
Citation: Nomqupu, S.; Sali, A.;

Nyamugama, A.; Ndou, N.

Integrating Sigmoid Calibration

Function into Entropy Thresholding

Segmentation for Enhanced

Recognition of Potholes Imaged Using

a UAV Multispectral Sensor. Appl. Sci.

2024, 14, 2670. https://doi.org/

10.3390/app14072670

Academic Editors: Jiangyun Li,

Tianxiang Zhang and

Peixian Zhuang

Received: 23 February 2024

Revised: 20 March 2024

Accepted: 20 March 2024

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Integrating Sigmoid Calibration Function into Entropy
Thresholding Segmentation for Enhanced Recognition of
Potholes Imaged Using a UAV Multispectral Sensor
Sandisiwe Nomqupu 1, Athule Sali 1, Adolph Nyamugama 2 and Naledzani Ndou 1,*

1 Department of GIS and Remote Sensing, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa;
201506181@ufh.ac.za (S.N.); 201506810@ufh.ac.za (A.S.)

2 Agricultural Research Council, Natural Resource and Engineering (ARC-NRE), Pretoria 0001, South Africa;
nyamugamaa@arc.agric.za

* Correspondence: nndou@ufh.ac.za

Abstract: This study was aimed at enhancing pothole detection by combining sigmoid calibration
function and entropy thresholding segmentation on UAV multispectral imagery. UAV imagery was
acquired via the flying of the DJI Matrice 600 (M600) UAV system, with the MicaSense RedEdge
imaging sensor mounted on its fixed wing. An endmember spectral pixel denoting pothole feature
was selected and used as the base from which spectral radiance patterns of a pothole were analyzed.
A field survey was carried out to measure pothole diameters, which were used as the base on which
the pothole area was determined. Entropy thresholding segmentation was employed to classify
potholes. The sigmoid calibration function was used to reconfigure spectral radiance properties of
the UAV spectral bands to pothole features. The descriptive statistics was computed to determine
radiance threshold values to be used in demarcating potholes from the reconfigured or calibrated
spectral bands. The performance of the sigmoid calibration function was evaluated by analyzing
the area under curve (AUC) results generated using the Relative Operating Characteristic (ROC)
technique. Spectral radiance pattern analysis of the pothole surface revealed high radiance values
in the red channel and low radiance values in the near-infrared (NIR) channels of the spectrum.
The sigmoid calibration function radiometrically reconfigured UAV spectral bands based on a total
of 500 sampled pixels of pothole surface obtained from all the spectral channels. Upon successful
calibration of UAV radiometric properties to pothole surface, the reconfigured mean radiance values
for pothole surface were noted to be 0.868, 0.886, 0.944, 0.211 and 0.863 for blue, green, red, NIR and
red edge, respectively. The area under curve (AUC) results revealed the r2 values of 0.53, 0.35, 0.71,
0.19 and 0.35 for blue, green, red, NIR and red edge spectral channels, respectively. Overestimation
of pothole 1 by both original and calibrated spectral channels was noted and can be attributed to the
presence of soils adjacent to the pothole. However, calibrated red channel estimated pothole 2 and
pothole 3 accurately, with a slight area deviation from the measured potholes. The results of this
study emphasize the significance of reconfiguring radiometric properties of the UAV imagery for
improved recognition of potholes.

Keywords: potholes; sigmoid calibration function; image segmentation; entropy thresholding; UAV
multispectral sensor

1. Introduction

Pothole detection is critical for maintaining roads and vehicle safety [1]. The progres-
sion in remote sensing technology has offered exciting avenue for studying detection and
characterization of potholes [2]. The improvements in the accuracy and spatial resolution
of remotely sensed images now enable the detection and characterization of small objects
such as potholes. Unmanned Aerial Vehicle (UAV) systems have recently become the most
commonly reliable remote sensing platforms for detecting potholes due to their ability to
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detect features at an ultra-spatial resolution of a few centimeters [3]. As such, segmentation
of these UAV images has become the basis for pothole characterization and improving
segmentation accuracy is of great interest to remote sensing scientists. When imaged using
UAV systems, image segmentation becomes the basis for characterizing potholes. Although
there are several remote sensing image segmentation methods capable of detecting and
characterizing potholes such as spatial-based image segmentation [4], hybrid-technology-
based image segmentation [5] and semantic-based image segmentation [6], spectral-based
image segmentation has been, and is still, of great interest to the remote sensing com-
munity [7]. This method segments an image by analyzing the pixel values [8], through
either feature space clustering [9] or thresholding [10]. Of these spectral-based approaches,
thresholding is recognized as the most viable and practical way for extracting information
from UAV imagery [11], and potholes are no exception.

The thresholding approach performs under the supposition that the distribution pixel
intensity in the imagery has two different peaks, and the threshold value can be deter-
mined by any intensity in the valley that separates them [12]. The threshold is defined
as a probability point which confines the criteria for allowing certain processes on the
image [13]. As such, the statistical perception known as “entropy” is often used for the
image thresholding [14]. This approach, conventionally popular for image binarization,
segments image into categories of pixels with values that are either lower, greater than
or equal to the threshold [15]. The inclusion of the thresholding approach in machine
learning and automated detection of pothole in various studies also highlights the signifi-
cance of this approach [16]. In a study by Kim and Ryu [17], the thresholding technique
achieved 88% accuracy in extracting pothole regions. The thresholding approach is efficient
when there is a clear distinction between a target feature and the background, such as a
pothole and asphalt, exhibiting a sharp contrast in their spectral reflectance. However,
the thresholding approach has been commonly deployed on grayscale images [18]. As
these images are the product of converted multispectral imagery, they contain less details
about potholes [14]. Because multispectral imagery contains additional information such
as hue and saturation [19], this emphasizes a need to shift focus towards multispectral
image thresholding [20].

Image thresholding is not without disadvantages. It relies on information at pixel level,
disregarding pixel association with neighboring pixels [21]. Exacerbating the situation are
radiometric errors associated with ultra-spatial resolution UAV images, which enable them
to detect even smaller features [22], resulting in undesirable noise. These radiometric errors
emanate because of the local image contrast, tonal range, random noise and radiometric
resolution [23]. Without minimizing or removing these errors, poor segmentation of
potholes may occur, subsequently complicating their characterization [22]. Therefore,
to minimize uncertainties surrounding thresholding performance, calibration of UAV
multispectral imagery to potholes is required prior to the deployment of thresholding
classifier. Uncalibrated models tend to either underestimate or overestimate the probability
of outcomes [24], subsequently making insignificant decisions regarding pothole size.
Performed prior to image classification, calibration adjusts the image radiometric properties
to closely match the pothole features [25]. The outcome of the UAV multispectral data
calibration must be the degree to which a pixel belongs to a pothole class, instead of a pixel
directly becoming a member of a pothole class [26]. Calibration of UAV multispectral data
to potholes can be achieved by deploying either isotonic regression (also known as ROC
convex hull approach) [27] or Platt-based sigmoid [28]. Although the isotonic regression
approach is capable of calibrating probability of classifier scores [29], it is subjected to
model overfitting when datasets are smaller, such as when dealing with few potholes.

The Platt-based sigmoid approach has demonstrated the ability to overcome the
shortfalls associated with the isotonic regression calibration model [30]. This approach
was inspired by biological neural networks and has been deployed extensively in train-
ing machine learning algorithms, especially as an activation function in artificial neural
networks [31]. Of these neural networks, the multilayer perceptron (MLP), trained with
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backpropagation learning, has become the most popular neural network on which sigmoid
calibration function is deployed [32]. This calibration model can fit a logistic regression
classifier to UAV multispectral data using the value 0 or 1 to produce a binary image.
These binary values can serve as the pothole output points at which the sigmoid function
saturates [33]. This approach is important if thresholds are required for demarcation of
pothole surface from multispectral imagery [26], especially when the pothole class re-
quires quantification. The sigmoid calibration function can calibrate potholes by relying on
two parameters, namely (a) a location parameter (m), which specifies the sigmoidal mid-
point, where the calibrated score is 0.5, and (b) a shape parameter (γ), which specifies
the slope of the sigmoid at the midpoint [34]. In this case, the probability outcomes of
the calibration model are thresholded to reduce mischaracterization of features [35]. The
responsibility of thresholding is to convert a projected probability or score into a certain
class. Several studies on pothole characterization based on UAV multispectral imagery
focused on improving methods and techniques for detecting potholes [18,36]. However,
the deployment of these approaches without them being subjected to a calibration process
poses a question regarding their ability to compensate for information loss due to noise
associated with ultra-spatial resolution of UAV sensors. To our best knowledge, there is
currently no study that has characterized potholes by integrating entropy thresholding
segmentation classifier and sigmoid calibration function. In the quest for optimized charac-
terization of potholes from UAV multispectral imagery, we proposed an approach which
combine sigmoid calibration function and entropy thresholding segmentation classifier.

2. Materials and Methods
2.1. Experimental Site

This investigation was carried out in a section of the R523 road which runs from Sibasa
Town to the N1 national road, which runs from Cape Town to Beit Bridge, which is the
border with Zimbabwe. The road section on which the experiment was carried out is
situated at Nzhelele Village in the Limpopo Province. The experimental site is located
between 22◦43′30′′ S; 30◦0′45′′ E and 22◦52′30′′ S; 30◦06′30′′ E grid reference, in the northern
part of South Africa, within the Vhembe District Municipality. The site was selected based
on the availability of the UAV imagery containing tarred road which was subjected to
potholes. Figure 1 presents the location of the experimental site in relation to South Africa.
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2.2. Methodology

The experiment for pothole recognition in this study was achieved by deploying the
sequence of methods and techniques as shown in Figure 2.
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Figure 2. Schematic flowchart diagram explaining the employed approach.

2.2.1. Unmanned Aerial Vehicle (UAV) Data

The UAV data used in this experiment was the imagery captured using the MicaSense
RedEdge imaging sensor, embedded on a fixed wing of the DJI Matrice 600 (M600) UAV
system supplied by the Da-Jiang Innovations, Shenzhen, China. This multispectral imaging
sensor scanned the road pavement at 8.55 cm spatial resolution at 47.2◦ horizontal field
of view (HFOV). The MicaSense RedEdge sensor captured the road pavement using five
narrow spectral channels, i.e., blue (475 nm), green (560 nm), red (668 nm), near-infrared
(840 nm) and red-edge (717 nm) wavelengths of the electromagnetic spectrum. Table 1
provides a detailed description of the UAV system employed to acquire the imagery used
in this study. The advantage of employing this narrow-band camera was based on its
ability to take precise measurements of certain wavelengths, resulting in more detailed and
accurate land surface information. A single UAV image with five (5) spectral channels was
subsequently acquired to capture asphalt surface containing potholes. Detailed information
regarding the imagery used is provided in Table 1.
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Table 1. Characteristics of the UAV system employed to acquire image for this study.

System Characteristics Specification

Platform

Mass 6 kg
Flying height 120 m
Areal extent 8711 m squared

Scanning duration 13 min 28 s
Speed 10 ms−1

Visible satellites 13
Overlap 75%
Side lap 75%

Dimension 1.2 m

Red-Edge Sensor

Spectral channels B, G, R, NIR, R_Edge
Focal length 5.5 mm
Field of view 7.2 degrees

Mass 150 g
Image resolution 1280 × 960 mm
Spatial resolution 8.5 cm

2.2.2. Field-Based Data

Field-based data, in the form of pothole diameters, were measured using the Stramm
5 m × 16 mm M2554 P2 measuring tape. Moreover, the locations of the potholes were also
verified using the Garmin eTrex 22x Handheld GPS® supplied by the Garmin Southern
Africa (PTY) Ltd., Johannesburg, South Africa. The GPS provided a consistent and accurate
method of determining the location [37]. The field-measured pothole diameter data was
used as the base from which pothole size was computed.

2.3. UAV Sensor Calibration

The camera calibration was performed prior to UAV take-off, using the black–white
chessboard pattern MicaSense Calibrated Reflectance Panel (CRP). This process was carried
out to readjust the camera with irradiance properties of the land surface during the flight
period [38]. The square located at each corner of the CRP served as a positional reference
point. The CRP was placed at approximately 1 m distance to cover the sensor’s field of
view. The UAV sensor was rotated 360◦ degrees around the calibration panel along its
center axis, and then held towards the incident light direction to avoid the influence of light
reflectance from surrounding features. The UAV status indicator is expected to emit a green
light after calibration; if it blinks red, it means there is strong interference and recalibration
is required. Upon the successful detection of the CRP by the sensor, light-emitting diode
was flashed to indicate a successful recording of incident radiation.

2.4. Image Pre-Processing

UAV images are usually subjected to distortion caused by the camera movement dur-
ing landscape scanning. This subsequently reduces the quality of the image, underscoring
the need for image pre-processing. In this study, pre-processing was carried out to correct
geometric and radiometric distortions incurred in the image scenes, as follows.

2.4.1. Geometric Correction

Specifically, the image orthorectification process was carried out to spatially fuse the
image scenes captured on each spectral channel, to form a single image based on the
common rows and columns. Subsequently, geometric correction was carried out in order
to spatially register the orthomosaic imagery. The imagery was spatially registered to
WGS-1984-UTM-Zone-36S spheroid. The atmospheric correction process was not carried
out in this study because the UAV system operated below the atmosphere; the recorded
reflected radiations were not subjected to interaction with the atmosphere. The imaged
scene obtained from the UAV system extended beyond the asphalt road to cover crop fields
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and adjacent vegetation. As such, the image sub-setting process was carried out to extract
only the surface covered by asphalt road, using the “Extract By Mask” tool embedded in
ArcMap GIS environment.

2.4.2. Conversion of DN to Radiance

Because the MicaSense RedEdge imaging sensor records images in 16-bit format, radio-
metric correction models are required to convert raw pixel values into spectral reflectance
values. This is especially true when the desired results are reflectance maps [39]. For this
study, the unitless digital number (DN) values of the image were converted into at-sensor
radiance, using Equation (1) adopted from [40]:

L(λ) = V(x, y)×
(

a1

g

)
× DN(λ)− DNBL

te + a2y − a3tey
(1)

where L(λ) denotes the spectral radiance (measured in W/m2/sr/nm); DN is the raw digital
number of a given pixel and DNBL is the black level value (usually obtained from metadata
file; a1, a2 and a3 are radiometric calibration coefficients; te is the image exposure time; and
g denotes the sensor gain setting [39].

2.4.3. UAV Image Filtering

The image filtering process was performed to enhance the visibility of potholes from
the imagery, under a supposition that there is a steep gradient where land feature properties
start to change in the image. Based on this supposition, the edges were identified by
deriving the intensity values and finding locations where derivative is maximum. The
gradient in the imagery was computed using Equations (2) and (3) adopted from [41]:

∂ f (x, y)
∂x

= ∆x =
f (x + dx, y)− f (x, y)

dx
(2)

∂ f (x, y)
∂x

= ∆y =
f (x, y + dy)− f (x, y)

dy
(3)

where dx and dy compute distance along the x and y directions.
The gradient discontinuity in the image was then determined by deploying Equation (4):

M =
√

∆x2 + ∆y2 (4)

2.5. Characterization of Potholes by Thresholding Classifier

In this study, two experiments were conducted: the first experiment was conducted
based on uncalibrated (original) UAV spectral bands, and the second experiment was
conducted using the calibrated UAV spectral channels, as follows.

2.5.1. Characterization of Potholes by Thresholding Classifier

A total of 25 points denoting pothole surface were randomly created from RGB image
to produce a vector shapefile. The vector shapefile was overlain on each UAV spectral
channel, and the values of pixels on which the points were digitized were extracted and
appended to the point shapefile, using the “Extract Mult Values to Points” module in
ArcGIS version 10.8 software. The extracted pixel values were used to compute descriptive
statistics for pothole surface reflectance across the channels of UAV sensor’s spectrum.
Upon the successful computation of the statistics, the pothole surface was then demarcated
by using minimum and maximum spectral radiance values as thresholds for each UAV
spectral channel, such that

L(λ) =
{

1 i f L(i, j) ≥ Tmin and ≤ Tmax
0, otherwise

(5)
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where L denotes spectral radiance value of UAV image band, i denotes pixel at i-th location,
j denotes pixel at j-th location, Tmin is the minimum threshold and Tmax is the maximum
threshold.

The values that fall within the upper bound and the lower bound were the representa-
tive of pothole surface. The binary image was reclassified into two classes, where class 0
indicated non-pothole surface (i.e., pixel values falling outside the thresholds) and class 1
indicated pothole surface (i.e., pixel values falling outside the thresholds).

2.5.2. Sigmoid Calibration Function

The sigmoid activation function of the backpropagation multilayer perceptron (MLP)
neural network was used to account for the effect of variability over the sampled spectral
radiance denoting pothole surface. The Platt-based sigmoid calibration function was used
to calibrate spectral radiance properties of UAV imagery to potholes. The sigmoid function
managed this by employing a nonlinear transformation of the linear regression model to
linearly separate spectral radiance values of pothole surface and non-pothole surface based
on Equation (6) adopted from [28]:

σ(x)
L

1 + exp−k(x−x0)
(6)

where:
L denotes supremum of the values of the function; σ (x) is the sigmoid function;

exp ≈ 2.71 is the base of the natural logarithm; k denotes the steepness of the sigmoid curve;
x and x0 are the parameters fitted into the sigmoid function through maximum likelihood
prediction function according to [28] (x0 denotes the value of function’s midpoint).

In this study, the sigmoid function for spectral radiance of each dependent UAV
spectral channel was set to saturate at 1.0, so that activation function became gradually
more linear in nature.

2.5.3. Improving Sigmoid Performance by Minimizing Loss Function

The performance of the sigmoid loss function was improved by deploying the gradient
descent method. In this case, learning a loss function was defined, and then minimized by
optimizing sigmoid function. This method was achieved by evaluating the parameters x
and x0 fitted into sigmoid function by deploying Equation (7) adopted from [42]:

argmin
x, x0

{
−∑i yilog (pi) + (1 − yi)log(1 − pi)

}
(7)

where
pi =

1
1 + exp(x fi−x0)

(8)

2.5.4. Performance Evaluation of the Sigmoid Calibration Function

The validation of the sigmoid model performance was carried out by employing
the ROC technique embedded on TerrSet 18.3 geospatial monitoring software package.
This was achieved by using the sigmoid calibrated bands as against the coded image
used as training mask. In this case, each sigmoid calibrated spectral band was treated
as the test data, whereas the training mask image was treated as the ground truth. All
the pothole features in the image were considered; otherwise, random sampling would
have been employed. Subsequently, random sampling was used to select points on which
spectral pixel values for pothole surface. The thresholds were selected, and the number of
thresholds were set to 100. This allowed the specification of the interval number and the
split of categories on the basis of value range that are automatically defined. Ultimately,
the output for each input image was plotted with the percentage of true positives on the
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vertical axis and the percentage of false positives on the horizontal axis, and the area under
the curve (AUC) was calculated using Equation (9) adopted from [43]:

AUC = ∑n
i−1 [xi+1 − xi] ∗

[
yi +

yi+1 − yi
2

]
(9)

where n represents the number of thresholds, xi denotes the rate of the false positives for
threshold and yi denotes the rate of true positives for threshold.

Upon the successful performance evaluation of the sigmoid activation model, potholes
were classified using the thresholding technique explained in Section 2.5 in this study.

2.5.5. Field Determination of Pothole Size

The area of pothole was calculated as a function of the field-measured average diameter
per pothole, using Equation (10).

A = π

(
d
2

)2
(10)

where:
A is the area of a pothole,
pi (π) equals 3.14, and
d is the field-measured diameter
Subsequently, the pothole area derived from the spectral radiance data generated from

the sigmoid model. This was then compared with the field-measured pothole area, with a
view to determine the accuracy of the model.

3. Experimental Results

Through visual interpretation of the RGB image, a total of three (3) potholes were
identified in the study area. Figure 3 provides the RGB image of the experimental site, with
three (3) road potholes identified and numbered.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 20 
 

for each input image was plotted with the percentage of true positives on the vertical axis 
and the percentage of false positives on the horizontal axis, and the area under the curve 
(AUC) was calculated using Equation (9) adopted from [43]: 𝐴𝑈𝐶 = ∑ 𝑥 − 𝑥 ∗ 𝑦 +   (9)

where n represents the number of thresholds, xi denotes the rate of the false positives for 
threshold and yi denotes the rate of true positives for threshold. 

Upon the successful performance evaluation of the sigmoid activation model, pot-
holes were classified using the thresholding technique explained in Section 2.5 in this 
study. 

2.5.5. Field Determination of Pothole Size 
The area of pothole was calculated as a function of the field-measured average diam-

eter per pothole, using Equation (10). 𝐴 =  𝜋   (10)

where: 
A is the area of a pothole, 
pi (π) equals 3.14, and 
d is the field-measured diameter 
Subsequently, the pothole area derived from the spectral radiance data generated 

from the sigmoid model. This was then compared with the field-measured pothole area, 
with a view to determine the accuracy of the model. 

3. Experimental Results 
Through visual interpretation of the RGB image, a total of three (3) potholes were 

identified in the study area. Figure 3 provides the RGB image of the experimental site, 
with three (3) road potholes identified and numbered. 

 
Figure 3. RGB image showing three potholes in the experimental site. 

3.1. Spectral Radiance Pattern Analysis of Pothole Surface from UAV Original Bands 
Upon the successful masking of asphalt, radiance values for each spectral channel 

were presented in Table 2. Descriptive statistics of the spectral radiance data sampled from 
pothole surface were generated in this study, guided by the null hypothesis that “there 
were no significant differences in spectral radiance properties of pothole surface across 

Figure 3. RGB image showing three potholes in the experimental site.



Appl. Sci. 2024, 14, 2670 9 of 19

3.1. Spectral Radiance Pattern Analysis of Pothole Surface from UAV Original Bands

Upon the successful masking of asphalt, radiance values for each spectral channel
were presented in Table 2. Descriptive statistics of the spectral radiance data sampled from
pothole surface were generated in this study, guided by the null hypothesis that “there
were no significant differences in spectral radiance properties of pothole surface across
original spectral channels of UAV imagery”. Table 2 presents the descriptive statistical
analysis of radiance properties of the potholes.

Table 2. Descriptive statistics of radiance samples obtained from original spectral channels.

Original Spectral Band N Min Max µ σ p-Value

Blue 25 0.855 0.969 0.896 0.032 0.008
Green 25 0.875 0.992 0.936 0.029 0.001
Red 25 0.937 0.984 0.962 0.012 0.002
NIR 25 0.208 0.337 0.273 0.028 0.021
Red edge 25 0.675 0.953 0.872 0.078 0.017

Minimum spectral radiance values at N = 25 were 0.855 (blue), 0.875 (green), 0.937
(NIR) and 0.675 (red edge) spectral channels for UAV imagery. These spectral channels
were also found to have maximum radiance values of 0.969, 0.992, 0.984, 0.337 and 0.953, in
that order. For these respective spectral channels, the corresponding mean radiance values
were found to be 0.896, 0.936, 0.962, 0.273 and 0.872. Their spectral radiance standard
deviation values were also found to be 0.032, 0.029, 0.012, 0.028 and 0.078, respectively, with
the computed p-values of 0.008, 0.000, 0.002, 0.021 and 0.017, respectively. Then, the spectral
radiance pattern of the potholes was computed at different spectral channels. Figure 4
presents the behavior of the potholes at different original spectral bands.
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Based on the descriptive statistics presented in Table 2, the potholes were subse-
quently demarcated based on the analysis of their upper and lower radiance threshold
values. Figure 5 provides demarcated potholes based on the original spectral channels of
UAV imagery.
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3.2. Spectral Radiance Pattern Analysis of Pothole Surface from UAV Calibrated Bands

In this study, the presence of potholes was predicted by training the MLP with sig-
moid calibration function on various spectral channels of the UAV imagery. Table 3
provides detailed information regarding the parameters used to train MLP with sigmoid
calibration function.

Table 3. Learning parameters for sigmoid calibration function-trained MLP.

Sigmoid Calibration Function for Predicting Potholes from Backpropagation MLP

Blue Channel Green Channel Red Channel NIR Channel Red Edge
Channel

Input
specifications

Independent image B, G, R, N,
R_edge

B, G, Red, NIR,
R_edge

B, G, R, N,
R_edge

B, G, Red, NIR,
R_edge

B, G, R, N,
R_edge

Dependent
variable images Blue channel Green channel Red channel NIR channel Red edge

Training mask Boolean image Boolean image Boolean image Boolean image Boolean image
Max. training
pixels used 500 500 500 500 500

Max. testing
pixels used 500 500 500 500 500
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Table 3. Cont.

Sigmoid Calibration Function for Predicting Potholes from Backpropagation MLP

Blue Channel Green Channel Red Channel NIR Channel Red Edge
Channel

Network
topology

No. of input
layer nodes 5 5 5 5 5

No. of output
layer nodes 1 1 1 1 1

No. of
hidden layers 1 1 1 1 1

Layer 1 nodes 5 5 5 5 5

Training
parameters

Training type Automatic Automatic Automatic Automatic Automatic
Learning rate type Dynamic Dynamic Dynamic Dynamic Dynamic
Learning rate start 0.01 0.01 0.01 0.01 0.01
Learning rate end 0.001 0.001 0.001 0.001 0.001
Momentum factor 0.5 0.5 0.5 0.5 0.5
Sigmoid constant 1 1 1 1 1

Stopping
criteria

Iteration 10,000 10,000 10,000 10,000 10,000
Actual
training pixels 490 497 474 483 496

Actual
testing pixels 491 497 475 483 497

Learning rate 0.0010 0.0010 0.0010 0.0010 0.0010
RMS 0.01 0.01 0.01 0.01 0.01
Training RMS 0.0322 0.0334 0.0345 0.0185 0.0349
Testing RMS 0.0344 0.0365 0.0325 0.0196 0.0350
R.sqr 0.942 0.987 0.772 0.979 0.986

The sigmoid calibration model neural network was applied across several spectral
channels of UAV imagery, with a view to determine the spectral channel on which the sig-
moid calibration function provides the best pothole estimate. Table 4 shows the descriptive
statistics generated from the radiance samples obtained from calibrated spectral channels.

Table 4. Descriptive statistics of radiance samples obtained from calibrated spectral channels.

Calibrated Spectral Bands N Min Max µ σ p-Value

Blue 25 0.848 0.911 0.868 0.032 0.004

Green 25 0.783 0.937 0.886 0.021 0.001

Red 25 0.925 0.961 0.944 0.011 0.002

NIR 25 0.18 0.32 0.211 0.024 0.018

Red edge 25 0.311 0.906 0.863 0.066 0.014

Based on the descriptive statistics presented in Table 3, the potholes were also demar-
cated based on the analysis of their upper and lower radiance threshold values. Figure 6
shows potholes as demarcated on each calibrated spectral channel.
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Figure 6. Pothole features demarcated on calibrated spectral channels: (a) blue, (b) green, (c) red,
(d) NIR and (e) red edge channels.

3.3. Spectral Comparative Analysis of Pothole Surface from Original and Calibrated Bands

Upon the successful sampling of spectral radiance data from both original and cal-
ibrated spectral bands, the sampled data were plotted on linear graph to determine the
difference between pothole radiance properties obtained from of original bands and those
which were sampled from calibrated spectral bands. Figure 7 shows the spectral radiance
properties of potholes derived from original and calibrated bands.
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Figure 7. Spectral radiance comparison between original and calibrated bands; (a) blue, (b) green,
(c) red, (d) NIR and (e) red edge.
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Generally, calibrated spectral bands exhibited low spectral radiance values when
compared with uncalibrated spectral bands.

3.4. Performance Evaluation of the Sigmoid Calibration Function

The performance of the sigmoid calibration function in reconfiguring UAV radiometric
properties to potholes was evaluated by analyzing AUC results generated by the ROC
model. Figure 8 presents the AUC-ROC curve results explaining the performance of the
sigmoid calibration model.
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Figure 8. Performance evaluation results of sigmoid calibration function on (a) blue, (b) green,
(c) red, (d) NIR and (e) red edge spectral channels.

Based on the results, the AUC values for blue, green, red, NIR and red edge spectral
channels of UAV imagery were found to be 0.53, 0.35, 0.71, 0.19 and 0.35, respectively. By
implication, the sigmoid calibration function showed better performance in radiometrically
reconfiguring the red channel of UAV imagery (Figure 7c). Moreover, the performance of
the sigmoid calibration function on blue, green, NIR and red edge spectral channels was
weak (Figure 7a,b,d,e).

3.5. Field Verification of the Pothole Area

Upon the successful characterization of the pothole surface using original and cali-
brated spectral channels, the area covered by each pothole was determined and compared
with those measured on field. Figure 9 provides a comparison of the pothole area predicted
via original and calibrated spectral channels.

From Figure 8, the area of the measured potholes 1 (Figure 8a), pothole 2 (Figure 8b)
and pothole 3 (Figure 8c) were to be 3.11 m2, 1.68 m2 and 0.83 m2, respectively. From
Figure 8a, both the original and calibrated spectral channels overestimated the size of the
pothole. Overestimation of pothole 1 can be attributed to the presence of soils adjacent to
the pothole. However, calibrated red channel (Figure 8b, c) estimated pothole 2 and pothole
3 accurately, with a slight area deviation from the measured potholes. By implications,
the sigmoid calibration function demonstrated the ability to reduce noise in UAV imagery,
leading to improved accuracy in the recognition of potholes.
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Figure 9. The area of potholes; (a) pothole 1, (b) pothole 2 and (c) pothole 3.

4. Discussion

The significance of timely and accurate detection of potholes for maintenance has
long been emphasized [44]. In recent years, studies have attempted to segment large
scale images for feature recognition [45,46]. However, detection and characterization of
potholes from multispectral data without reconfiguring radiance properties to pothole
surface may lead to inaccurate determination of pothole size [47]. The study was aimed
at calibrating radiometric properties of UAV multispectral imagery to pothole features
based on sigmoid calibration function embedded in MLP algorithm. In most cases, the
detection of potholes is done manually by inspection, with GPS, recording the location of
the pothole at a precision of at most 3 m. However, the accuracy of the GPS location at this
precision is questionable, especially for typical roads with a width of about 8 m. In the
quest for accurate timely detection of potholes, remote sensing has been endorsed due to
its reasonable temporal resolution [48]. In the quest for improved detection of potholes
using spectral unmixing of Sentinel-2 raw imagery, Gebreegziabher [49] obtained low
accuracy, and this could be associated with the inability of Sentinel-2 sensor in detecting
small possible features. Recent studies highlighted the significance of UAV imagery in
predicting potholes [50], due to its ability to collect small features of a few centimeters size.
UAV-based remote sensing, in particular, has been deemed a suitable option for offering
high-spatial resolution images that are capable of detecting potholes. Movia et al. [51]
noted that, though ultra-spatial-resolution Unmanned Aerial Vehicle sensors are capable
of retrieving multiple forms of landscape information, they are prone to issues related to
classification due to noise caused by the presence of smallest possible detectable features.
As such, optimized recognition of features from these sensors based on a single or multiple
goodness-of-fit numerical approach is required [52]. The sigmoid calibration function
algorithm facilitated a successful reconfiguration of spectral radiance properties of UAV
imagery to the pothole surface. The presence of the sigmoid function in MLP allows this
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algorithm to learn abstract features from raw inputs, which is useful for many applications,
such as image recognition [34].

A more reliable optimization function must take measurement of uncertainties into
account [53]. In this investigation, the reliability of the results obtained using the sigmoid
calibration function were evaluated by employing ROC area under curve. Although
validation approaches such as the area under margin (AUM) are also capable of evaluating
the performance of sigmoid calibration function, this technique was noted to lack the ability
to account for account model confidence [53]. The area-under-the-ROC-curve approach
has been extensively deployed in the pattern recognition domain [54]. Using this approach,
thresholds can also be derived for optimal adaptation to a change in class prior. Fawcett and
Niculescu-Mizil [55] noted that ROC-AUC approach can optimize reconfiguration outcomes
even when the classifier is poorly calibrated. Generally, pothole surface was noted to have
a higher spectral reflectance than asphalt surface in all spectral channels but blue channels.
In their analysis of field-based measurements of asphalt road spectra, Li et al. [56] noted
that asphalt surfaces under varying aging conditions showed relatively diverse spectral
reflectance patterns. Du et al. [57] noted that spectral reflectance in the visible-infrared
(VNIR) spectrum increases with the increase in tarred road age. The sigmoid calibration
function results revealed its optimization ability lying on the red spectral channel of
UAV imagery.

The calibrated spectral channels characterized the pothole surface based on the spec-
tral values that were generally lower than those of the original spectral channel. The
performance evaluation results of the sigmoid calibration function in reconfiguring spectral
radiance properties to the pothole surface revealed AUC values of 0.53, 0.35, 0.71, 0.19
and 0.35 for blue, green, red, NIR and red edge spectral channels, respectively. The ROC
evaluates the model performance based on the AUC values that range between 0 and 1.
For a model to be acceptable, the AUC value must be at least 0.5, with a value closer to
0 indicating a perfect model [58]. The ROC results of the sigmoid function evaluation-
produced focus was based on the Area Under Curve (AUC), and the sigmoid calibration
model developed based on red channel had AUC value of 0.71, which was the better
performance in comparison with the sigmoid calibration models developed based on other
spectral channels of the UAV imagery. This is due to the fact that when asphalt materials
peel off, the spectral reflectance patterns change to the soil beneath asphalt, and the fact
that soil type and brightness substantially influence the reflectance in the red channel of
spectrum [59]. Particularly, the deployment of relative operating characteristics (ROC)
graphs is progressively being commended for performance evaluation of classifiers [60].
Subsequently, the spectral reflectance of potholes from each spectral channel generated
through the prediction by the sigmoid calibration model was compared with that of pot-
holes generated from the original spectral channels of the UAV imagery, and all the original
spectral channels were more reflective compared to the predicted spectral channels. This
is related to the adjustment of high spectral reflectance, such as soil particles scattered
around potholes, that tend to cause noise. However, the ability of the absolute value of
spectral band to determine the shape of the sigmoid function depends on the spectral
properties of the image to be reconfigured. In other spectral bands, road marks (painted
in white) were recognized as potholes due to similarity in spectral reflectance properties.
Lachiche and Flach [61] noted that when a single threshold is generated from the calibration
process, the classification error produced in ROC is insignificant. Moreover, all modeling
methods perform under specified assumptions, some of which may not hold in a given
application, leading to miscalibration [62]. However, the shape of sigmoid function can be
restrictive, and it often cannot produce well-calibrated probabilities when the instances are
distributed in feature space in a biased fashion (e.g., at the extremes, or all near a separating
hyper plane) [62].

Segmenting image is considered a critical component of image processing and analysis,
but it can be very difficult, especially on high-resolution remote sensing images, because
different landscape features can have similar spectral properties and the same landscape
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feature can exhibit varying spectral characteristics [63]. Ultimately, it is challenging to
identify the ideal threshold value for a scene or landscape, suggesting that user involvement
is necessary [64]. However, it can be assumed that nearby pixels often have the same
class label (smoothness assumption) based on the spatial autocorrelations among those
pixels [65]. Determining the best thresholding algorithm is not the only conclusion that can
be drawn from the results. While threshold-based segmentation works well on uniform
backgrounds, it faces limitations in situations where landscape features are subjected to
varying illumination conditions. Threshold value definition is based on the pixel intensity
of the image, where pixels whose intensity values below threshold are assigned to region 1,
and the other pixels are assigned to region 2 [66]. We can easily include extraneous pixels
that are not part of the desired region, and we can just as easily miss isolated pixels within
the region (especially near the boundaries of the region). These effects get worse as the
noise gets worse, simply because it’s more likely that a pixel’s intensity does not represent
the normal intensity in the region. The goal of classification algorithms is to predict the
class label itself, not its probability. It follows that in order to do its job, the classifier must
get a good estimation of the critical region P(Y = 1|x) ≈ 1/2, while it is irrelevant to get a
better fit on very high and very low class probabilities.

5. Conclusions

The current study was aimed at enhancing recognition of potholes imaged by UAV
multispectral sensor. This was achieved by reconfiguring radiometrically properties of
UAV imagery to potholes based on sigmoid calibration function technique embedded in
the MLP algorithm and the thresholding approach. The efficacy of the sigmoid calibration
function approach was assessed by examining the ROC based AUC. Thresholding facil-
itated a successful categorization of potholes from both original and calibrated spectral
bands. Radiometric comparison of original and calibrated spectral bands revealed that the
sigmoid calibration function reduced the noise in ultra-high-spatial resolution imagery. In
conjunction with the thresholding technique, sigmoid calibration function also improved
the detection of pothole surfaces. Overall, the findings of this research highlight the impor-
tance of radiometrically reconfiguring UAV multispectral imagery to potholes for enhanced
recognition of potholes. In conclusion, this paper highlighted the ongoing importance of
entropy thresholding segmentation and sigmoid calibration function in addressing road
and transportation issues that hinder the achievement of sustainable development goals.
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