assuming a normal θ distri-

bution with a zero mean and a standard deviation of 1. In this Simulation Study 1, five

https://osf.io/xjp54
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different analysis models were specified. First, MML and PML estimation applied to all
items were specified under the (incorrect) local independence assumption. The resulting
estimation methods are denoted as MML1 and PML1, respectively. Second, MML and
PML were specified with a normal copula model for item residuals (denoted as MML2
and PML2). Third, PML was specified by excluding item pairs stemming from the same
testlet (denoted as PML3). All estimation methods have been implemented in dedicated R
functions that can be found at https://osf.io/xjp54 (accessed on 18 March 2024). The R script
for the simulation can also be found at this link.

In total, 3000 replications were conducted. We computed the empirical bias, the
empirical standard deviation, and the coverage rates at the confidence level of 95% for
all estimated item discriminations ai and item intercepts bi. To summarize the simulation
results, we computed the average absolute bias, the average standard deviation, and the
average coverage rate across all item discriminations and item intercepts, respectively.

3.1.2. Results

Table 1 presents the average absolute bias, average standard deviation, and average
coverage rate of item discriminations ai and item intercepts bi. The condition f = 0
corresponds to the situation of local independence, while f > 0 indicates situations of
local dependence.

First, it can be concluded that all five estimation methods, MML1, PML1, MML2,
PML2, and PML3, provided nearly unbiased estimates for item discriminations and item
intercepts. Notably, there is a small bias for a sample size of N = 500, but this bias vanishes
with an increasing sample size. As expected, the standard deviation of the item parameter
estimates decreases with the increasing sample size. In the case of f = 0, the efficiency of
the different estimators can be defined by the standard deviation. We define a percentage
efficiency loss by relating the standard deviations of PML1, MML2, PML2, and PML3 to
the standard deviation of the MML1 method. It was found that PML based on all items
(i.e., PML1) had a very small average efficiency loss of 0.5% for item discriminations ai. In
contrast, the PML2 and PML3 methods had a larger efficiency loss of 2.7%. MML under
the normal copula model (i.e., MML2) had a slightly smaller efficiency loss of 2.4% for
the ai parameters. The efficiency loss for item intercepts bi was smaller than for item
discriminations ai. It was 0.3% for PML1, 0.5% for MML2, 0.7% for PML2, and 0.7%
for PML3.

In the conditions with locally dependent item responses (i.e., f = 0.35, and 0.7), MML1
and PML1 produced strongly biased estimates, while MML2, PML2, and PML3 were nearly
unbiased in all conditions. The bias was larger for larger residual correlations f . Notably,
PML2 resulted in estimates almost identical to those of PML3.

The coverage rates were satisfactory for item parameters that were unbiased. In line
with the bias findings, the coverage rates were too low for MML1 and PML1 (i.e., assuming
local independence) if the item response data were simulated under local dependence.

https://osf.io/xjp54
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Table 1. Simulation Study 1: Average absolute bias and average standard deviations of item
parameters as a function of sample size N, and the size of the maximum residual correlation f .

Average Absolute Bias Average Standard Deviation Average Coverage Rate

f N MML1 PML1 MML2 PML2 PML3 MML1 PML1 MML2 PML2 PML3 MML1 PML1 MML2 PML2 PML3

Item discriminations ai

0
500 0.016 0.016 0.016 0.016 0.016 0.189 0.190 0.194 0.194 0.194 95.4 95.6 95.4 95.5 95.5

1000 0.008 0.008 0.008 0.008 0.008 0.132 0.132 0.135 0.135 0.135 95.0 95.1 95.1 95.1 95.1
2000 0.005 0.005 0.005 0.005 0.005 0.093 0.093 0.095 0.095 0.095 95.1 95.1 95.0 95.0 95.0

0.35
500 0.075 0.076 0.020 0.021 0.021 0.195 0.195 0.200 0.201 0.201 94.2 95.1 95.2 95.5 95.5

1000 0.063 0.064 0.007 0.008 0.008 0.136 0.136 0.139 0.140 0.140 92.2 93.2 95.2 95.3 95.3
2000 0.060 0.061 0.004 0.004 0.004 0.095 0.095 0.097 0.098 0.098 87.8 89.5 95.1 95.2 95.2

0.7
500 0.163 0.148 0.021 0.021 0.021 0.234 0.217 0.209 0.212 0.212 85.0 90.9 95.1 95.4 95.4

1000 0.154 0.139 0.008 0.008 0.008 0.160 0.149 0.143 0.145 0.145 76.4 82.5 95.1 95.2 95.2
2000 0.152 0.138 0.005 0.005 0.005 0.111 0.104 0.099 0.101 0.101 66.1 69.4 95.1 95.2 95.2

Item intercepts bi

0
500 0.009 0.009 0.009 0.009 0.009 0.143 0.144 0.144 0.144 0.144 95.3 95.3 95.3 95.3 95.3

1000 0.005 0.005 0.005 0.005 0.005 0.100 0.101 0.101 0.101 0.101 95.1 95.2 95.1 95.2 95.2
2000 0.003 0.003 0.003 0.003 0.003 0.071 0.071 0.071 0.071 0.071 94.9 95.0 94.9 94.9 94.9

0.35
500 0.020 0.022 0.012 0.012 0.012 0.145 0.146 0.146 0.146 0.146 95.2 95.3 95.2 95.3 95.3

1000 0.013 0.015 0.005 0.005 0.005 0.101 0.102 0.101 0.102 0.102 95.0 95.0 95.1 95.1 95.1
2000 0.012 0.013 0.003 0.003 0.003 0.071 0.072 0.071 0.071 0.071 94.7 94.6 95.0 95.0 95.0

0.7
500 0.031 0.029 0.013 0.013 0.013 0.150 0.150 0.149 0.150 0.150 94.3 94.7 95.1 95.2 95.2

1000 0.028 0.026 0.005 0.005 0.005 0.103 0.103 0.102 0.102 0.102 93.9 94.4 95.2 95.2 95.2
2000 0.028 0.025 0.003 0.003 0.003 0.073 0.073 0.071 0.072 0.072 92.2 92.9 95.1 95.0 95.0

Note: MML1 = marginal maximum likelihood estimation under local independence; PML1 = pairwise likeli-
hood estimation based on all item pairs under local independence; MML2 = marginal maximum likelihood
estimation under the normal copula model; PML2 = pairwise likelihood estimation under the normal copula
model; PML3 = pairwise likelihood estimation based on item pairs with items from different testlets. The residual
correlation matrix Σ∗ as a function of f is given in (29). Average absolute bias values larger than 0.03 and coverage
rates smaller than 92.5 are printed in bold font.

3.2. Simulation Study 2: Four Items per Testlet
3.2.1. Method

In Simulation Study 2, we also considered I = 12 items. The items were arranged in
testlets consisting of four items. Hence, there were three testlets in the case of I = 12 items.

The same item parameters as in Simulation Study 1 were used (see Section 3.1.1). The
item parameters can be found in the simulation code located at https://osf.io/xjp54 (accessed
on 18 March 2024).

Locally dependent item responses were again simulated using the normal copula
model. The residual correlation matrix Σ∗ was defined by

Σ∗ =



1
f 1
f f 1
f f f 1
0 0 0 0 1
0 0 0 0 f 1
0 0 0 0 0.3 f 0.3 f 1
0 0 0 0 0.3 f 0.3 f f 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 f 1
0 0 0 0 0 0 0 0 f f 1
0 0 0 0 0 0 0 0 0 0 0 1



. (34)

https://osf.io/xjp54
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This specification induced a dependency structure in the residuals for items within testlets.
Specifically, the first four items were allocated to the first testlet, and there was a constant
residual correlation f . Items 5 to 8 referred to the second testlet, and the residual cor-
relations varied depending on the item pair. The third testlet was composed of Items 9
to 12. Note that Item 12 was locally independent of Items 9, 10, and 11. The maximum
residual correlation f was varied as 0, 0.35, and 0.7. The condition f = 0 corresponded to
local independence.

As in Simulation Study 1, sample sizes N = 500, 1000, and 2000 were chosen.
The same estimation methods except for MML2 (i.e., MML with normal copula model

for item residuals) as in Simulation Study 1 were specified. MML2 was computationally
demanding as four-dimensional normal probabilities had to be extensively evaluated be-
cause the dependence structure consisted of testlets of size 4. The R code for the simulation
can be found at https://osf.io/xjp54 (accessed on 18 March 2024).

In total, 2000 replications were conducted. As in Simulation Study 1, the average abso-
lute bias, average standard deviation, and average coverage rates of item discriminations ai
and item intercepts bi were investigated.

3.2.2. Results

Table 2 presents the average absolute bias, average standard deviation, and average
coverage rates of item discriminations ai and item intercepts bi. Again, the condition f = 0
corresponds to local independence, while f > 0 corresponds to local dependence.

Table 2. Simulation Study 2: Average absolute bias and average standard deviations of item
parameters as a function of sample size N, and the size of the maximum residual correlation f .

Average Absolute Bias Average Standard Deviation Average Coverage Rate

f N MML1 PML1 PML2 PML3 MML1 PML1 PML2 PML3 MML1 PML1 PML2 PML3

Item discriminations ai

0
500 0.014 0.014 0.017 0.017 0.189 0.189 0.208 0.208 95.3 95.5 95.6 95.6
1000 0.008 0.008 0.010 0.010 0.131 0.132 0.144 0.144 95.2 95.2 95.4 95.4
2000 0.004 0.004 0.005 0.005 0.093 0.093 0.102 0.102 94.9 95.0 94.9 94.9

0.35
500 0.220 0.200 0.025 0.025 0.207 0.204 0.230 0.230 74.3 79.5 95.9 95.9
1000 0.216 0.196 0.010 0.010 0.144 0.142 0.159 0.159 62.6 66.4 95.3 95.3
2000 0.214 0.194 0.005 0.005 0.100 0.099 0.111 0.111 57.1 58.5 95.1 95.1

0.7
500 0.827 0.710 0.028 0.028 0.296 0.290 0.260 0.260 47.1 53.2 95.5 95.5
1000 0.818 0.703 0.012 0.012 0.195 0.187 0.173 0.173 36.1 44.7 95.5 95.5
2000 0.816 0.701 0.007 0.007 0.139 0.133 0.121 0.121 25.7 34.0 95.3 95.3

Item intercepts bi

0
500 0.010 0.010 0.011 0.011 0.142 0.142 0.145 0.145 95.4 95.5 95.6 95.6
1000 0.005 0.005 0.005 0.005 0.100 0.100 0.102 0.102 95.3 95.3 95.4 95.4
2000 0.002 0.002 0.002 0.002 0.070 0.071 0.072 0.072 95.0 95.0 95.0 95.0

0.35
500 0.035 0.032 0.012 0.012 0.148 0.148 0.152 0.152 94.1 94.4 95.4 95.4
1000 0.037 0.033 0.006 0.006 0.103 0.103 0.105 0.105 92.7 93.2 95.4 95.4
2000 0.037 0.033 0.003 0.003 0.073 0.073 0.074 0.074 90.1 91.0 95.0 95.0

0.7
500 0.132 0.114 0.016 0.016 0.169 0.166 0.158 0.159 84.8 87.5 95.6 95.6
1000 0.135 0.116 0.007 0.007 0.119 0.116 0.109 0.109 75.7 79.8 95.2 95.2
2000 0.135 0.116 0.004 0.004 0.082 0.081 0.075 0.075 66.0 71.2 95.1 95.1

Note: MML1 = marginal maximum likelihood estimation under local independence; PML1 = pairwise likelihood
estimation based on all item pairs under local independence; PML2 = pairwise likelihood estimation under the
normal copula model; PML3 = pairwise likelihood estimation based on item pairs with items from different
testlets. The residual correlation matrix Σ∗ as a function of f is given in (34). Average absolute bias values larger
than 0.03 and coverage rates smaller than 92.5 are printed in bold font.

All four estimation methods, MML1, PML1, PML2, and PML3, provided approxi-
mately unbiased results for item discriminations ai and item intercepts bi. There was a
small bias for a sample size of N = 500, but this bias vanished with an increasing sample

https://osf.io/xjp54
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size. The average standard deviation of the item parameter estimates decreased with the
increasing sample size.

In the condition f = 0, indicating local independence, the efficiency loss was assessed.
It was 0.4% for PML1 compared to MML1 for item discriminations. However, the efficiency
loss for PML2 and PML3 was 10.1%, much higher than in Simulation Study 1, because more
item pairs were excluded from the PML estimation. The efficiency loss for item intercepts
was smaller for PML2 and PML3, with a value of 2.1%.

If the item response data were generated under local dependence, biased item param-
eter estimates under MML1 and PML1 resulted. For methods PML2 and PML3, there was
only a small bias for N = 500. However, the bias was negligible for larger sample sizes.

Finally, the coverage rates for PML2 and PML3 were acceptable. In the conditions
with biased estimates for MML1 and PML1, the coverage rates were too low.

4. Empirical Examples

In this section, three datasets with item responses with a testlet structure from the
R package sirt [36] are analyzed. Estimated item parameters from the different MML
and PML estimation methods (i.e., MML1, PML1, PML2, and PML3; see Section 3.1.1)
are compared.

4.1. Dataset data.read

The first dataset, data.read, contains the item responses of 328 subjects on 12 items that
stem from a reading comprehension test of Austrian students. The 12 items are arranged
into three testlets, each testlet containing of four items. Table 3 contains the estimated item
discriminations ai and estimated item intecepts bi and their standard error estimates for
the four different estimation methods MML1, PML1, PML2, and PML3. The average item
discrimination was higher for the methods that ignored the testlet structure (MML: 1.241,
PML1: 1.184) than PML2 or PML3 with 0.983, which took the testlet structure into account
in the estimation.

Table 3. Dataset data.read: Estimated item discriminations ai and item intercepts bi (standard errors
in parentheses) for different estimation methods.

ai bi

Item Testlet MML1 PML1 PML2 PML3 MML1 PML1 PML2 PML3

A1 1 0.96 (0.25) 0.97 (0.26) 0.85 (0.30) 0.85 (0.30) −2.09 (0.23) −2.04 (0.21) −1.97 (0.22) −1.97 (0.22)
A2 1 1.44 (0.28) 1.36 (0.31) 1.54 (0.51) 1.54 (0.51) −1.45 (0.21) −1.38 (0.20) −1.46 (0.28) −1.46 (0.28)
A3 1 1.14 (0.21) 1.08 (0.27) 1.07 (0.33) 1.07 (0.33) −0.28 (0.14) −0.33 (0.14) −0.33 (0.14) −0.33 (0.14)
A4 1 0.83 (0.18) 0.85 (0.21) 0.88 (0.28) 0.88 (0.28) 0.19 (0.13) 0.18 (0.13) 0.19 (0.13) 0.19 (0.13)
B1 2 0.58 (0.17) 0.60 (0.17) 0.67 (0.23) 0.67 (0.23) −1.04 (0.14) −0.98 (0.14) −1.00 (0.14) −1.00 (0.14)
B2 2 0.67 (0.17) 0.67 (0.16) 0.80 (0.24) 0.80 (0.24) −0.09 (0.12) −0.03 (0.12) −0.03 (0.13) −0.03 (0.13)
B3 2 1.22 (0.32) 1.11 (0.29) 1.18 (0.42) 1.17 (0.42) −2.85 (0.33) −2.76 (0.30) −2.80 (0.37) −2.80 (0.37)
B4 2 1.11 (0.22) 1.11 (0.23) 1.51 (0.45) 1.51 (0.45) −0.93 (0.16) −0.95 (0.16) −1.08 (0.21) −1.08 (0.21)
C1 3 2.40 (0.63) 2.31 (0.90) 0.91 (0.36) 0.91 (0.36) −4.30 (0.75) −4.37 (1.00) −2.97 (0.33) −2.97 (0.33)
C2 3 1.53 (0.29) 1.48 (0.31) 1.05 (0.25) 1.05 (0.25) −1.32 (0.21) −1.27 (0.20) −1.11 (0.16) −1.11 (0.16)
C3 3 1.95 (0.49) 1.56 (0.48) 0.72 (0.26) 0.72 (0.26) −3.07 (0.49) −2.65 (0.40) −2.10 (0.21) −2.10 (0.21)
C4 3 1.08 (0.23) 1.11 (0.28) 0.63 (0.20) 0.63 (0.20) −1.36 (0.18) −1.26 (0.18) −1.11 (0.14) −1.11 (0.14)

Note: MML1 = marginal maximum likelihood estimation under local independence; PML1 = pairwise likelihood
estimation based on all item pairs under local independence; PML2 = pairwise likelihood estimation under the
normal copula model; PML3 = pairwise likelihood estimation based on item pairs with items from different
testlets.

The average absolute difference in the estimated item discriminations was 0.454 for
PML3 and MML, and it was 0.345 for PML3 and PML1. The average absolute difference
between PML1 and MML was substantially smaller at 0.130. Note that PML2 and PML3
resulted in practically identical item parameter estimates.
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4.2. Dataset data.pisaRead

The second dataset, data.pisaRead, consisted of item responses from 623 Austrian
students in a PISA study [40] to one item cluster of reading items. The 12 items in the
dataset were arranged into four testlets that each contained three items.

Table 4 presents the estimated item discriminations ai and estimated item intercepts bi
for the three estimation methods. The four estimation methods resulted in similar average
item discriminations (MML1: 1.518, PML1: 1.555, PML3: 1.518). As for the first dataset,
PML2 and PML3 resulted in practically identical parameter estimates. The average absolute
differences in item discrimination between PML3 and MML1 with 0.091, as well as between
PML3 and PML1 with 0.089, were only slightly larger than between PML1 and MML1
with 0.068.

Table 4. Dataset data.pisaRead: Estimated item discriminations ai and item intercepts bi (standard
errors in parentheses) for different estimation methods.

ai bi

Item Testlet MML1 PML1 PML2 PML3 MML1 PML1 PML2 PML3

R432Q01 1 2.33 (0.34) 2.64 (0.43) 2.83 (0.54) 2.83 (0.54) −3.39 (0.36) −3.67 (0.46) −3.86 (0.56) −3.86 (0.56)
R432Q05 1 2.04 (0.26) 2.02 (0.26) 2.13 (0.31) 2.13 (0.31) −1.70 (0.19) −1.72 (0.20) −1.78 (0.22) −1.78 (0.22)
R432Q06 1 1.22 (0.25) 1.09 (0.27) 1.07 (0.28) 1.07 (0.28) 2.99 (0.26) 2.90 (0.26) 2.88 (0.26) 2.88 (0.26)
R456Q01 2 1.19 (0.30) 1.59 (0.49) 1.38 (0.43) 1.38 (0.43) −4.30 (0.41) −4.81 (0.68) −4.56 (0.57) −4.56 (0.57)
R456Q02 2 0.88 (0.15) 0.94 (0.17) 0.83 (0.16) 0.83 (0.16) −1.89 (0.14) −1.94 (0.15) −1.88 (0.14) −1.88 (0.14)
R456Q06 2 1.90 (0.26) 2.00 (0.30) 1.87 (0.27) 1.87 (0.27) −2.82 (0.26) −2.90 (0.30) −2.78 (0.27) −2.78 (0.27)
R460Q01 3 1.53 (0.19) 1.51 (0.19) 1.48 (0.20) 1.48 (0.20) −0.71 (0.12) −0.76 (0.13) −0.75 (0.12) −0.75 (0.12)
R460Q05 3 1.71 (0.24) 1.79 (0.27) 1.67 (0.27) 1.67 (0.27) −2.68 (0.24) −2.74 (0.27) −2.64 (0.26) −2.64 (0.26)
R460Q06 3 1.24 (0.16) 1.24 (0.16) 1.16 (0.16) 1.16 (0.16) −0.50 (0.11) −0.49 (0.11) −0.47 (0.11) −0.47 (0.11)
R466Q02 4 1.32 (0.17) 1.29 (0.15) 1.29 (0.16) 1.29 (0.16) 0.09 (0.11) 0.11 (0.11) 0.11 (0.11) 0.11 (0.11)
R466Q03 4 0.97 (0.17) 1.00 (0.16) 0.97 (0.17) 0.97 (0.17) 1.66 (0.14) 1.66 (0.14) 1.64 (0.14) 1.64 (0.14)
R466Q06 4 1.52 (0.20) 1.53 (0.21) 1.55 (0.22) 1.55 (0.22) −1.76 (0.16) −1.79 (0.17) −1.80 (0.18) −1.80 (0.18)

Note: MML1 = marginal maximum likelihood estimation under local independence; PML1 = pairwise likelihood
estimation based on all item pairs under local independence; PML2 = pairwise likelihood estimation under the
normal copula model; PML3 = pairwise likelihood estimation based on item pairs with items from different
testlets.

4.3. Dataset data.pisaMath

The third dataset, data.pisaMath, contains the item responses of 565 Austrian students
on 11 mathematics items to an item cluster in a PISA study [40]. The 11 items are arranged
into four testlets with two items each, and there are three single items without a testlet
structure included in the dataset.

Table 5 contains the estimated item parameters for data.pisaMath. The average item
discrimination was slightly larger for MML1 and PML1, with 1.269 and 1.263, compared
to the PML3 estimation method, with a value of 1.205. Interestingly, the average absolute
difference in the item discriminations between PML1 and MML1 was very small at 0.012,
but they were substantially larger between PML3 and MML1, with 0.125, and between
PML3 and PML1, with 0.132. Again, PML2 and PML3 provided practically identical item
parameter estimates.
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Table 5. Dataset data.pisaMath: Estimated item discriminations ai and item intercepts bi (standard
errors in parentheses) for different estimation methods.

ai bi

Item Testlet MML1 PML1 PML2 PML3 MML1 PML1 PML2 PML3

M192Q01 1 1.26 (0.16) 1.27 (0.17) 1.32 (0.18) 1.32 (0.18) 0.23 (0.11) 0.23 (0.11) 0.23 (0.11) 0.23 (0.11)
M406Q01 2 1.77 (0.22) 1.74 (0.23) 1.45 (0.20) 1.45 (0.20) 0.37 (0.13) 0.36 (0.13) 0.33 (0.12) 0.33 (0.12)
M406Q02 2 2.27 (0.32) 2.22 (0.33) 1.83 (0.26) 1.83 (0.26) 1.66 (0.22) 1.63 (0.21) 1.45 (0.18) 1.45 (0.18)
M423Q01 3 0.53 (0.12) 0.52 (0.13) 0.53 (0.13) 0.53 (0.13) −1.11 (0.10) −1.11 (0.10) −1.11 (0.11) −1.11 (0.11)
M496Q01 4 1.38 (0.18) 1.39 (0.18) 1.24 (0.17) 1.24 (0.17) −0.29 (0.12) −0.30 (0.12) −0.28 (0.11) −0.28 (0.11)
M496Q02 4 1.13 (0.16) 1.12 (0.17) 0.94 (0.15) 0.94 (0.15) −1.15 (0.13) −1.15 (0.13) −1.09 (0.12) −1.09 (0.12)
M564Q01 5 0.82 (0.13) 0.82 (0.13) 0.85 (0.13) 0.85 (0.13) −0.07 (0.10) −0.07 (0.10) −0.07 (0.10) −0.07 (0.10)
M564Q02 5 0.79 (0.12) 0.79 (0.12) 0.82 (0.13) 0.82 (0.13) −0.12 (0.10) −0.12 (0.10) −0.12 (0.10) −0.12 (0.10)
M571Q01 6 1.42 (0.18) 1.43 (0.19) 1.53 (0.21) 1.53 (0.21) −0.26 (0.12) −0.26 (0.12) −0.27 (0.12) −0.27 (0.12)
M603Q01 7 1.17 (0.15) 1.18 (0.16) 1.23 (0.17) 1.23 (0.17) −0.28 (0.11) −0.29 (0.11) −0.29 (0.11) −0.29 (0.11)
M603Q02 7 1.42 (0.18) 1.42 (0.18) 1.51 (0.21) 1.51 (0.21) 0.14 (0.12) 0.14 (0.12) 0.15 (0.12) 0.15 (0.12)

Note: MML1 = marginal maximum likelihood estimation under local independence; PML1 = pairwise likelihood
estimation based on all item pairs under local independence; PML2 = pairwise likelihood estimation under the
normal copula model; PML3 = pairwise likelihood estimation based on item pairs with items from different
testlets.

5. Discussion

In this article, we propose a variant of PML estimation that allows the consistent
estimation of item parameters in the 2PL model despite the presence of local dependence.
In the modified PML approach, the bivariate frequencies of items within the same testlet do
not appear in the optimization function. As such, local dependence is essentially removed
from the estimation. Of course, this change brings the disadvantage of efficiency losses
compared with MML estimation if local independence holds. However, with large sample
sizes, the bias outweighs the higher variance of PML estimation. Our proposed method
had equal performance to the MML and PML estimation methods on a 2PL normal copula
model that additionally estimated local dependence parameters. This finding was obtained
with an unstructured model of local dependence. If local dependence is summarized into a
small(er) number of dependence parameters per testlet, the simultaneous estimation of the
item parameters and dependence parameters might be more efficient than PML estimation
with excluded item pairs of items referring to the same testlet.

The PML estimation approach can be easily adapted to IRT models with polytomous
item responses under local dependence. Similarly, multidimensional IRT models with a
dependence structure can also be handled with the modified PML estimation. Importantly,
if all items only load on one dimension, PML estimation solves the issue of the evaluation
of high-dimensional integrals in MML estimation for multidimensional IRT models.

This article did not discuss the estimation of standard errors. However, standard
M-estimation theory can be used for statistical inference (see also [14,41]). Future studies
could evaluate the accuracy of standard error estimation under PML.

In some applications, the standard errors of person parameter estimates θ̂ of θ are
of interest [42,43]. The M-estimation theory for a clustered data structure (i.e., cluster-
robust standard errors) can be used to determine the standard errors in the case of local
dependence. Alternatively, the resampling of items or testlets can also be used to compute
standard errors [44].

This paper focuses on the estimation of the 2PL model with local dependence. How-
ever, PML estimation for the Rasch model [45] with local dependence could also be carried
out for smaller sample sizes [46]. Alternatively, prior distributions or regularized estima-
tion can stabilize the estimation of the 2PL model in smaller sample sizes [47–49]. In PML
estimation, a prior distribution (or penalty terms) could also be included (see [50,51] for a
similar approach).

Finally, previous research indicated that the effect of local dependence on the item
parameters reduces with an increasing number of items for fixed lengths of testlets. In
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this case, the local dependence vanishes for infinitely long tests [52]. It is likely that the
negative impacts of local dependence in reporting from tests should not be exaggerated
unless confronted with very short tests or an excessive dependence structure.
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