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Abstract: During outbreaks of infectious diseases, such as COVID-19, it is critical to rapidly deter-
mine treatment priorities and identify patients requiring hospitalization based on clinical severity.
Although various machine learning models have been developed to predict COVID-19 severity,
most have limitations, such as small dataset sizes, the limited availability of clinical variables, or
a constrained classification of severity levels by a single classifier. In this paper, we propose an
adaptive stacking ensemble technique that identifies various COVID-19 patient severity levels and
separates them into three formats: Type 1 (low or high severity), Type 2 (mild, severe, critical), and
Type 3 (asymptomatic, mild, moderate, severe, fatal). To enhance the model’s generalizability, we
utilized a nationwide dataset from the South Korean government, comprising data from 5644 patients
across over 100 hospitals. To address the limited availability of clinical variables, our technique
employs data-driven strategies and a proposed feature selection method. This ensures the availability
of clinical variables across diverse hospital environments. To construct optimal stacking ensemble
models, our technique adaptively selects candidate base classifiers by analyzing the correlation
between their predicted outcomes and performance. It then automatically determines the optimal
multi-layer combination of base and meta-classifiers using a greedy search algorithm. To further
improve the performance, we applied various techniques, including imputation of missing values and
oversampling. The experimental results demonstrate that our stacking ensemble models significantly
outperform existing single classifiers and AutoML approaches, with improvements of 6.42% and
8.86% in F1 and AUC scores for Type 1, 9.59% and 6.68% for Type 2, and 11.94% and 9.24% for Type 3,
respectively. Consequently, our approach improves the prediction of COVID-19 severity levels and
potentially assists frontline healthcare providers in making informed decisions.

Keywords: COVID-19; early triage; clinical servility prediction; adaptive stacking ensemble

1. Introduction

The novel coronavirus disease (COVID-19) emerged in late 2019 and rapidly escalated
into a global pandemic with profound effects on public health, economic stability, and the
global social structure. In the early stages of the pandemic, some countries required hospi-
talization for all confirmed COVID-19 patients, regardless of the severity of their illness [1].
This policy significantly burdened medical facilities by increasing the number of patient
admissions. Furthermore, the rapid increase in confirmed cases and the associated risk of
mortality exacerbated the shortage of healthcare professionals and facilities. Consequently,
many patients did not receive appropriate treatment, leading to symptom worsening and,
in some instances, death [2].

To effectively deliver the healthcare process with limited resources, it is important
to predict the clinical severity of COVID-19 cases to quickly prioritize treatment and
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identify patients requiring hospitalization. COVID-19 treatment relies on symptomatic
relief, supportive care, oxygen therapy, and intensive care, depending on the disease
severity [3]. Therefore, it is essential to appropriately allocate the limited healthcare
resources, such as quarantine facilities, hospital beds, and intensive care units, based on
the different severity level classifications of COVID-19 patients.

Several machine learning model approaches have been proposed to predict the severity
of COVID-19 patients. However, these studies have the following limitations.

Small patient datasets: Many studies relied on limited information or clinical vari-
ables, such as medical images [4], blood or urine tests [5,6], clinical characteristics [7], and
Electronic Health Records (EHRs) [8] obtained during hospitalization. These data sources
have the advantage of not requiring additional expenditure on materials, as the necessary
information is already included in the patient’s medical records. However, these studies
typically derived their datasets from the patient pool at a single institution in a specific local
region, usually involving 300–600 patients. Thus, these studies have limited generalizability
due to their relatively small sample sizes.

Limited availability of clinical variables: Some studies have shown promising results
using patient data obtained from extensive medical testing devices, such as blood tests [9],
CT scans [10,11], and MRIs [12]. However, the time required to confirm the test results can
delay the rapid identification of patients with critically severe COVID-19. In real-world
clinical settings, it is often necessary to triage and refer COVID-19 patients immediately
after diagnosis, even with limited available clinical variables [13]. Therefore, an adaptive
approach that can predict severity using readily available clinical variables or by selecting
variables that significantly impact actual clinical severity is needed.

Constrained classification of severity levels by a single classifier: Most studies have
employed a single classifier, such as Logistic Regression or XGBoost, to predict COVID-19
severity [14–16]. While these models have shown reasonable predictive capabilities, their
performance can decrease with insufficient data or when the number of severity levels in-
creases, making decision boundaries more complex. As a result, some studies have focused
on simple binary classifications, categorizing patient cases as either low or high severity,
with an emphasis on identifying mortality risk [17–19]. Moreover, single classifiers, which
utilize different learning methods, are limited in their ability to capture complex patterns or
the diversity within a dataset, potentially resulting in failure to generalize effectively across
the entire dataset. Consequently, each single classifier has different performance levels, and
important clinical variables for severity prediction appear inconsistently across different
classifiers. Furthermore, actual COVID-19 patient data, which were not collected for re-
search purposes, present challenging issues, such as irregular sampling and data imbalance.
Irregular sampling complicates data extraction and contributes to the large amounts of
missing data, while data imbalances can cause classifiers to be biased towards the majority
class, leading to unsatisfactory results. In this context, the performance of single classifiers
can significantly vary, limiting their ability to create stable, reliable prediction models and
often resulting in biased predictions towards the majority class without effectively learning
from the minority class.

To address these issues, we propose an adaptive stacking ensemble technique to
effectively identify various severity levels of COVID-19 patients. The main contributions of
this paper are as follows.

Use of a large patient dataset for generalization: In contrast to previous methods de-
veloped with limited patient datasets from a single institution in a specific local region, we
utilized a nationwide clinical epidemiology dataset that includes data from 5644 confirmed
COVID-19 patients. Our dataset, collected by the South Korean government, particularly
the Korea Centers for Disease Control and Prevention (KCDC), comprises patient data
from over 100 hospitals nationwide. To validate our approach with an actual patient
dataset, we enriched our dataset by incorporating additional data from a single institution,
Korea University Ansan Hospital. Consequently, our approach not only improves the
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performance of our model but also enhances its generalizability, making it applicable in
diverse clinical settings.

Adaptive data strategies for clinical variable availability: The adaptive character-
istics of our technique allow for the classification of COVID-19 severity using only the
available clinical variables, even when certain variables are unavailable or time-consuming
to collect. In contrast to previous methods that depend on extensive medical testing devices,
we utilize clinical variables that can be easily obtained through patient interviews or health
applications to support early patient triage. Recognizing that even easily obtainable clinical
variables can vary depending on the hospital’s situation, we categorize the variables within
the dataset into five groups: patient demographics, vital signs, symptoms, underlying con-
ditions, and blood test results. We employ a data-driven strategy to group these variables
and develop adaptive models for their various combinations, evaluating each model’s
performance. Additionally, we enhance our clinical severity prediction models by using
only the selected features identified through our feature selection method, considering the
clinical settings that can complicate data acquisition.

Adaptive stacking ensemble models for identifying various severity levels: To
overcome the limitations of single classifiers in predicting highly diverse severity levels,
we propose an adaptive stacking ensemble technique that automatically combines multiple
single classifiers. Our technique leverages the strengths of each classifier to capture diverse
severity patterns and correlations within our dataset, thereby improving prediction per-
formance. To construct the optimal stacking ensemble model, our technique adaptively
selects base classifiers with low complexity and high diversity based on the correlation
between their predicted outcomes and the performance of the candidate classifiers. We
then employ a greedy search algorithm to automatically determine the optimal multi-layer
combination of base and meta-classifiers. As a result, our technique represents a novel pre-
diction approach that reduces the risk of misclassification and model bias by automatically
combining selected single classifiers into a multilayer stacking ensemble learning model,
after evaluating the impact of each classifier. To further improve the model’s performance,
we utilize missing-value imputation and oversampling techniques. These methods address
the inherent challenges of clinical data that were not collected for research purposes, such
as data loss due to irregular sampling and imbalanced datasets, which can degrade the
performance of predictive models.

The remainder of this paper is organized as follows: Section 2 provides a literature
review of related work. Section 3 presents an overview and the detailed methods of the
proposed technique. Section 4 provides a comprehensive experimental evaluation and
discusses our findings. Finally, we conclude the paper in Section 5.

2. Related Work

The rapid spread of COVID-19 has emphasized the need for effective early-stage
severity prediction models to optimize resource allocation and patient triage. Consequently,
numerous studies have proposed the development of machine learning models to predict
COVID-19 severity in patients and improve prognoses.

Yan et al. [20], Shang et al. [21], and Zhang et al. [22] utilized datasets from local hospitals
in Wuhan, China, during the early stages of the COVID-19 outbreak. They predicted charac-
teristics and risk factors related to the clinical severity and mortality of COVID-19 patients
using single classifiers, including fuzzy logic and multivariate Logistic Regression. Their
goal was to identify clinical variables that could significantly influence COVID-19 severity
based on patients’ clinical characteristics and in-hospital record information (e.g., patient de-
mographics, blood test results, medical history, and real-time PCR). The epidemiological and
clinical characteristics of the patients in these datasets were identified as key factors related
to prognosis heterogeneity after COVID-19 diagnosis [23]. However, the generalizability and
applicability of these methods are limited due to their reliance on small patient datasets, with
sizes of 375, 443, and 663 patients, respectively.
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Liang et al. [24] aimed to enhance their prediction model’s generalizability by using a
dataset of 1590 patients from hospitals in the Wuhan, Hubei, and Guangdong regions of
China. They proposed a deep-learning-based Cox proportional hazards model to predict
COVID-19 patients’ survival rates. However, this model requires the time-series-based
tracking of patient cohort data, which can be challenging and costly to obtain due to the
need for continuous data formatting.

A machine-learning-based analysis of CT images has been proposed to predict COVID-19
patient mortality rates and severity changes over time. Jin et al. [25] used a deep-learning-
based diagnostic model with chest CT imaging for the early detection, quantification, and
tracking of COVID-19. They integrated a large-scale dataset that included CT scans of
11,356 patients from three medical centers in China and four publicly available databases.
Similarly, Xu et al. [26] explored the performance of single classifiers in rapidly triaging
COVID-19 patients by combining CT image analysis with EHRs and clinical laboratory
results. Al Rahhal et al. [27] utilized a Vision Transformer (ViT) technique, known for its
high performance in computer vision, to enhance accuracy by segmenting and processing
the training data along with augmented CT images. Despite the advantages of these studies
in tracking severity changes over time using image data, the need for medical testing
devices to acquire training image data poses a significant challenge, especially where rapid
initial classification is required. Furthermore, Guan et al. [28] reported that approximately
20% of COVID-19 patients do not show significant imaging changes in the lungs, leading to
unnecessary radiation exposure and the potential misallocation of limited testing resources.

Wungu et al. [29] used a meta-analysis to investigate the correlation between various
cardiac markers and the severity or mortality of COVID-19 patients. Their findings sug-
gested that elevated levels of CK-MB, PCT, NT-proBNP, BNP, and D-dimer could serve
as indicators for predicting COVID-19 severity. Meanwhile, Bayat et al. [30] applied pair-
wise correlation to compress a dataset composed of 70 clinical characteristics and used
the XGBoost model for prediction. They concluded that biomarkers such as ferritin, CRP,
LDH, and D-dimer could potentially act as indicators for detecting COVID-19 infection.
However, these datasets are obtained through standard laboratory tests, which are time-
consuming and expensive. Since these tests are typically designed to diagnose specific
health conditions, they cannot fully represent all potential clinical scenarios, necessitating
additional tests or specialized procedures. Therefore, in the context of COVID-19 diagnosis,
the availability of relevant clinical variables can be challenging due to the high influx of
patients in emergency rooms and the need for rapid diagnosis in pandemic situations.

Fan et al. [31] categorized various machine-learning-based COVID-19 prediction mod-
els into Knowledge-Driven (KD) infectious disease dynamics models and Data-Driven
(DD) machine learning models. KD models, derived from all available domain knowledge,
incorporate known relationships of infectious disease models, while DD models rely solely
on given datasets without domain knowledge. KD models typically use a set of mathe-
matical equations, like ordinary differential equations, including physically interpretable
parameters to reveal the key characteristics and transmission rules of infectious diseases.
However, they may suffer from poor predictive power due to the simplified or ambiguous
explanations of mechanistic processes and parameter uncertainty. DD models employ vari-
ous machine learning techniques, such as Support Vector Machines (SVM), Artificial Neural
Networks (ANN), Random Forests (RF), Decision Trees (DT), and K-Nearest Neighbors
(KNN), to predict COVID-19 mortality risk. These models can handle unknown non-linear
relationships in infectious disease transmission mechanisms through data learning but risk
reflecting model bias in their predictions due to the bias–variance tradeoff.

Ensemble learning, which combines the predictive abilities of two or more base learner
models to reduce bias and variance, thereby improving overall prediction performance,
has seen recent application in analyzing COVID-19 data. However, determining the
optimal combination of models for optimal performance remains challenging, with most
researchers manually constructing stacking ensemble models to predict COVID-19’s clinical
severity [32–35]. Additionally, some studies opted for simplified severity classifications
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related only to survival and death, rather than attempting to classify a diverse range of
clinical severities [36,37].

To address the challenge of automating machine learning model construction, current
Automated Machine Learning (AutoML) technology automatically generates prediction
pipelines in a data-driven manner, producing high-quality predictions. AutoML reduces
repetitive tasks to the data analysis and enables the development of applications without the
need for specific expertise in machine learning or statistics. For example, Ikemura et al. [38]
used the open-source H2O.ai AutoML package to predict COVID-19 patient mortality,
and de Holanda et al. [39] utilized the PyCaret library to select algorithms for identifying
COVID-19 patients at risk of death or needing hospitalization. However, most existing
AutoML research focuses on finding the optimal model among single classifiers or is limited
by the use of a restricted range of single classifiers, failing to ensure model diversity and
often not optimizing data and feature preprocessors, focusing solely on model optimization.
Although some AutoML approaches include stacking ensemble techniques, they generally
have a simple single-layer structure, which limits the integration needed to address complex
data structures and diverse prediction requirements.

The recent advancement of Large Language Models (LLMs) has introduced new
possibilities for processing biomedical data through Natural Language Processing (NLP),
including identifying COVID-19 infections. López-Úbeda et al. [40] proposed a system that
automatically predicts whether patients’ chest CT scan reports match radiological findings
indicative of COVID-19, using BiLSTM-, CNN-, and ANN-based text classification tech-
niques. Mermin-Bunnell et al. [41] developed an NLP model that accurately classifies EHRs
and identifies COVID-19 cases using BioClinicalBERT and DistilBERT, potentially reducing
clinician response time and improving access to antiviral treatments. Muzhe et al. [42]
developed a method using social media data from Reddit to train a novel QuadArm model
based on BERT to answer questions, aiming to identify COVID-19 cases and automatically
extract reported symptoms. These NLP-based approaches typically identify patient severity
by searching for similar results (e.g., words or documents) from text-based unstructured
data. However, these approaches face significant challenges due to the peculiarities of
medical terminology. Medical terms can be ambiguous, appearing in various forms, such
as synonyms, homonyms, and abbreviations, which can vary in meaning depending on the
context [43,44]. For example, the term ‘cold’ can refer both to a common viral respiratory in-
fection and a general feeling of low temperature, leading to the potential misinterpretation
of patient symptoms. Similarly, the abbreviation ‘MI’ might be used to denote ‘myocardial
infarction’ (i.e., a heart attack) in one context, while in another, it could stand for ‘mitral
insufficiency’ (i.e., a valve disorder). Moreover, the presence of spelling errors, grammatical
inaccuracies, and colloquial abbreviations can hinder the models’ ability to accurately
identify patient severity or lead to incorrect word extractions.

To overcome these drawbacks and present a generalized model for predicting COVID-19
clinical severity, we performed severity prediction using a large patient dataset obtained
from the KCDC and Korea University Ansan Hospital. To tackle the challenge of collecting
clinical variables and implementing early triage, we utilized the epidemiological variables
of patients based on categorical and numerical values, such as body mass index (BMI),
body temperature, heart rate, blood pressure, and existing underlying diseases. These
variables are readily available and can be quickly obtained at the time of patient admission.
Moreover, considering the potential limitations of collecting patient data in real-world
clinical settings, we grouped the clinical variables using data-driven strategies. We then
evaluated the performance of various models using different combinations of these variable
groups. We also analyzed important clinical variables using feature selection methods based
on wrapper methods, including forward selection, backward elimination, and recursive
feature elimination with cross-validation (RFECV). To improve performance, we addressed
the issues of irregular sampling and data imbalance through missing value imputation and
oversampling techniques. Finally, we presented a flexible machine learning model capable
of accurately predicting the clinical severity of COVID-19 patients across various severity
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levels by employing an adaptive stacking ensemble technique with multi-layer structures,
which helps reduce the risk of model bias.

3. Proposed Method

This section provides a detailed description of our proposed techniques. Figure 1
presents a schematic illustration of our method, which consists of five phases: (1) prepro-
cessing, (2) data-driven strategy, (3) feature selection, (4) data splitting and oversampling,
and (5) stacking ensemble model construction. A detailed explanation of each phase is
provided in the following subsections.
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Figure 1. Overview of the proposed technique.

Our technique is specifically designed to predict the various severity levels of COVID-19
in patients. Differentiating the severity levels is essential to provide appropriate interventions,
save lives, and efficiently allocate limited medical resources. Therefore, our technique can
deliver the final severity prediction results, derived from the input data, in one of three
output format types depending on the needs of the user’s intervention: Type 1 (low
or high severity), Type 2 (mild, severe, and critical), and Type 3 (asymptomatic, mild,
moderate, severe, and fatal). The prediction models delivering these results are adaptively
constructed based on the availability of clinical variables and built with various forms of
internal stacking ensembles. The following steps summarize our technique:

(1) In the first internal phase, we apply data preprocessing techniques to the acquired
COVID-19 patient data. This phase includes the removal of irrelevant features,
the imputation of missing values, data standardization, and the mean encoding of
categorical features.

(2) In the data-driven strategy, we create groups of clinical variables for severity classifica-
tion, considering the availability of a patient’s clinical variables. These groups mainly
consist of epidemiological variables that can be easily obtained when the patient visits
the hospital. To optimize the predictions using the minimum amount of necessary
clinical variables, we modify the composition of each group by changing the feature
sets (i.e., the clinical variables).
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(3) To identify the feature sets that significantly affect the severity prediction, we propose
a feature selection algorithm. This algorithm considers forward selection, backward
elimination, and RFECV to identify the optimal feature set.

(4) Subsequently, we split the dataset into training and testing subsets. The training data
undergo an oversampling process to ensure a balanced data distribution.

(5) In the stacking ensemble model construction phase, single models are built and
evaluated using the F1 and AUC score metrics. To construct an adaptive stacking
ensemble model, we select k single models that demonstrate excellent performance
and ensure diversity, with low correlations among the predictions. The predictions
are then performed using adaptive stacking ensemble models, and the results are
presented in one of three format types for various severity classes.

3.1. Datasets

In this paper, we utilized a dataset comprising 5644 COVID-19 patient records. This
dataset included 5628 patient records collected by the KCDC from more than 100 hospitals
nationwide from 20 January to 30 April 2020. Additionally, we incorporated 50 patient
records obtained from Korea University Ansan Hospital until 30 August 2020. This time
period is critically important as it covers the initial outbreak, acute phase, and peak of
COVID-19 cases in South Korea, providing a comprehensive overview of the virus’s
impact. Specifically, this period highlights the urgency of medical responses focused
on efficiently managing medical processes with limited resources and rapidly determining
treatment priorities.

The dataset contains 42 clinical variables for patients confirmed positive through
real-time PCR testing, categorized into eight target classes that reflect the severity of each
patient’s condition. The clinical variables are defined as easily measurable features, such
as body temperature, blood pressure, symptoms, and past medical history, which can be
promptly gathered directly from patients without significant delay.

Despite its nationwide scope, the dataset does not specify the locations of diagnoses in
the Republic of Korea. It includes the records of patients who were treated and subsequently
discharged from quarantine or hospitalization, as well as those who died from COVID-19
complications. The discharge criteria for patients included receiving two consecutive neg-
ative test results at least 24 h apart and the absence of symptoms. To analyze different
combinations of variable groups, we classified the clinical variables into five categories:
patient demographics, vital signs, symptoms, underlying diseases, and blood test results.

3.2. Preprocessing

To effectively utilize the COVID-19 patient dataset, this phase involves several prepro-
cessing steps, including data cleansing, missing value imputation, data standardization,
and mean encoding. Initially, we conducted data cleansing to remove irrelevant features.
We excluded variables that did not contribute to the prediction process, such as PatientID,
Outcome, and Duration. Additionally, we excluded the variable InpatientRoom because of the
potential bias caused by incorrect patient placement. Thus, we utilized 38 of the 42 clinical
variables as the model inputs. Detailed descriptions of the selected clinical variables are
presented in Table 1. The target variable for prediction, Clinical Severity Score (CSS), was
missing in 27 of 5678 records. Furthermore, we discovered seven patients in the dataset
who died before their COVID-19 status was definitively confirmed through real-time PCR,
despite undergoing laboratory tests for COVID-19. These records were excluded, and
5644 patient records were used to develop our clinical severity prediction model.
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Table 1. Clinical variables of COVID-19 patient dataset.

Clinical Variables Type Components Patient (n = 5644) Missing Values
Patient Demographics

AGE
(Years)

9 categories

(1) 0–9 years
(2) 10–19 years
(3) 20–29 years
(4) 30–39 years
(5) 40–49 years
(6) 50–59 years
(7) 60–69 years
(8) 70–79 years
(9) Over 80 years

66 (1.17%)
205 (3.63%)

1110 (19.67%)
566 (10.03%)
740 (13.11%)

1149 (20.36%)
920 (16.30%)
554 (9.82%)
334 (5.92%)

0 (0%)

SEX
(Gender) 2 categories (1) Male

(2) Female
2333 (41.34%)
3311 (58.66%) 0 (0%)

PREG
(Pregnancy) 2 categories (1) Yes

(2) No
19 (0.34%)

3276 (58.04%) 2349 (41.62%)

PREGW
(Pregnancy Week) 5 categories

(1) 0 weeks
(2) 1–9 weeks
(3) 10–19 weeks
(4) 20–29 weeks
(5) Over 30 weeks

50 (0.89%)
26 (0.46%)
8 (0.14%)
4 (0.07%)
2 (0.04%)

5554 (98.41%)

BMI
(Body Mass Index) 4 categories

(1) Less than 18.5 (underweight)
(2) 18.5–24.9 (normal)
(3) 25.0–29.9 (overweight)
(4) Greater than 30 (obese)

260 (4.61%)
2919 (51.72%)
1061 (18.80%)

210 (3.72%)
1194 (21.16%)

Vital Signs

SBP
(Systolic Blood Pressure) 5 categories

(1) Less than 120
(2) 120–129
(3) 130–139
(4) 140–159
(5) Greater than 160

1317 (23.33%)
1145 (20.29%)
1092 (19.35%)
1433 (25.39%)

522 (9.25%)

135 (2.39%)

DBP
(Diastolic Blood Pressure)

5 categories

(1) Less than 80
(2) 80–89
(3) 90–99
(4) Greater than 100

2131 (37.76%)
1808 (32.03%)
1061 (18.80%)

509 (9.02%)

135 (2.39%)

HRI
(Heart Rate) Numeric

(1) Less than 60 (bradycardia)
(2) 120–129 (normal)
(3) 130–139 (tachycardia)

167 (2.96%)
4521 (80.10%)
834 (14.78%)

122 (2.16%)

TEMPI
(Temperature) Numeric

(1) Less than 37.5 ◦C
(2) 37.5–37.9 ◦C
(3) 38–38.4 ◦C
(4) Greater than 38.4 ◦C

4925 (87.26%)
471 (8.35%)
137 (2.43%)
74 (1.31%)

37 (0.66%)

Symptoms

FEVER 2 categories (1) Yes
(2) No

1339 (23.72%)
4301 (76.20%) 4 (0.07%)

COUGH 2 categories (1) Yes
(2) No

2354 (41.71%)
3286 (58.22%) 4 (0.07%)

SPUTUM 2 categories (1) Yes
(2) No

1629 (28.86%)
4011 (71.07%) 4 (0.07%)

ST
(Sore Throat) 2 categories (1) Yes

(2) No
879 (15.57%)

4761 (84.36%) 4 (0.07%)
RNR

(Runny Nose) 2 categories (1) Yes
(2) No

618 (10.95%)
5022 (88.98%) 4 (0.07%)

MAM
(Muscle Aches) 2 categories (1) Yes

(2) No
923 (16.35%)

4717 (83.58%) 4 (0.07%)
FM

(Fatigue) 2 categories (1) Yes
(2) No

242 (4.29%)
5398 (95.64%) 4 (0.07%)

SOB
(Shortness of Breath) 2 categories (1) Yes

(2) No
700 (12.40%)

4940 (87.53%) 4 (0.07%)
HEADA

(Headache) 2 categories (1) Yes
(2) No

964 (17.08%)
4676 (82.85%) 4 (0.07%)
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Table 1. Cont.

Clinical Variables Type Components Patient (n = 5644) Missing Values
Symptoms

ACC
(Altered Consciousness) 2 categories (1) Yes

(2) No
33 (0.58%)

5607 (99.34%) 4 (0.07%)
VN

(Vomiting) 2 categories (1) Yes
(2) No

245 (4.34%)
5395 (95.59%) 4 (0.07%)

DIARR
(Diarrhea) 2 categories (1) Yes

(2) No
521 (9.23%)

5119 (90.70%) 4 (0.07%)
Underlying Diseases

DM
(Diabetes Mellitus) 2 categories (1) Yes

(2) No
701 (12.42%)

4940 (87.53%) 3 (0.05%)
HTN

(Hypertension) 2 categories (1) Yes
(2) No

1219 (21.60%)
4422 (78.35%) 3 (0.05%)

HF
(Heart Failure) 2 categories (1) Yes

(2) No
59 (1.05%)

5581 (98.88%) 4 (0.07%)
CCD

(Chronic Cardiac Disease) 2 categories (1) Yes
(2) No

184 (3.26%)
5441 (96.40%) 19 (0.34%)

ASTHMA 2 categories (1) Yes
(2) No

130 (2.30%)
5511 (97.64%) 3 (0.05%)

COPD
(Chronic Obstructive
Pulmonary Disease)

2 categories (1) Yes
(2) No

41 (0.73%)
5600 (99.22%) 3 (0.05%)

CKD
(Chronic Kidney Disease) 2 categories (1) Yes

(2) No
56 (0.99%)

5585 (98.85%) 3 (0.05%)
MALIG

(Malignant Cancer) 2 categories (1) Yes
(2) No

146 (2.59%)
5494 (97.34%) 4 (0.07%)

CLD
(Chronic Liver Disease) 2 categories (1) Yes

(2) No
82 (1.45%)

5236 (92.77%) 326 (5.78%)
RDAD

(Rheumatism or
Autoimmune Disease)

2 categories (1) Yes
(2) No

38 (0.67%)
5274 (94.12%) 332 (5.88%)

DEMEN
(Dementia) 2 categories (1) Yes

(2) No
227 (4.02%)

5088 (90.15%) 329 (5.83%)
Blood Test Results

HGB
(Hemoglobin) Numeric

(1) Less than 11 (anemia)
(2) 11–16 (normal)
(3) Greater than 16 (elevated)

1504 (18.67%)
2970 (52.62%)
101 (1.79%)

1519 (26.91%)

HCT
(Hematocrit) Numeric

(1) Less than 41 (anemia)
(2) 41–45 (normal)
(3) Greater than 45 (elevated)

1317 (24.29%)
2553 (45.23%)
196 (3.47%)

1524 (27.00%)

LYMPHO
(Lymphocytes) Numeric

(1) Less than 20 (lymphocytopenia)
(2) 20–40 (normal)
(3) Greater than 40 (lymphocytosis)

934 (16.55%)
2487 (44.06%)
681 (12.07%)

1542 (27.32%)

PLT
(Platelets) Numeric

(1) Less than 150,000
(thrombocytopenia)

(2) 150,000–450,000 (normal)
(3) Greater than 450,000

(thrombocytosis)

524 (9.28%)
3530 (62.54%)

73 (1.29%)
1517 (26.88%)

WBC
(White Blood Cells) Numeric

(1) Less than 4000 (leukocytopenia)
(2) 4000–11,000 (normal)
(3) Greater than 11,000 (leukocytosis)

706 (12.51%)
3244 (57.48%)
177 (3.14%)

1517 (26.88%)

To address the missing values in our dataset, we implemented a missing value imputation
algorithm based on the dataset statistics. For variables with a proportion of missing values of
less than 10%, we imputed the most frequent value for categorical variables and the median
for numerical variables. When the proportion of missing values exceeded 10%, particularly
for the PREG and PREGW variables, we first classified these variables using SEX. Except for
the instances in which the PREGW variable was already recorded, we assigned the remaining
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values as No and 0 weeks for PREG and PREGW, respectively. We used the KNN imputation
method for the remaining missing values that exceeded the proportion of 10%. In KNN, the
value of k, which represents the number of neighbors, significantly affects the imputation
results. A small k value can make the model sensitive to noise, whereas a large k value can
smooth the decision boundary, leading to the loss of important patterns in the data. To select
the optimal k value, we used a scoring metric based on Jensen–Shannon divergence. This
metric evaluates the quality of the imputed values by comparing them with the original
distribution. Consequently, we selected k = 2, which yielded the smallest divergence. Figure 2
shows the imputed distribution of the KNN for the blood results, including HCT, LYMPHO,
PLT, and WBC. Algorithm 1 describes the procedure for imputing missing values.
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Algorithm 1. Missing Value Imputation

Input: x is data instances with missing data in the dataset; n is the size of the neighbor set
Output: updated x with imputed missing data

1: for each missing value in x do:
2: if missing values < 10%
3: if x is categorical type data:
4: impute the missing value with the most frequent value
5: elseif x is numeric type data:
6: impute the missing value with the median value
7: else if missing values > 10%:
8: if x is related to PREG:
9: if SEX is male:
10: impute PREG as ‘No’ and PREGW as ‘0 weeks’
11: else if SEX is female:
12: if PREGW records are empty:
13: impute PREG as ‘No’ and PREGW as ‘0 weeks’
14: if PREG is recorded as ‘No’:
15: impute PREGW as ‘0 weeks’
16: end for
17: initialize score as an empty list
18: for each number of neighbor set n do:
19: impute the remaining values using KNN approach
20: score← calculate divergence score for comparison with original distribution
21: end for
22: k← index corresponding to min(score)
23: return imputed missing values using the selected k value
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The scoring metric based on the Jensen–Shannon divergence, which is used for com-
parison with the original distribution, can be calculated as follows:

Score =
√

1
2 (KL(p, m) + KL(q, m) where

KL(p, m) = ∑
x ϵ Ω

p(x)log
(

p(x)
q(x)

)
, m = 0.5 ∗ (p + q)

(1)

where p denotes the original data distribution and q denotes the imputed data distribution
from the KNN approach; m denotes the mixed distribution of p and q. This score measures
the average divergence between the two distributions relative to the mixed distribution.
A score of 0 indicates identical distributions, whereas a score of 1 indicates maximally
different distributions.

We then performed standardization and mean encoding of the datasets. Standard-
ization involves rescaling the distribution of values such that the mean of the observed
values is 0 and the standard deviation is one. Thus, we ensured that all features, except
CSS, followed a Gaussian normal distribution with a mean of 0 and standard deviation of 1.
This procedure is calculated as follows:

Datastand =
Data− µ(Data)

σ(Data)
(2)

where µ(train) and σ(train) represent the mean and standard deviation for each feature in
the dataset, respectively. Following standardization, we performed a mean encoding of the
categorical values. This procedure transforms the categorical values into the mean of the
target variables for each category.

3.3. Data-Driven Strategy

Acquiring all clinical variables of a patient in real-world clinical settings can be chal-
lenging due to limitations related to the medical staff and facilities. To address these
challenges, in this phase, we prioritize and group the clinical variables based on their ease
of collection during patient visits to a hospital. We organized these variables into five
categories: patient demographics, vital signs, symptoms, underlying diseases, and blood
test results. Figure 3 illustrates our data-driven strategy.
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• Group 1 comprised nine clinical variables related to patient demographics and vital
signs, including AGE, BMI, SBP, and HRI. These variables can be obtained simply by
querying the patient and can be easily collected upon arrival at the hospital.

• Group 2 was obtained by expanding Group 1 by adding symptoms such as FEVER
and HEADA, resulting in 21 clinical variables. These variables were binary data types
that indicated whether a COVID-19 patient exhibited the related symptom.

• Group 3 was obtained by expanding Group 2 by adding 32 clinical variables, including
underlying diseases related to the patient’s current or past medical history, such as
DM and HTN.

• Group 4 comprised 26 clinical variables and was obtained by adding blood test results,
such as HGB and LYMPHO, to the Group 2 data in anticipation of difficulties accessing
the patient’s current/past medical history.

• Finally, Group 5 was based on Group 3 and included underlying diseases related to
the patient’s current/past medical history, along with the addition of blood test results,
resulting in 37 clinical variables.

The target variable in our original dataset, CSS, was divided into eight different
severity classes, as shown in Table 2. However, the original dataset contained a significant
data imbalance. Out of 5664 patients, 4456 (78.85%) were classified as Class 1, leaving only
1188 patients (21.05%) across Classes 2–8. Furthermore, Classes 4–7 contained less than
1% of the total patient data. This data imbalance presented a challenging issue for model
training because some classes were not adequately represented.

Table 2. Description of clinical severity score (CSS).

Severity
Class Original CSS (n = 5644) Type 1

(2 Classes)
Type 2

(3 Classes)
Type 3

(5 Classes)

1 No limitation of activity (4456, 78.95%)

Low Severity
(5312, 94.12%)

Mild
(4791, 84.89%)

Asymptomatic
(4456, 78.95%)

2 Limited activity but no oxygen supply required (335, 5.94%) Mild
(335, 5.94%)

3 Oxygen supply with nasal prong required (478, 8.47%)

Severe
(599, 10.61%)

Moderate
(521, 9.23%)4 Oxygen supply with facial mask required (43, 0.76%)

5 Non-invasive mechanical ventilation (36, 0.64%)

High Severity
(332, 5.88%)

Severe
(91, 1.61%)6 Invasive mechanical ventilation (42, 0.74%)

7 Multi-organ failure or ECMO (13, 0.23%)
Critical

(254, 4.50%)8 Death (241, 4.27%) Fatal
(241, 4.27%)

To address these issues, we restructured the severity classes into three types, consider-
ing the various COVID-19 severity levels. These three types of restructured severity classes
were utilized in model training as the target variables.

• Type 1 comprises two classes aimed at distinguishing between general ward and In-
tensive Care Unit (ICU) patients for efficient ward allocation. Patients from classes 1–4
in the original dataset were classified as low-severity (5312 patients, 94.12%) and patients
from classes 5–8 were classified as high-severity (332 patients, 5.88%).

• For Type 2, the target variables were restructured into three classes. Classes 1 and 2
were considered mild (4791 patients, 84.89%), classes 3–6 were considered severe
(599 patients, 10.61%), and classes 7 and 8 were considered critical (254 patients, 4.50%).

• Type 3 provided a more detailed classification by subdividing low- and high-severity lev-
els into five classes. Class 1 was asymptomatic (4456 patients, 78.95%), Class 2 was mild
(335 patients, 5.94%), Classes 3–4 were moderate (521 patients, 9.23%), Classes 5–7 were
severe (91 patients, 1.61%), and Class 8 was associated with fatal (241 patients, 4.27%).
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3.4. Feature Selection

In this phase, we propose a feature selection algorithm to improve the performance
of our severity prediction model by using only selected features of high importance and
removing variables of low relevance. Feature selection is an important process aimed at
identifying a subset of relevant features to improve the ability to predict clinical severity and
enhance interpretability. Feature selection methods can be classified into three main types:
filters, wrappers, and embedded methods [45]. Filter methods use statistical techniques to
evaluate the correlation or dependence between each input feature and the target outcome.
These methods are efficient and fast; however, they can select redundant variables because
they do not consider the interactions between the features. Moreover, a high correlation
coefficient does not always indicate model suitability. In contrast, embedded methods
select features based on the feature importance results of learning-based models, such as
the Gradient Boosting Machine (GBM) or random forest (RF). Although these methods
consider feature interactions, they may be overly biased toward specific models.

To address these limitations, we propose a feature selection algorithm that uses wrap-
per methods to select a subset of features based on various models with high accuracies. To
identify the important features, we employed greedy search techniques, including forward
selection, backward elimination, and RFECV. We used all three feature selection methods
to determine the optimal feature set. The drawback of wrapper methods is that the selected
features are heavily dependent on the specific model used for the feature selection. This
implies that a feature set that is optimized for one model may not perform effectively
with another model. To address the model dependency issue inherent in wrapper meth-
ods, our algorithm utilizes various tree-based ensemble models, such as Light Gradient
Boosting Machine (LGBM), XGBoost, and CatBoost. Instead of relying on a single model,
the proposed algorithm evaluates the performance of each feature across these models. It
then compiles a feature set containing features that have high importance across multiple
models, thereby reducing the reliance on feature selection for any single model. We also
employed cross-validation methods to train these models iteratively and eliminated fea-
tures deemed to have low importance. Algorithm 2 briefly describes the feature selection
method.

Algorithm 2. Feature Selection

Input: x is the standardized and mean encoded datasets; y is the target variable on datasets
Output: sf is the selected features’ sets

[Evaluation Function]: Internal function to evaluate the performance of a given set of features for
each model
1: define model dictionary M (M = {LGBM, XGBoost, and CatBoost})
2: function evaluate_features (fs, x, y):
3: initialize best score bs as 0.0
4: for each model in M do:
5: score←mean cross-validation score for model using feature sets fs, x and y
6: if score > bs:
7: bs← score
8: end for
9: return bs
10: end function
[Forward Selection]: Iterate until no more features can be selected from full set of features
11: initialize forward-selected feature set fsets, and best global score bgs as 0.0
12: set remaining feature set flists as full set of feature lists
13: while flists is not empty:
14: initialize bestscore as 0.0
15: for each feature f in flists do:
16: current feature set cflist← fset + feature f
17: score← call function evaluate_features (cflist, x, y)
18: if score > bestscore:
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19: bestscore←score, and bf ← feature f
20: end for
21: if bestscore > bgs:
22: bgs← bestscore, and fsets← fsets + feature f
23: remove bf from flights
24: else
25: break
26: end while
[Backward Elimination]: Iterate until no more features can be removed from full set of features
27: set backward selected feature set bsets as full set of features
28: initialize best global score bgs as 0.0
29: while size of bsets > 1:
30: for each feature f in bsets do:
31: current feature set cflist← [f for f in bsets if f not equal to feature f ]
32: score← call function evaluate_features (cflist, x, y)
33: if score > bestscore:
34: bestscore←score, and bf ← feature f
35: end for
36: if bestscore > bgs
37: bgs← bestscore, and bsets← bsets - feature f
38: else
39: break
40: end while
[RFECV Selection]: Features are recursively removed to find an optimal number that maximizes
model performance.
41: initialize RFECV selected feature set rfecvsets as an empty list, best global score bgs as 0.0
42: for each model in M do:
43: apply RFECV to the model
44: score← obtaining maxscore using cvresults of RFECV
45: if score > bgs:
46: bgs← score, and rfecvsets← best features from RFECV
[Merge and find feature lists]: Merge the results of forward, backward, and RFECV and find
common feature elements
47: merge fsets, bsets, and rfecvsets into merged_list_L
48: count feature occurrences in merged_list_L
49: sf ← features occurring at least twice in merged_list_L
50: return sf

Our feature selection algorithm provides a comprehensive approach to feature selec-
tion. First, we initialized machine learning models, such as LGBM, XGBoost, and CatBoost.
The internal function evaluate_features evaluates the performance of the given features with
five-fold stratified cross-validation and returns the best model and its corresponding score.
We then used forward selection to select the best features and backward elimination to
remove unnecessary features. Finally, we used RFECV to determine the optimal number of
features for each model. After combining the features extracted using these three methods,
we ultimately returned only the important features that appeared more than twice. Figure 4
shows the results of the selected feature importance based on the data-driven strategy,
with blue bars indicating individual scores and red lines connecting these scores across the
groups for comparison.

In Group 1, we selected five of nine clinical variables as important features. The feature
importance values for severity prediction were ranked in the following order: TEMPI, BMI,
AGE, and HRI. In Group 2, we identified 13 of the 21 clinical variables as significant. Among
the symptoms, we can observe that SOB had the highest feature importance. This was
followed by AGE, which was also emphasized in Group 1. Most of the symptoms in Group 2
had similar feature importance values. However, FEVER was slightly more significant
than the other variables. For Group 3, we determined that 22 of 32 clinical variables were
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important features. Clinical variables related to patient demographics and vital signs, such
as AGE and HRI, were more important than those associated with underlying diseases.
In Group 4, 16 of the 26 variables were selected as important features. Clinical variables
related to blood test results, especially WBC and LYMPHO, showed high feature importance
and significantly affected the severity prediction. Finally, in Group 5, we selected 30 of the
37 clinical variables as important features. The most critical clinical variables were related
to blood test results, including WBC, PLT, LYMPHO, HCT, and HGB. Concurrently, patient
demographics and vital signs, such as AGE and TEMPI, remained highly relevant.
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However, certain clinical variables, such as PREG, PREGW, VN, CLD, and RDAD,
were not selected for Groups 1–5. Consequently, they were identified as noncontributors to
the severity prediction capabilities of the model.

3.5. Data Splitting and Oversampling

In this phase, we divide the dataset into training and testing subsets to develop a
severity prediction model utilizing a subset of the selected features. We also address the
issue of data imbalance by applying oversampling techniques to enhance the effectiveness
of model training. Initially, we divided the patient dataset into training (3956/5651, 70%)
and testing (1696/5, 651, 30%) datasets. To prevent bias during the model training, we
randomly shuffled the training data and employed a stratified sampling technique. We
also conducted five-fold stratified cross-validation, dividing the dataset into five folds. One
fold was used as the validation dataset, and the remaining four as the training dataset.
To ensure comprehensive validation, we repeated this cross-validation process 10 times.
Each fold served multiple times as both the training and validation dataset, significantly
improving the model’s robustness and reliability by extensively evaluating it against
various data subsets.

As described in Table 2, our target variable, CSS, has a severe data imbalance. Such
an imbalance can be problematic for machine-learning algorithms, especially those based
on optimization techniques, as they can be biased toward classes with a greater frequency
of occurrence. This can negatively affect the predictive performance of minority classes.
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To mitigate this imbalance, we utilized two oversampling techniques commonly used in
medical research: the Synthetic Minority Oversampling Technique (SMOTE) and Adaptive
Synthetic Sampling (ADASYN) [46–48]. SMOTE synthesizes the data points for a minority
class by utilizing the Euclidean distance to the nearest neighbors. Based on the original
attributes, these new samples are very similar to the actual data. However, ADASYN
generates synthetic samples by considering the distance between the majority and minority
classes, thereby enhancing the minority class data. This method is often considered more
sophisticated than SMOTE.

It is important to only perform oversampling on the training data and not on the
validation or test sets. Oversampling before splitting the dataset can lead to duplication or
the synthesis of instances in the validation or test sets, which can inflate the performance
metrics. Therefore, we applied oversampling only to the training dataset, which contained
the data for 3956 patients. Table 3 lists the oversampling ratios for Types 1, 2, and 3 of the
target variable CSS using SMOTE and ADASYN.

Table 3. Oversampling ratio of Clinical Severity Score (CSS).

Severity Class Before Oversampling
(n = 3956)

After Oversampling
(n = 5585)

Type 1
Low-Severity 3723 (94.12%) 3723 (66.66%)
High-Severity 233 (5.88%) 1862 (33.34%)

Type 2
Mild 3358 (84.89%) 3358 (60.13%)

Severe 420 (10.61%) 1500 (25.87%)
Critical 178 (4.50%) 782 (14.00%)

Type 3

Asymptomatic 3123 (78.95%) 3123 (55.92%)
Mild 235 (5.94%) 635 (11.37%)

Moderate 365 (9.23%) 765 (13.70%)
Severe 64 (1.61%) 493 (8.83%)
Fatal 169 (4.27%) 569 (10.19%)

3.6. Stacking Ensemble Model Construction

In this phase, we propose an adaptive stacking ensemble technique that automatically
combines multiple single classifiers. Ensemble techniques generate multiple weak classi-
fiers from a given training dataset, and then combine them to form a single strong classifier.
This approach can reduce the errors owing to bias and variance that can occur when using
a single model. As a result, ensemble techniques provide a better predictive performance
than that achieved using individual models. Ensemble techniques are broadly classified
into bagging, boosting, and stacking techniques, as illustrated in Figure 5.
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During bagging, the training data are randomly resampled to form multiple subsets
of the same size. Weak classifiers trained on these subsets are combined using a voting
mechanism for the final prediction. Bagging reduces the variance to improve the model
performance but cannot effectively address model bias. Additionally, each model has the
same weight in the final vote, which can limit the flexibility in certain applications.

In contrast, the boosting technique considers the multiple generated models to be
unequal and reflects the weights assigned to each model in the final prediction vote.
Initially, the models were trained using all available training data. Subsequently, the
predictive performance was evaluated to adjust the weights of the training samples. The
well-classified data points receive lower weights, whereas the poorly classified data points
receive higher weights. The models are then trained sequentially on the weighted data
samples. The final prediction is made using a weighted vote that includes models with
varying confidence levels. Boosting improves the model performance by adjusting the bias;
however, it has drawbacks, such as a slower learning speed and vulnerability to overfitting,
especially in the presence of noisy data.

The stacking technique generates a meta-classifier by learning from the predictions of
two or more base classifiers. This technique typically performs better than a single model
because it can leverage the individual strengths and weaknesses of each base classifier.
However, stacking is computationally intensive and can lead to overfitting if not carefully
tuned. Despite these difficulties, stacking can provide a superior predictive performance
when correctly executed. This approach is particularly useful in handling the outliers that
can negatively affect a single model.

In this paper, we employed a multilayer stacking ensemble approach that integrates
different base classifiers over multiple layers under the assumption that the learning
outcomes of the individual models are independent. Figure 6 shows the model construction
process for the proposed adaptive stacking ensemble technique.
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Figure 6. Model construction process of the proposed adaptive stacking ensemble technique.

Initially, the module for ‘selecting candidate base classifiers’ identifies the classifiers
that should be included in the stacking ensemble. At this stage, m single classifiers are
trained. The trained classifiers are then evaluated using five-fold stratified cross-validation
to measure their average F1 and AUC scores. Based on a predefined threshold, only
k candidate classifiers with an F1 score or AUC score of 0.7 or above are selected for
inclusion. Subsequently, the correlations between the predicted outcomes of the selected
classifiers are calculated. To reduce model bias and create a diverse set of predictions,
classifiers with low prediction correlations are chosen. Classifier combinations with a
correlation coefficient exceeding 0.8 are excluded, and models with poor performance
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for certain pairs are removed. The equation used to calculate the correlation coefficient
between two classifiers is defined as follows:

Mcorr(Mx, My) =
∑n

i=1
(

Mx −Mx
)(

My −My
)√

∑n
i=1

(
Mx −Mx

)2(My −My
)2

(3)

where Mx and My represent the prediction outcomes from the individual classifiers x and y,
respectively, and Mx and My represent the mean values of the predicted outcomes of these
classifiers. Algorithm 3 describes the procedure for selecting the candidate base classifiers.

Algorithm 3. Selection of candidate base classifiers

Input: x is the oversampled train dataset, y is the test dataset
Output: N selected classifiers for composite stacking ensemble

1: define model dictionary M (set of m single classifiers)
2: initialize model’s evaluation score Fm as a dictionary
3: initialize selected classifiers N as an empty list
4: for each model in M do:
5: tm← train each model using dataset x
6: F1_score, AUC_score← evaluate tm with dataset y using 5-fold stratified cross-validation
7: Fm[model]← (F1_score, AUC_score)
8: end for
9: for each model, (F1_score, AUC_score) in Fm do:
10: if either F1 score or AUC_score ≥ threshold:
11: add model to select classifiers N
12: end for
13: for each model Mi in N do:
14: for each model Mj in N do:
15: if model Mi != model Mj

16: Mcorr

(
Mi, Mj

)
← calculate correlation coefficient between Mi and Mj

17: if Mcorr

(
Mi, Mj

)
≥ corr_threshold:

18: if Fm[model Mi] > Fm[model Mj]:
19: mark Mj for removal
20: else:
21: mark Mi for removal
22: end for
23: end for
24: remove marked models from selected classifiers N
25: return N

Our adaptive stacking ensemble model combines the individual base classifiers to
learn the best possible prediction combination of various base classifiers and is structured as
a multilayer stacking ensemble model that outperforms the individual models. In the ‘model
construction module’, the N candidate base classifiers selected from the previous module
are first sorted in descending order based on their F1 and AUC scores. The training and
testing datasets are split to facilitate the construction of a multilayered structure. A greedy
algorithm utilizing an internal function called the train_layer is used to progressively add
the classifiers based on their performance and evaluate the efficiency of each combination.
If adding more classifiers does not enhance the performance, the current combination is
considered the optimal single-layer configuration and the process moves to the next layer.
Thus, the classifier combinations in the previous layer serve as inputs to the next layer. This
iterative process of adding classifiers and layers is continued until no further performance
improvement is observed. Due to the expected high complexity of the multilayer stack
ensemble model, Logistic Regression was chosen as the meta-learner to minimize the
risk of data overfitting. Unlike traditional methods, where the user manually selects the
classifiers that will be integrated into the stacking ensemble, our approach automatically
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selects the base classifiers using a greedy algorithm. Algorithm 4 describes the procedure
for constructing the adaptive stacking ensemble model.

Algorithm 4. Adaptive stacking ensemble model construction

Input: N selected classifiers for composite stacking ensemble, x is the oversampled train dataset, y
is the test dataset
Output: Final F1_score final_ f1

1: define model dictionary N (set of selected candidate base classifiers)
2: initialize sort models by F1 and AUC scores Sm
3: initialize last best F1 score lbf1 as 0.0
4: initialize Xnext_layer_train as Xtrain
5: initialize Xnext_layer_test as Xtest
6: Sm ←sort N selected candidate classifiers by F1_score and AUC_score
7: randomly split train dataset x and test dataset y into (Xtrain, Ytest), (Xtrain, Ytest)
8: function train_layer (Models, Xtrain, Ytrain):
9: initialize layer_output as empty list
10: for each model in Models do:
11: tm← train each model using datasets Xtrain and Ytrain
12: add tm to layer_output
13: end for
14: return layer_output
15: end function
16: initialize patience_counter as 0
17: while true:
18: initialize current best models cbm as an empty list
19: initialize current best f1 cbf1 as lbf1
20: initialize interim models im as an empty list
21: for each model in Sm do:
22: add model to im
23: interim_ Xtrain ← call function train_layer (im, Xnext_layer_train, Ytrain)
24: initialize meta_model as LogisticRegression
25: train meta_model using interim_ Xtrain and Ytrain
26: interim_ f1←evaluate meta_model using Xnext_layer_test and Ytest
27: if interim_ f1 > cbf1:
28: cbf1← interim_ f1
29: cbm← copy interim models im
30: end for
31: if cbf1≤ lbf1:
32: patience_counter += 1
33: if patience_counter ≥ max_pateince:
34: break
35: else:
36: lbf1 = cbf1
37: Xnext_layer_train ← call function train_layer (cbm, Xnext_layer_train, Ytrain)
38: Xnext_layer_test ← call function train_layer (Xnext_layer_test, Ytest)
39: patience_counter to 0
40: end while
41: initialize final_meta_model as LogisticRegression
42: train final_meta_model with Xnext_layer_train and Ytrain
43: final_ f1← evaluate final meta_model using Xnext_layer_test and Ytest,
44: return final_ f1

We constructed an adaptive stacking model using 14 candidate base classifiers, includ-
ing linear, nonlinear, distance-based, probabilistic, tree-based, and ensemble techniques. To
effectively calibrate the parameters and ensure the optimal selection of hyperparameters
for each classifier, we employed GridSearchCV in our hyperparameter tuning process. We
systematically explored a wide range of hyperparameter combinations for each classifier,
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within the context of a five-fold cross-validation process repeated 10 times. Table 4 lists the
14 classifiers we utilized, along with their respective hyperparameter settings.

Table 4. Candidate base classifiers and hyperparameter settings.

Type Classifier Name Parameter Setting

Linear
Logistic Regression (LR) C: 0.01, solver: newton-cg, Max_iter: 1000, Penalty: l2

Support Vector Machine 1 (SVM 1) Kernel: Linear, C: 0.025
Stochastic Gradient Descent (SGD) Penalty: l2, Max_iter: 1000

Non-linear
Support Vector Machine 2 (SVM2) Kernel: RBF, Gamma: 2, C: 1

Multi-Layer Perceptron (MLP) N_layers: 5 (including input, 3 FC hidden, and output layers)
Hidden_layer_size: (100), alpha: 1.0, Max_iter: 1000

Distance-based K-Nearest Neighbor (KNN) N_neighbors: 2, weight: distance
Probabilistic Gaussian Naïve Bayes (GNB) Var_smoothing: 1 × 10−9

Tree-based
Extra Trees Classifier (ExTree) Criterion: entropy, Max_depth: 20,

Min_sample_split: 2

Decision Tree (DT) Criterion: entropy, Max_depth: 20,
Min_sample_split: 2

Ensemble

XGBoost (XGB) N_estimators: 340, Max_depth: 2,
Learning_rate: 0.0628, Gamma: 1.17

Light Gradient Boosting Machine
(LGBM)

N_estimators: 440, Max_depth: 10,
Learning_rate: 0.0496, Max_depth: 6

AdaBoost (ADA) N_estimators: 320, Learning_rate: 0.0726

Random Forest (RF) N_estimators: 600, Max_depth: 8,
N_jobs: -1, Min_sample_split: 2

CatBoost (CAT) Learning_rate: 0.7462

As depicted in Figures 7–9, the adaptive stacking ensemble learning process selects a
subset of suitable classifiers from 14 base classifiers. This selection is based on a data-driven
strategy defined by the groups of clinical variables for severity classification and the types
of severity classes (i.e., CSS). To ensure robust performance, the selected classifiers were
structured in a multi-layered architecture for prediction.

Figure 7 shows the structure of the Type 1 prediction, which comprises Groups 1–5 and
predicts only two severity classes using the data-driven strategy. For the optimal combination
of base classifiers, 8 out of 14 base classifiers (i.e., LGBM, XGB, DT, CAT, LR, RF, GNB, and
MLP) were selected. All candidate base classifier models were structured in a two-layer
architecture; RF, CAT, and LGBM were frequently selected. Additionally, for Groups 3 and 5,
which included underlying diseases, the first layer consisted of three models.
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Figure 7. Optimal combinations of base classifiers in the adaptive stacking ensemble models for
CSS Type 1.



Appl. Sci. 2024, 14, 2715 21 of 48Appl. Sci. 2024, 14, 2715 22 of 48 
 

 

Figure 8. Optimal combinations of base classifiers in the adaptive stacking ensemble models for CSS 

Type 2. 

 

Figure 9. Optimal combinations of base classifiers in the adaptive stacking ensemble models for CSS 

Type 3. 

Figure 7 shows the structure of the Type 1 prediction, which comprises Groups 1–5 

and predicts only two severity classes using the data-driven strategy. For the optimal com-

bination of base classifiers, 8 out of 14 base classifiers (i.e., LGBM, XGB, DT, CAT, LR, RF, 

GNB, and MLP) were selected. All candidate base classifier models were structured in a 

two-layer architecture; RF, CAT, and LGBM were frequently selected. Additionally, for 

Groups 3 and 5, which included underlying diseases, the first layer consisted of three 

models. 

Figure 8 shows the structure of Type 2 prediction, which encompasses Groups 1–5 

and predicts three severity classes. This type expands the prediction scope when com-

pared with that of Type 1, with three severity classes instead of two. For the optimal com-

bination of base classifiers, 7 out of 14 classifiers (i.e., LGBM, ADA, RF, GNB, SVM2, SGD, 

and DT) were selected for Type 2. Except for the Group 1 model, which had fewer features 

(i.e., 9 clinical variables), the majority of the Type 2 models comprised the first layer. 

LGBM and RF were frequently selected as the base classifiers, whereas the remaining base 

classifiers were evenly incorporated into the combinations. 

Figure 9 depicts the structure of Type 3 prediction, which is composed of Groups 1–

5 and predicts five severity classes. Considering the complexity of predicting the five se-

verity classes, the base classifiers were structured with three layers for Groups 1–3, 

whereas Groups 4 and 5, which included the blood test results, were structured with two 

layers. For the optimal combination of the base classifiers, 7 out of 14 classifiers (i.e., 

LGBM

Training Data

1st layer base classifier

Prediction Results

Meta-Classifier

LR

(a) Group 1 – CSS Type 2 (3 classes)

Training Data

Prediction Results

Meta-Classifier

LR

(b) Group 2 – CSS Type 2 (3 classes)

RF

(c) Group 3 – CSS Type 2 (3 classes) (d) Group 4 – CSS Type 2 (3 classes)

1st layer base classifier

Training Data

1st layer base classifier

Prediction Results

Meta-Classifier

LR

(e) Group 5 – CSS Type 2 (3 classes)

DT SGD

Severe Critical

Type 2 (3 severity classes)

ADA

2nd layer base classifier

RF GNB SVM2

Severe Critical

Type 2 (3 severity classes)

Training Data

Prediction Results

Meta-Classifier

LR

Severe Critical

Type 2 (3 severity classes)

LGBM

1st layer base classifier

SGD

Training Data

Prediction Results

Meta-Classifier

LR

Severe Critical

Type 2 (3 severity classes)

1st layer base classifier

Severe Critical

Type 2 (3 severity classes)

LGBM RF LGBM

Mild Mild Mild Mild Mild

LGBM

Training Data

1st layer base classifier

Prediction Results

Meta-Classifier

LR

(a) Group 1 – CSS Type 3 (5 classes) (b) Group 2 – CSS Type 3 (5 classes) (c) Group 3 – CSS Type 3 (5 classes) (d) Group 4 – CSS Type 3 (5 classes) (e) Group 5 – CSS Type 3 (5 classes)

GNB

MLP

3rd layer base classifier

2nd layer base classifier

LRMLP

Asymptomatic

Type 3 (5 severity classes)

Mild

Moderate Severe Fatal

LGBM

Training Data

1st layer base 

classifier

Prediction Results

Meta-Classifier

LR

GNB

MLP

3rd layer base classifier

2nd layer base classifier

Asymptomatic

Type 3 (5 severity classes)

Mild

Moderate Severe Fatal

1st layer base classifier

LGBM RF ADA

Training Data

1st layer base classifier

Meta-Classifier

LR

RF

MLP

3rd layer base classifier

2nd layer base classifier

RF MLP

Asymptomatic

Type 3 (5 severity classes)

Mild

Moderate Severe Fatal

LGBM

Training Data

1st layer base classifier

Prediction Results

Meta-Classifier

LR

LR

2nd layer base classifier

MLP

Asymptomatic

Type 3 (5 severity classes)

Mild

Moderate Severe Fatal

LGBM

Training Data

1st layer base classifier

Prediction Results

Meta-Classifier

LR

SVM2

2nd layer base classifier

MLP

Asymptomatic

Type 3 (5 severity classes)

Mild

Moderate Severe Fatal

LR

Prediction Results

LRMLP

Figure 8. Optimal combinations of base classifiers in the adaptive stacking ensemble models for
CSS Type 2.
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Figure 9. Optimal combinations of base classifiers in the adaptive stacking ensemble models for
CSS Type 3.

Figure 8 shows the structure of Type 2 prediction, which encompasses Groups 1–5 and
predicts three severity classes. This type expands the prediction scope when compared with
that of Type 1, with three severity classes instead of two. For the optimal com-bination of
base classifiers, 7 out of 14 classifiers (i.e., LGBM, ADA, RF, GNB, SVM2, SGD, and DT) were
selected for Type 2. Except for the Group 1 model, which had fewer features (i.e., 9 clinical
variables), the majority of the Type 2 models comprised the first layer. LGBM and RF
were frequently selected as the base classifiers, whereas the remaining base classifiers were
evenly incorporated into the combinations.

Figure 9 depicts the structure of Type 3 prediction, which is composed of Groups 1–5
and predicts five severity classes. Considering the complexity of predicting the five severity
classes, the base classifiers were structured with three layers for Groups 1–3, whereas
Groups 4 and 5, which included the blood test results, were structured with two layers. For
the optimal combination of the base classifiers, 7 out of 14 classifiers (i.e., LGBM, GNB, LR,
MLP, RF, ADA, and SVM2) were selected. MLP emerged as the most frequently selected
base classifier across all group combinations for Type 3, and LGBM and LR were utilized in
all groups except Group 3.

4. Results

In this section, we present a detailed description of the performance evaluation of our
adaptive stacking ensemble technique. We first introduce the metrics used to evaluate our
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technique and discuss the results of the performance evaluations. The performance of our
technique was evaluated through three experiments: (1) the performance of the prediction
models, (2) the effectiveness of the data-driven strategy and oversampling, and (3) the
effect of the feature selection algorithm on the performance.

4.1. Evaluation Metrics

We utilized a standard set of evaluation metrics for classification problems, including
precision, recall, F1 score, specificity, and AUC score. The precision, recall, specificity, and
F1 score were derived from a confusion matrix that classified the predictions into four
categories: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). Specifically, TP represents the number of correctly predicted positive instances, TN
represents the number of correctly predicted negative instances, FP represents the number
of negative instances incorrectly predicted as positive, and FN represents the number of
positive instances incorrectly predicted as negative.

Precision is defined as the ratio of correctly predicted positive instances to all instances
predicted as positive. It provides a measure of the accuracy of positive predictions. The
equation used to determine precision is defined as follows:

Precision =
TP

TP + FP
(4)

Recall, also known as the True Positive Rate (TPR), quantifies the ratio of correctly
predicted positive cases to all actual positives. It offers insights into the model’s capacity to
identify and retrieve relevant instances. The equation for recall is defined as follows:

Recall =
TP

TP + FN
(5)

The F1 score, which is the harmonic mean of the precision and recall, provides a
balance between these two metrics and is particularly useful in scenarios where one metric
is more valuable than the other. The equation for the F1 score is defined as follows:

F1Score = 2× Precision× Recall
Precision + Recall

(6)

In contrast, specificity represents the proportion of actual negative cases that are
correctly classified. The equation for specificity is formally defined as follows.

Speci f icity =
TN

TN + FP
(7)

The AUC score quantifies the entire two-dimensional area under the Receiver Operat-
ing Characteristic (ROC) curve, providing a comprehensive performance measure across
all possible classification thresholds. The AUC score is formally defined as the integral of
the ROC curve, which is the area between the ROC curve and False Positive Rate (FPR)
axis. The equation is defined as follows:

AUC =
∫ 1

0 TPR
(

FPR−1(x)
)

dx where

FPR = 1− Speci f icity = FP
TN+FP

(8)

where TPR
(

FPR−1(x)
)

represents the TPR as a function of the FPR. It maps the FPR to
TPR to define the ROC curve. The integral spans from zero to one, effectively capturing the
entire area under the ROC curve.
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4.2. Performance of the Prediction Models

To evaluate our proposed technique, we conducted comparative experiments across
three clinical severity classes using five groups of clinical variables, as defined by a data-
driven strategy. Specifically, we carried out three sets of experiments: (1) Type 1 sever-
ity prediction for Groups 1–5; (2) Type 2 severity prediction for Groups 1–5; (3) Type 3
severity prediction for Groups 1– 5. The performance evaluation utilized a dataset com-
prising 1695 patients, which was divided during the data splitting and feature selection
process. Moreover, we conducted comparative analyses with 14 well-known single clas-
sifiers, including Logistic Regression and XGBoost models. These models have previ-
ously been applied in studies utilizing the KDBC dataset to predict COVID-19 sever-
ity in South Korea [23,49,50]. To compare our results with those of more advanced
methods, we also conducted experiments with two AutoML approaches: PyCaret, and
H2O.ai [51,52]. PyCaret offers 16 classifiers, such as Linear Discriminant Analysis (LDA)
and the Gradient Boosting Classifier (GBM), and streamlines the overall machine learning
process by identifying optimal classifiers through efficient tuning. H2O.ai offers 18 classi-
fiers, such as Distributed Random Forest (DRF) and the Generalized Linear Model (GLM),
and enables the identification of the optimal classifiers or the automatic generation of
stacking ensembles by combining models. For each model included in the performance
evaluation, a total of 20 experiments were conducted, and the average performance re-
sults were recorded. Through these extensive evaluation processes, we comprehensively
assessed each model’s effectiveness in accurately predicting the various severity levels of
COVID-19.

Table 5 presents the average performance results of our adaptive stacking ensemble
model in comparison to other single classifiers and AutoML approaches for predicting
Type 1 severity across all groups. The highlighted sections in each table indicate the
highest-performing classifiers and their corresponding scores.

Table 5. Average performance results of Type 1 severity for all groups.

Group Model Precision Recall F1 Score Specificity AUC

Average

Logistic Regression (LR) 0.9426 0.8325 0.8832 0.8302 0.9203
XGBoost (XGB) 0.9222 0.9048 0.9134 0.6700 0.8802

PyCaret 0.9140 0.9064 0.9101 0.6785 0.8655
H2O.ai 0.9354 0.8954 0.9148 0.8165 0.8423

Average of All Single Classifiers and AutoML 0.9178 0.8737 0.8946 0.6776 0.8494
Proposed Model (CSS Type 1) 0.9582 0.9595 0.9588 0.7634 0.9380

The prediction of Type 1 severity across Groups 1–5 employs a binary classification to
distinguish between general and ICU patients. Our proposed model demonstrated consid-
erable robustness, achieving an average F1 score of 0.9588 and AUC score of 0.9380 across
all groups. Compared to existing single classifiers, Logistic Regression achieved an average
F1 score of 0.8832 and an AUC of 0.9203, indicating our model’s improvement of 7.56%
in F1 and 1.77% in AUC scores. XGBoost achieved an F1 score of 0.9134 and an AUC
of 0.8802, with our model showing an improvement of 4.54% in F1 and 5.78% in AUC
scores. Moreover, our model significantly outperformed AutoML approaches. Compared
to PyCaret, which recorded an F1 score of 0.9101 and an AUC of 0.8655, our model demon-
strated improvements of 5.35% in F1 and 8.37% in AUC scores. Similarly, compared to
H2O.ai, which achieved an F1 score of 0.9180 and an AUC of 0.8423, our model showed
improvements of 4.40% in F1 and 9.57% in AUC scores. Furthermore, when compared to
the average of all single classifiers and AutoML approaches, which had an F1 of 0.8946 and
an AUC of 0.8494, our model showed an improvement of 7.18% in F1 and 10.43% in AUC
scores for Type 1 severity. The enhanced performance of our model, especially evident in
its recall and F1 score, signifies its effectiveness in accurately identifying patients at risk of
severe COVID-19 outcomes.
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For a more detailed understanding, Table 6 provides a summary of the comparative
performance results for Type 1 severity across Groups 1–5. Comprehensive performance
results of the comparisons with all 14 individual classifiers and AutoML approaches can be
found in Table A1 of Appendix A.

Table 6. Summary of performance results of Type 1 severity for groups 1–5.

Group Model Precision Recall F1 Score Specificity AUC

Group 1

Logistic Regression (LR) 0.9416 0.7740 0.8496 0.7604 0.8989
XGBoost (XGB) 0.8883 0.8735 0.8808 0.4644 0.8007

Light Gradient Boosting Machine (LGBM) 0.8932 0.8770 0.8850 0.5059 0.8105
PyCaret (CatBoost (CAT)) 0.9188 0.8997 0.9091 0.6092 0.7849

H2O.ai (Gradient Boosting Machine (GBM)) 0.9347 0.9101 0.9223 0.7278 0.8406
Proposed Model (Group 1-CSS Type 1)

(Stacking: 1st layer: LGBM, 2nd layer: XGB, MLP,
Meta: LR)

0.9262 0.9301 0.9281 0.6026 0.8722

Group 2

Logistic Regression (LR) 0.9479 0.7939 0.8641 0.8168 0.9327
XGBoost (XGB) 0.9040 0.8876 0.8957 0.5823 0.8495
CatBoost (CAT) 0.9084 0.8847 0.8974 0.5759 0.8645

PyCaret (Random Forest (RF)) 0.8993 0.8933 0.8963 0.5423 0.8462
H2O.ai (Stacking: 1st layer: 1 GBM, 1 GLM, 2 DRF,

Meta: GLM) 0.9354 0.8592 0.8957 0.8096 0.8410

Proposed Model (Group 2-CSS Type 1)
(Stacking: 1st layer: CAT, 2nd layer: CAT, LR, Meta: LR) 0.9407 0.9421 0.9414 0.7214 0.9098

Group 3

Logistic Regression (LR) 0.9497 0.8129 0.8760 0.8180 0.8880
XGBoost (XGB) 0.9054 0.8916 0.8984 0.5619 0.8578

AdaBoost (ADA) 0.9098 0.8972 0.9035 0.5554 0.8777
PyCaret (CatBoost (CAT)) 0.9032 0.9075 0.9053 0.5237 0.8532

H2O.ai (Gradient Boosting Machine (GBM)) 0.9358 0.8760 0.9049 0.8085 0.8426
Proposed Model (Group 3-CSS Type 1)

(Stacking: 1st layer: LGBM, CAT, RF, 2nd layer: LGBM,
GNB, Meta: LR)

0.9471 0.9474 0.9472 0.6526 0.9129

Group 4

Logistic Regression (LR) 0.9363 0.8850 0.9099 0.8914 0.9412
XGBoost (XGB) 0.9573 0.9363 0.9467 0.8741 0.9469
CatBoost (CAT) 0.9575 0.9363 0.9468 0.8741 0.9479

PyCaret (Logistic Regression (LR)) 0.9313 0.8997 0.9152 0.8852 0.9410
H2O.ai (Stacking: 1st layer: 1 GBM, 1 GLM, 2 DRF,

Meta: GLM) 0.9357 0.9136 0.9245 0.8685 0.8439

Proposed Model (Group 4-CSS Type 1)
(Stacking: 1st layer: RF, 2nd layer: RF, LR, Meta: LR) 0.9871 0.9872 0.9871 0.8959 0.9774

Group 5

Logistic Regression (LR) 0.9376 0.8965 0.9166 0.8646 0.9407
XGBoost (XGB) 0.9561 0.9350 0.9454 0.8671 0.9460

Random Forest (RF) 0.9588 0.9389 0.9487 0.8329 0.9467
PyCaret (CatBoost (CAT)) 0.9176 0.9318 0.9246 0.8321 0.9024

H2O.ai (Stacking: 1st layer: 1 GBM, 1 GLM, 2 DRF,
Meta: GLM) 0.9355 0.9180 0.9267 0.8679 0.8433

Proposed Model (Group 5-CSS Type 1)
(Stacking: 1st layer: RF, MLP, SGD 2nd layer: RF, SGD,

Meta: LR)
0.9901 0.9908 0.9904 0.9443 0.9877

Based on a detailed observation of each group’s performance, the proposed model’s
severity prediction for Group 1 was lower than that of other groups, with an F1 score of
0.9281 and AUC score of 0.8772. This lower performance is due to Group 1 considering
only nine clinical variables related to demographics and vital signs, with feature selection



Appl. Sci. 2024, 14, 2715 25 of 48

further reducing this to five variables, thus offering fewer features compared to other
groups. Consequently, the performance of other single classifiers and AutoML approaches
in Group 1 was also observed to be lower. In Group 2, which was formed by expanding
Group 1 through the addition of symptoms, the proposed model showed a performance
improvement of 1.33% in the F1 score and 3.76% in the AUC score when compared with the
results for Group 1. Other single classifiers and AutoML approaches also demonstrated that
the inclusion of symptoms has a positive impact on prediction performance. In Group 3,
the addition of symptoms and past or current medical history as clinical variables resulted
in a performance improvement of 1.91% in the F1 score and 4.07% in the AUC score when
compared with the results for Group 1. However, a comparison of Groups 3 and 2 shows
that the inclusion of past or current medical history did not significantly enhance the
severity prediction performance of Group 3. The improvement was only 0.58% in the F1
score and 0.31% in the AUC score. Other single classifiers and AutoML approaches also
showed a less than 1% rise in the F1 score, and for logistic regression, a decrease in AUC
scores was observed. This indicates that including a patient’s past medical information in
situations where patient symptom information is available does not significantly enhance
the severity prediction performance. In Groups 4 and 5, which utilized blood test results,
there was a significant improvement in the performance of all models when compared with
the results of Groups 2 and 3. Specifically, the proposed model demonstrated exceptional
performance in Groups 4 and 5, with F1 scores of 0.9871 and 0.9899 and AUC scores
of 0.9974 and 0.9977, respectively. These results underscore the importance of blood
test results for accurately predicting the severity of COVID-19. However, the AutoML
approaches exhibited a relatively lower performance in Groups 4 and 5, showing only
slight improvements or even decreases in AUC scores from Group 4 to Group 5. This
observation confirms the feasibility and effectiveness of our proposed model for predicting
COVID-19 severity.

Table 7 presents the average performance results of the proposed adaptive stacking
ensemble model in comparison to other single classifiers and AutoML approaches for
predicting Type 2 severity across all groups.

Table 7. Average performance results of Type 2 severity for all groups.

Group Model Precision Recall F1 Score Specificity AUC

Average

Logistic Regression (LR) 0.8239 0.7264 0.7758 0.8014 0.8148
XGBoost (XGB) 0.8225 0.8283 0.8252 0.5668 0.8227

PyCaret 0.8024 0.8324 0.8170 0.6889 0.7971
H2O.ai 0.8112 0.8458 0.8281 0.6903 0.7775

Average of All Single Classifiers and AutoML 0.8120 0.7612 0.7770 0.6200 0.7658
Proposed Model (CSS Type 2) 0.8717 0.8724 0.8720 0.6930 0.8198

The prediction of Type 2 severity was classified into three classes: ‘mild’, ‘severe’, and
‘critical’. This detailed classification increased complexity compared to Type 1, resulting
in an 8.6% decrease in the average F1 score and 10.5% decrease in the average AUC score
for our proposed model. Despite these challenges, the proposed model demonstrated
a superior performance in predicting Type 2 severity relative to other single classifiers
and AutoML approaches. Despite these challenges, the proposed model demonstrated a
superior performance in predicting Type 2 severity compared to other single classifiers
and AutoML approaches. Specifically, the proposed model achieved an F1 score of 0.8720
and an AUC score of 0.8198, outperforming the averages of other models, including
logistic regression, XGBoost, and two AutoML approaches. This underscores our model’s
robustness and effectiveness in more complex classification scenarios, highlighting its
utility in accurately predicting the severity of COVID-19.

Table 8 provides a summary of the comparative performance results for Type 2 sever-
ity across Groups 1–5. Comprehensive performance results of the comparisons with all
14 individual classifiers and AutoML approaches can be found in Table A2 of Appendix A.
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Table 8. Summary of performance results of Type 2 severity for Groups 1–5.

Group Model Precision Recall F1 Score Specificity AUC

Group 1

Logistic Regression (LR) 0.8060 0.7186 0.7598 0.7670 0.7632
XGBoost (XGB) 0.7690 0.8243 0.7957 0.4468 0.7470

Light Gradient Boosting Machine (LGBM) 0.7783 0.8162 0.7968 0.5067 0.7569
PyCaret (AdaBoost (ADA)) 0.7971 0.8226 0.8096 0.5954 0.7299

H2O.ai (Generalized Linear Modeling
(GLM)) 0.8047 0.8150 0.8098 0.6021 0.7511

Proposed Model (Group 1-CSS Type 2)
(Stacking: 1st layer: LGBM, ADA, 2nd layer:

RF, GNB, SVM2 Meta: LR)
0.8119 0.8204 0.8161 0.5340 0.7522

Group 2

Logistic Regression (LR) 0.8172 0.6952 0.7513 0.7561 0.7852
XGBoost (XGB) 0.7938 0.7987 0.7962 0.4634 0.7736

Random Forest (RF) 0.7903 0.7979 0.7941 0.4562 0.7913
PyCaret (AdaBoost (ADA)) 0.8058 0.8212 0.8134 0.6072 0.7996

H2O.ai (Generalized Linear Modeling
(GLM)) 0.8116 0.8532 0.8318 0.6102 0.7629

Proposed Model (Group 2-CSS Type 2)
(Stacking: 1st layer: RF, Meta: LR) 0.8303 0.8480 0.8391 0.6105 0.7769

Group 3

Logistic Regression (LR) 0.8213 0.6815 0.7449 0.7701 0.7886
XGBoost (XGB) 0.8018 0.8045 0.8031 0.4783 0.7812

Light Gradient Boosting Machine (LGBM) 0.8078 0.8067 0.8072 0.5004 0.7950
PyCaret (Logistic Regression (LR)) 0.8073 0.8428 0.8247 0.6142 0.8003

H2O.ai (Gradient Boosting Machine (GBM)) 0.8069 0.8467 0.8263 0.6115 0.7721
Proposed Model (Group 3-CSS Type 2)

(Stacking: 1st layer: LGBM, SGD, Meta: LR) 0.8628 0.8550 0.8589 0.7585 0.8187

Group 4

Logistic Regression (LR) 0.8577 0.7665 0.8095 0.8453 0.8716
XGBoost (XGB) 0.8714 0.8540 0.8626 0.7299 0.9057

Light Gradient Boosting Machine (LGBM) 0.8834 0.8624 0.8728 0.7645 0.9126
PyCaret (Gaussian Naïve Bayes (GNB)) 0.8084 0.8248 0.8165 0.8193 0.8262

H2O.ai (Gradient Boosting Machine (GBM)) 0.8191 0.8590 0.8386 0.8025 0.7931
Proposed Model (Group 4-CSS Type 2)

(Stacking: 1st layer: LGBM, RF, Meta: LR) 0.9203 0.9169 0.9186 0.8193 0.9031

Group 5

Logistic Regression (LR) 0.8624 0.7700 0.8136 0.8331 0.8654
XGBoost (XGB) 0.8767 0.8598 0.8682 0.7157 0.9062

Light Gradient Boosting Machine (LGBM) 0.8807 0.8611 0.8708 0.7425 0.9115
PyCaret (CatBoost (CAT)) 0.7936 0.8504 0.8210 0.8083 0.8295

H2O.ai (Generalized Linear Modeling
(GLM)) 0.8139 0.8550 0.8339 0.8251 0.8084

Proposed Model (Group 5-CSS Type 2)
(Stacking: 1st layer: LGBM, DT, SGD,

Meta: LR)
0.9330 0.9307 0.9318 0.8269 0.9121

In Groups 1–3, we observed an improvement in performance associated with an
increase in the number of clinical variables. However, a significant improvement in perfor-
mance was observed in Groups 4 and 5, which included blood test results. This indicates
that clinical variables related to blood tests significantly affect classification performance.
However, the two AutoML approaches, PyCaret and H2O.ai, showed only slight improve-
ments in Groups 4 and 5. This is because PyCaret and H2O.ai select the optimal single
classifier rather than constructing stacking ensemble models for each group. Addition-
ally, these two AutoML approaches typically streamline the parameter tuning process
and utilize a limited selection of single classifiers to enhance user convenience. However,
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these approaches limit the capacity for detailed hyperparameter tuning and restrict the
use of a diverse range of models to adequately capture intricate patterns. As a result,
they prevent the AutoML tools from fully understanding the complexities and specific
interdependencies present in complex clinical datasets. Consequently, this could lead to the
unique requirements or the most effective configurations that are essential for particular
clinical tasks being overlooked.

Moreover, Logistic Regression shows high specificity across all groups but has a com-
paratively lower F1 score than other models, indicating a limitation in handling multiclass
classifications with higher complexity. Overall, the proposed model outperformed single
models, such as Logistic Regression, XGBoost, and LGBM, in most groups. Specifically,
Group 5 achieved an F1 score of 0.9318 and AUC score of 0.9121, indicating good perfor-
mance. These results demonstrated the potential advantages of the ensemble approach
compared to single classifiers and AutoML for complex clinical classification tasks.

Table 9 presents the average performance results of the proposed adaptive stacking
ensemble model in comparison to other single classifiers and AutoML approaches for
predicting Type 2 severity across all groups.

Table 9. Average performance results of Type 3 severity for all groups.

Group Model Precision Recall F1 Score Specificity AUC

Average

Logistic Regression (LR) 0.7529 0.5748 0.6526 0.7679 0.7303
XGBoost (XGB) 0.7292 0.7501 0.7409 0.5108 0.7554

PyCaret 0.7249 0.7756 0.7493 0.6558 0.7031
H2O.ai 0.6965 0.7849 0.7389 0.6167 0.6888

Average of All Single Classifiers and AutoML 0.7206 0.6601 0.6787 0.5978 0.6812
Proposed Model (CSS Type 3) 0.7789 0.8183 0.7981 0.6348 0.7736

The prediction of Type 3 severity requires a more detailed classification than that
required for Type 2 severity. Type 3 is classified into five classes: ‘asymptomatic’, ‘mild’,
‘moderate’, ‘severe’, and ‘fatal’. The classification of the severity classes for Type 3 increased in
complexity when compared with those for Types 1 and 2. As a result, our model’s average
F1 score decreased by 18.8% and 10.2% when compared with the results for Types 1 and 2,
respectively. Similarly, the average AUC scores decreased by 16.4% and 5.9%, respectively.
However, this reduction was also observed across other single classifiers and AutoML
approaches. The proposed model achieved an F1 score of 0.7981 and an AUC score of
0.7736, outperforming the average of other models, including Logistic Regression, XGBoost,
and two AutoML approaches.

Table 10 provides a summary of the comparative performance results for Type 3
severity across Groups 1–5. Comprehensive performance results of the comparisons with all
14 individual classifiers and AutoML approaches can be found in Table A3 of Appendix A.

Table 10. Summary of performance results of Type 3 severity for Groups 1–5.

Group Model Precision Recall F1 Score Specificity AUC

Group 1

Logistic Regression (LR) 0.7172 0.5643 0.6316 0.6878 0.6396
XGBoost (XGB) 0.6709 0.7050 0.6875 0.3913 0.6458

Light Gradient Boosting Machine (LGBM) 0.6825 0.7098 0.6959 0.4239 0.6568
PyCaret (Logistic Regression (LR)) 0.7109 0.7509 0.7304 0.6571 0.6461

H2O.ai (Stacking: 1st layer: 5 GBM, 1 GLM, 2
DRF, Meta: GLM) 0.6849 0.7907 0.7340 0.4725 0.5425

Proposed Model (Group 1-CSS Type
3)(Stacking: 1st layer: LGBM, GNB, 2nd layer:

MLP, LR, Meta: LR)
0.7157 0.7691 0.7414 0.5333 0.6584
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Table 10. Cont.

Group Model Precision Recall F1 Score Specificity AUC

Group 2

Logistic Regression (LR) 0.7299 0.5263 0.6116 0.7353 0.6900
XGBoost (XGB) 0.6957 0.7253 0.7102 0.4394 0.6972

Light Gradient Boosting Machine (LGBM) 0.7013 0.7306 0.7157 0.4510 0.7096
PyCaret (Gaussian Naïve Bayes (GNB)) 0.7328 0.7717 0.7517 0.6951 0.6897

H2O.ai (Stacking: 1st layer: 22 GBM, 1 GLM,
2 DRF, Meta: GLM) 0.7001 0.7654 0.7313 0.4936 0.6975

Proposed Model (Group 2-CSS Type
3)(Stacking: 1st layer: LGBM, RF, ADA, 2nd

layer: MLP, LR, Meta: LR)
0.7420 0.7749 0.7581 0.5805 0.6914

Group 3

Logistic Regression (LR) 0.7386 0.5343 0.6251 0.7472 0.7017
XGBoost (XGB) 0.7025 0.7297 0.7234 0.4512 0.7024

Light Gradient Boosting Machine (LGBM) 0.7105 0.7368 0.7225 0.4549 0.7084
PyCaret (Random Forest (RF)) 0.7231 0.7897 0.7549 0.4928 0.7128

H2O.ai (Generalized Linear Modeling
(GLM)) 0.6954 0.7825 0.7408 0.7036 0.7367

Proposed Model (Group 3-CSS Type
3)(Stacking: 1st layer: LGBM, RF, ADA, 2nd

layer: MLP, LR, Meta: LR)
0.7566 0.7892 0.7726 0.5906 0.7355

Group 4

Logistic Regression (LR) 0.7899 0.6249 0.6978 0.8429 0.8122
XGBoost (XGB) 0.7915 0.7948 0.7931 0.6450 0.8660

Light Gradient Boosting Machine (LGBM) 0.7916 0.7917 0.7916 0.6607 0.8744
PyCaret (Gaussian Naïve Bayes (GNB)) 0.7346 0.7775 0.7554 0.7558 0.7305

H2O.ai (Stacking: 1st layer: 22 GBM, 1 GLM,
2 DRF, Meta: GLM) 0.6965 0.7966 0.7432 0.7214 0.7484

Proposed Model (Group 4-CSS Type
3)(Stacking: 1st layer: LGBM, LR, 2nd layer:

MLP, Meta: LR)
0.8239 0.8631 0.8430 0.7626 0.8995

Group 5

Logistic Regression (LR) 0.7887 0.6240 0.6967 0.8264 0.8079
XGBoost (XGB) 0.7855 0.7956 0.7905 0.6272 0.8658

Light Gradient Boosting Machine (LGBM) 0.7854 0.7925 0.7889 0.6363 0.8720
PyCaret (CatBoost (CAT)) 0.7231 0.7883 0.7543 0.6782 0.7362

H2O.ai (Gradient Boosting Machine (GBM)) 0.7054 0.7895 0.7451 0.6926 0.7187
Proposed Model (Group 5-CSS Type

3)(Stacking: 1st layer: LGBM, SVM2, 2nd
layer: MLP, LR, Meta: LR)

0.8564 0.8952 0.8754 0.7068 0.9115

Similar to the performance observed for Types 1 and 2, an increase in the number of
clinical variables from Groups 1–5 resulted in improved F1 and AUC scores. However,
the improvement in our proposed model from Group 2 to Group 3 was limited, with
only a 1.5% increase in the F1 score and a 4.4% increase in the AUC score. Similarly,
the performance of other single classifiers and AutoML approaches was observed to be
lower in comparison. This suggests that a patient’s current or past medical history may
not be as crucial as significant predictive variables when patient symptom information
is available. Groups 4 and 5, which included the blood test results as clinical variables,
showed significant performance improvements. Thus, all experiments confirmed that blood
test results could be used as important variables for predicting the severity of COVID-19.

Moreover, while the AutoML approaches PyCaret and H2O.ai demonstrated per-
formance enhancements in Groups 1 and 2, they did not consistently outperform our
proposed model. Specifically, PyCaret showed notable F1 scores, such as 0.7304 in Group 1
and 0.7517 in Group 2, by utilizing various single classifiers, including Logistic Regression
and Gaussian Naïve Bayes. Similarly, H2O.ai, through its ensemble strategy that incorpo-
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rates multiple models in stacking configurations, presented competitive results, with F1
scores of 0.7340 in Group 1 and 0.7313 in Group 2. However, despite these achievements,
both AutoML approaches exhibited only slight enhancements in Groups 4 and 5. This issue
becomes particularly apparent in scenarios requiring finer parameter calibration and model
tuning due to the increased complexity introduced by a larger number of clinical variables.
Specifically, H2O.ai’s optimization focuses on model parameters, without directly optimiz-
ing the data itself, making its performance highly dependent on the characteristics of the
data. This leads to potential shortcomings in effectively capturing the intricate patterns
present in blood tests and other clinical variables.

Similar to the classification of severity in Type 2, Logistic Regression showed higher
specificity but lower F1 and AUC scores than our proposed model. This implies that logistic
regression has a low prediction rate for true positives and high number of false negatives
for a specific class. In other words, it often misclassifies the severity classes, potentially
leading to incorrect negative results. Therefore, the use of logistic regression tends to critical
severity classes being overlooked, indicating that essential severity information that is
necessary for treatment might be missed.

When predicting Type 3 severity, the proposed model in Group 5 showed the highest
performance, with an F1 score of 0.8754 and AUC score of 0.9115. However, the specificity
was observed to be relatively low. This means that the model accurately identified almost
all individuals with severe disease, but also incorrectly classified a significant number of
healthy individuals. Such a situation often occurs during the early diagnosis of serious
diseases that can have drastic consequences if undiagnosed. Therefore, our proposed
model for early diagnosis may misclassify some healthy individuals as having critical
severity. However, it is crucial that the model does not overlook or miss actual severe
cases. Therefore, prioritizing high F1 and AUC scores is an important strategy when
making critical medical decisions. Accordingly, our results can play a critical role in making
important diagnostic decisions in life-threatening situations.

Figure 10 illustrates a comparison of the performance between Logistic Regression,
XGBoost, PyCaret, H2O.ai, and our proposed model, specifically focusing on F1 and AUC
scores for Groups 1, 3, and 5 within our data-driven strategy across all data types. Based
on these experiments, our observations can be summarized as follows:

(i) As the number of classified classes (i.e., types of severity) increases, the need for
detailed classification leads to increased complexity, which, in turn, degrades the
performance of each model. However, our proposed model demonstrated a superior
performance compared to existing single models and AutoML approaches, providing
better adaptive predictive results even when not all clinical variables could be collected
due to the hospital’s circumstances.

(ii) By comparing Groups 2 and 3, it was found that the patient’s current or past medical
history was not an essential clinical variable when information about patient symp-
toms is available. Therefore, an appropriate classifier performance can be achieved
using the patient’s personal information and symptom details.

(iii) The performance improves as the number of clinical variables increases. Clinical
variables related to blood tests are particularly important for severity classification.
However, AutoML approaches are constrained by their limited scope for detailed
hyperparameter tuning and the restriction on the variety of models they can utilize.
This can lead to a relative decrease in performance when dealing with complex clinical
datasets with a larger number of clinical variables.

(iv) Our proposed stacking ensemble classifier consistently exhibited a superior perfor-
mance to various types of single classifiers in all cases.



Appl. Sci. 2024, 14, 2715 30 of 48
Appl. Sci. 2024, 14, 2715 31 of 48 
 

 

Figure 10. Performance comparison of Logistic Regression, XGBoost, PyCaret, H2O.ai, and our pro-

posed model. 

4.3. Effectiveness of Data-Driven Strategy and Oversampling 

To evaluate the effectiveness of the data-driven strategy, we evaluated the perfor-

mances of the original eight classes, each sub-classified into eight severity classes based 

on the CSS, and compared them with those of Types 1, 2, and 3, which were developed to 

address data imbalance issues. In this experiment, we compared the clinical variables of 

Group 5, which included blood test results, by utilizing 37 clinical variables. The perfor-

mance of the original eight classes was measured using the LGBM, which was the most 

effective of the single classifiers. We evaluated the performances of Types 1, 2, and 3 using 

the proposed model. 

Table 11 shows the precision, recall, F1 score, specificity, and AUC score for the clin-

ical severities of the eight original classes obtained using the LGBM. Table 12 presents the 

precision, recall, F1 score, specificity, and AUC score for the clinical severity of Types 1, 2, 

and 3 using the proposed model. 

  

0.5

0.6

0.7

0.8

0.9

1

LR XGB PyCaret H2O.ai Proposed
Model

LR XGB PyCaret H2O.ai Proposed
Model

LR XGB PyCaret H2O.ai Proposed
Model

Group 1 Group 3 Group 5

F1-Score AUC

0.5

0.6

0.7

0.8

0.9

1

LR XGB PyCaret H2O.ai Proposed
Model

LR XGB PyCaret H2O.ai Proposed
Model

LR XGB PyCaret H2O.ai Proposed
Model

Group 1 Group 3 Group 5

F1-Score AUC

0.5

0.6

0.7

0.8

0.9

1

LR XGB PyCaret H2O.ai Proposed
Model

LR XGB PyCaret H2O.ai Proposed
Model

LR XGB PyCaret H2O.ai Proposed
Model

Group 1 Group 3 Group 5

F1-Score AUC

(a) Severity Prediction of Type 1

(b) Severity Prediction of Type 2

(c) Severity Prediction of Type 3

Figure 10. Performance comparison of Logistic Regression, XGBoost, PyCaret, H2O.ai, and our
proposed model.

4.3. Effectiveness of Data-Driven Strategy and Oversampling

To evaluate the effectiveness of the data-driven strategy, we evaluated the perfor-
mances of the original eight classes, each sub-classified into eight severity classes based
on the CSS, and compared them with those of Types 1, 2, and 3, which were developed to
address data imbalance issues. In this experiment, we compared the clinical variables of
Group 5, which included blood test results, by utilizing 37 clinical variables. The perfor-
mance of the original eight classes was measured using the LGBM, which was the most
effective of the single classifiers. We evaluated the performances of Types 1, 2, and 3 using
the proposed model.

Table 11 shows the precision, recall, F1 score, specificity, and AUC score for the clinical
severities of the eight original classes obtained using the LGBM. Table 12 presents the
precision, recall, F1 score, specificity, and AUC score for the clinical severity of Types 1, 2,
and 3 using the proposed model.
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Table 11. Performance results of the original eight classes using the LGBM model.

Type Class Name Precision Recall F1 Score Specificity AUC Support

LGBM
(8 Classes,
Group 5)

No limitation of activity 0.8725 0.9855 0.9256 0.7570 0.9025 1337 (78.8%)
Limited activity but no oxygen supply required 0.3456 0.4981 0.4081 0.8385 0.6715 101 (6%)

Oxygen supply with nasal prong required 0.4480 0.3444 0.3894 0.9088 0.8147 143 (8.4%)
Oxygen supply with facial mask required 0.0022 0.0011 0.0015 0.9894 0.8793 13 (0.8%)

Non-invasive mechanical ventilation 0.0069 0.0067 0.0068 0.9802 0.7369 11 (0.6%)
Invasive mechanical ventilation 0.0000 0.0000 0.0000 0.9973 0.9298 13 (0.8%)

Multi-organ failure or ECMO 0.0000 0.0000 0.0000 0.9991 0.7367 4 (0.2%)
Death 0.7984 0.7967 0.7975 0.9574 0.9713 74 (4.4%)

Average/total Support 0.2717 0.3291 0.3161 0.9285 0.8303 1696 (100%)

Table 12. Performance results of clinical severity for Types 1, 2, and 3 using the proposed models.

Type Class Name Precision Recall F1
Score Specificity AUC Support

Proposed Model
(Type 1, Group 5)

Low Severity 0.9913 0.9955 0.9933 0.9517 0.9977 1594 (94%)
High Severity 0.9888 0.9861 0.9875 0.9369 0.9977 102 (6%)

Average/total support 0.9901 0.9908 0.9904 0.9443 0.9977 1696 (100%)

Proposed Model
(Type 2, Group 5)

Week 0.9785 0.9873 0.9829 0.7456 0.9583 1438 (84.8%)
Severe 0.8889 0.8498 0.8690 0.9823 0.7941 156 (9.2%)
Critical 0.9317 0.9551 0.9434 0.7527 0.9839 102 (6.0%)

Average/total support 0.9330 0.9307 0.9318 0.8269 0.9121 1696 (100%)

Proposed Model
(Type 3, Group 5)

Asymptomatic 0.9723 0.9872 0.9804 0.7612 0.9044 1227 (72.3%)
Mild 0.7951 0.8030 0.7993 0.5724 0.7114 101 (6.0%)

Moderate 0.9223 0.9696 0.9473 0.7923 0.9046 156 (9.2%)
Severe 0.7144 0.8338 0.7598 0.9629 0.9169 27 (1.6%)
Fatal 0.8781 0.8824 0.8902 0.7823 0.9797 75 (4.4%)

Average/total support 0.8564 0.8952 0.8754 0.7742 0.8834 1696 (100%)

The prediction results for the CSS of the original eight classes were generally poorer
than those of the proposed model. This difference was primarily due to data imbalances,
which were particularly noticeable in classes with a limited number of data (i.e., number
of supports) in the test dataset. As a result, in some classes, such as ‘Oxygen supply with
facial mask required’, ‘Non-invasive mechanical ventilation’, ‘Invasive mechanical ventilation’,
and ‘Multi-organ failure or ECMO’, the Precision, Recall, and F1 scores were very low or
close to zero. This indicates that the performance and reliability may be significantly
reduced, especially in classes with insufficient data samples. The proposed model applies a
data-driven strategy, reconfiguring the original eight classes into Types 1, 2, and 3. This
adjustment alleviated the prevailing data imbalance and facilitated a relatively consistent
performance across the different classes.

In addition, the use of an oversampling strategy effectively mitigated the shortcomings
of the training data, thereby improving the overall performance of the model. Healthcare
data have unique characteristics that can lead to concerns regarding performance degra-
dation or the distortion of data attributes during oversampling. Therefore, we evaluated
the performances of Logistic Regression, XGBoost, PyCaret, H2O.ai, and our proposed
model by using Group 5 clinical variables across clinical severity types 1, 2, and 3. Evalua-
tions were conducted both before and after applying oversampling using the SMOTE and
ADASYN techniques. We utilized external libraries such as ‘imbalanced-learn’ in Python
to perform the oversampling and then processed the data under the same conditions.
For each model included in the performance evaluation, a total of 20 experiments were
conducted, and the average performance results were recorded. Table 13 and Figure 11
present the performance results of the proposed models, demonstrating the effectiveness of
the oversampling strategy.
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Table 13. Performance results before and after applying oversampling.

Before
Oversampling After Oversampling

SMOTE ADASYNType Model
F1 Score AUC

F1 Score AUC F1 Score AUC

Type 1
(Group 5)

Logistic Regression (LR) 0.8739 0.9128 0.9059 0.9562 0.9166 0.9407

XGBoost (XGB) 0.9182 0.9163 0.9340 0.9348 0.9454 0.9460

PyCaret (CatBoost (CAT)) 0.9071 0.8962 0.9183 0.9011 0.9246 0.9024

H2O.ai (Stacking: 1st layer: 1 GBM, 1 GLM, 2
DRF, Meta: GLM) 0.8626 0.8126 0.9031 0.8387 0.9267 0.8433

Proposed Model (Group 5-CSS Type 1)
(Stacking: 1st layer: RF, MLP, SGD 2nd layer:

RF, SGD, Meta: LR)
0.9315 0.9336 0.9623 0.9853 0.9904 0.9877

Type 2
(Group 5)

Logistic Regression (LR) 0.7734 0.8316 0.8046 0.8599 0.8136 0.8654

XGBoost (XGB) 0.8590 0.8925 0.8594 0.9052 0.8682 0.9062

PyCaret (CatBoost (CAT)) 0.8192 0.8214 0.8199 0.8214 0.8210 0.8295

H2O.ai (Generalized Linear Modeling (GLM)) 0.8013 0.7928 0.8312 0.8045 0.8339 0.8084

Proposed Model (Group 5-CSS Type 2)
(Stacking: 1st layer: LGBM, DT, SGD, Meta:

LR)
0.8972 0.8957 0.9158 0.9112 0.9318 0.9121

Type 3
(Group 5)

Logistic Regression (LR) 0.6211 0.7724 0.6514 0.7935 0.6967 0.8079

XGBoost (XGB) 0.7882 0.8325 0.7892 0.8527 0.7905 0.8658

PyCaret (CatBoost (CAT)) 0.7495 0.7312 0.7503 0.7341 0.7543 0.7362

H2O.ai (Gradient Boosting Machine (GBM)) 0.7366 0.7097 0.7399 0.7113 0.7451 0.7187

Proposed Model (Group 5-CSS Type 3)
(Stacking: 1st layer: LGBM, SVM2, 2nd layer:

MLP, LR, Meta: LR)
0.7991 0.8572 0.8524 0.8811 0.8754 0.9115
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Figure 11. Comparison of performances before and after applying oversampling.

Overall, the oversampling technique contributed to the improvement in the F1 and
AUC scores for all classifiers. For Type 1, the proposed model showed an increase in the F1
score of 3.08% when applying SMOTE and of 5.89% when applying ADASYN. Additionally,
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the AUC score improved by 5.17% with SMOTE and 5.41% with ADASYN. For Type 2,
the improvements were more moderate than those for Type 1. The F1 score increased by
1.86% for SMOTE and 3.46% for ADASYN, whereas the AUC score increased by 1.55% for
SMOTE and 1.64% for ADASYN. Finally, for Type 3, there was a notable increase in the F1
score by 5.33% with SMOTE and 7.63% with ADASYN, and the AUC score increased by
3.39% and 6.43%, respectively.

In the case of XGBoost, PyCaret (CatBoost), and H2O.ai (GBM), oversampling did not
lead to significant improvements across any of the types. This lack of improvement was
attributed to the nature of the boosting algorithms. For instance, XGBoost and CatBoost
construct new trees by correcting the errors in the previously created, weaker decision trees.
Due to this approach, the oversampled data did not significantly contribute to the results.
Consequently, the models in Type 2, especially those using boosting ensemble models such
as LGBM and RF, as well as those utilizing AutoML approaches based on boosting tech-
niques, did not show substantial performance improvements after oversampling. However,
the proposed combination of models in Type 3, which included a variety of models such as
MLP and SVM, demonstrated the most remarkable performance improvement.

4.4. Effect of Feature Selection Algorithm on Performance Results

To select the important features that influence clinical severity, we evaluated the effects
of 37 input clinical variables on the severity and selected an optimal subset of features that
could improve the prediction performance by removing less relevant features. For this
purpose, we proposed a feature selection algorithm based on greedy search algorithms,
including forward selection, backward elimination, and RFECV. To evaluate the effective-
ness of our proposed feature selection algorithm, we conducted comparative experiments
with no feature selection and with forward selection, backward elimination, RFECV, or the
proposed algorithm.

Table 14 presents the features selected by each of the feature selection methods for
Groups 1, 3, and 5, which were defined in the data-driven strategy for the 37 clinical
variables. The detailed results for all groups are presented in Table A4 (Appendix B).

Table 14. Selected features from feature selection algorithm for Groups 1, 3, and 5.

Groups Feature Selection Selected Feature (Clinical Variables)

Group 1

None (9) AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI
Forward Selection (5) AGE, PREG, BMI, HRI, TEMPI

Backward Elimination (5) AGE, PREGW, SBP, HRI, TEMPI
RFECV (5) AGE, BMI, SBP, HRI, TEMPI

Proposed Algorithm (5) AGE, BMI, SBP, HRI, TEMPI

Group 3

None (32)

AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI,
FEVER, COUGH, SPUTUM, ST, RNR, MAM, FM, SOB,
HEADA, ACC, VN, DIARR, DM, HTN, HF, CCD,
ASTHMA, COPD, CKD, MALIG, CLD, RDAD, DEMEN

Forward Selection (9) AGE, TEMPI, FEVER, FM, SOB, ACC, HTN, RDAD,
DEMEN

Backward Elimination (28)

AGE, SEX, PREG, PREGW, SBP, HRI, TEMPI, FEVER,
COUGH, SPUTUM, ST, RNR, MAM, FM, SOB, HEADA,
ACC, DIARR, DM, HTN, CCD, ASTHMA, COPD, CKD,
MALIG, CLD, DEMEN

RFECV (26)
AGE, SEX, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH,
SPUTUM, ST, RNR, MAM, FM, SOB, HEADA, ACC, VN,
DIARR, DM, HTN, CCD, ASTHMA, MALIG, DEMEN

Proposed Algorithm (22)
AGE, SEX, SBP, HRI, TEMPI, FEVER, COUGH, SPUTUM,
ST, RNR, MAM, FM, SOB, HEADA, ACC, DIARR, DM,
HTN, CCD, ASTHMA, MALIG, DEMEN
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Table 14. Cont.

Groups Feature Selection Selected Feature (Clinical Variables)

Group 5

None (37)

AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI,
FEVER, COUGH, SPUTUM, ST, RNR, MAM, FM, SOB,
HEADA, ACC, VN, DIARR, DM, HTN, HF, CCD,
ASTHMA, COPD, CKD, MALIG, CLD, RDAD, DEMEN,
HGB, HCT, LYMPHO, PLT, WBC

Forward Selection (13) AGE, TEMPI, ST, MAM, SOB, ACC, DM, DEMEN, HGB,
HCT, LYMPHO, PLT, WBC

Backward Elimination (32)

AGE, SEX, PREG, PREGW, BMI, SBP, DBP, TEMPI, FEVER,
COUGH, SPUTUM, ST, RNR, MAM, FM, SOB, HEADA,
ACC, DM, HTN, HF, ASTHMA, COPD, CKD, MALIG,
RDAD, DEMEN, HGB, HCT, LYMPHO, PLT, WBC

RFECV (22)

AGE, SEX, BMI, TEMPI, FEVER, ST, SOB, HEADA, ACC,
VN, DIARR, DM,
ASTHMA, COPD, MALIG, CLD, DEMEN, HGB, HCT,
LYMPHO, PLT, WBC

Proposed Algorithm (19)
AGE, SEX, BMI, TEMPI, FEVER, ST, MAM, SOB, HEADA,
ACC, DM, HTN, COPD, MALIG, DEMEN, HGB, HCT,
LYMPHO, PLT, WBC

Each feature selection method selects a different number of features, except for Group 1,
which has a smaller total number of features. The forward selection method begins with-
out any selected features and incrementally adds features that contribute to performance
improvements. Consequently, this method selects a relatively small number of features
across all groups, thereby increasing the risk of overall performance degradation due to
the inclusion of a few features. In contrast, the backward elimination method begins by
including all features and sequentially removes those with the least effect on the perfor-
mance. This method tends to consider most features as important, and therefore eliminates
only a small number of features across all groups. As a result, it selects a larger number of
features for all groups than the other methods. However, this method can lead to inefficient
feature selection because an insufficient number of features are properly removed. The
RFECV method operates by iteratively training the model and removing less-significant
features. With each iteration, the model is retrained with the remaining features and less
important features are discarded. This process continues until the optimal number of fea-
tures is determined through cross-validation; thus, a greater number of features is removed
from all groups when compared with those removed in backward elimination. Finally,
the proposed algorithm combines the features extracted by forward selection, backward
elimination, and RFECV, ultimately returning only the important features selected by at
least two methods. This approach has the advantage of encompassing features that might
have been overlooked by other feature selection algorithms.

Table 15 shows the performance results of the feature selection for each group in
Type 1 in terms of the F1 and AUC scores. To assess the feature-selection performance,
we evaluated the performances of various feature-selection algorithms when applied to
the proposed models derived for each type. The bold and underlined results in the table
represent the most outstanding performances.

The results for Type 1, which included simple binary classification, generally showed
high performance in terms of both F1 and AUC scores. Most algorithms exhibited the
highest F1 and AUC scores in Group 5. In terms of the F1 score, the proposed algorithm
showed a superior performance across all groups when compared with the other algorithms.
Regarding the AUC, the other algorithms showed a competitive performance in Groups 2
and 3, but there was no significant difference when compared with the proposed algorithm.
In Group 1, both RFECV and the proposed algorithm resulted in identical feature selection
outcomes, leading to identical F1 and AUC scores of 0.9281 and 0.8722, respectively. For
Type 1, there was no significant difference in performance because the number and types
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of features selected by the algorithms were similar. Figure 12 illustrates the average F1 and
AUC scores for each feature selection algorithm across Groups 1–5 for Type 1.

Table 15. Performance results of feature selection for each group in Type 1.

Group 1 Group 2 Group 3 Group 4 Group 5Feature Selection
Algorithm F1-Score AUC F1-Score AUC F1-Score AUC F1-Score AUC F1-Score AUC

None 0.9069 0.8542 0.9398 0.9081 0.9374 0.9115 0.9865 0.9772 0.9867 0.9867
Forward Selection 0.8957 0.8703 0.8796 0.8891 0.8973 0.8948 0.9860 0.9765 0.9858 0.9865

Backward Elimination 0.9252 0.8542 0.9317 0.9115 0.9318 0.9127 0.9863 0.9770 0.9873 0.9870
RFECV 0.9281 0.8722 0.9288 0.8999 0.9430 0.9215 0.9865 0.9771 0.9874 0.9863

Proposed Algorithm 0.9281 0.8722 0.9414 0.9098 0.9472 0.9129 0.9871 0.9774 0.9904 0.9877
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Figure 12. Average F1 and AUC scores of the feature selection algorithm across Groups 1–5 for Type 1.

Tables 16 and 17 present the performance results of the feature selection for each group
for Types 2 and 3 in terms of the F1 and AUC scores. It was observed that, for Types 2 and 3,
which had a more diverse range of classes for classification, there was an overall decrease in
performance in terms of both F1 and AUC scores when compared with the result for Type
1. Figures 13 and 14 illustrate the average F1 and AUC scores for each feature selection
algorithm across Groups 1–5 for Types 2 and 3, respectively.

Table 16. Performance results of feature selection for each group for Type 2.

Group 1 Group 2 Group 3 Group 4 Group 5Feature Selection
Algorithm F1-Score AUC F1-Score AUC F1-Score AUC F1-Score AUC F1-Score AUC

None 0.7957 0.7034 0.8081 0.7340 0.8378 0.7366 0.9099 0.8537 0.9086 0.8944
Forward Selection 0.8035 0.6974 0.7853 0.7356 0.8366 0.7285 0.9079 0.8621 0.9063 0.9023

Backward Elimination 0.8052 0.7112 0.8185 0.7486 0.8389 0.7826 0.9045 0.8627 0.9056 0.9031
RFECV 0.8161 0.7522 0.8233 0.7391 0.8429 0.7969 0.9091 0.8662 0.9281 0.9039

Proposed Algorithms 0.8161 0.7522 0.8391 0.7769 0.8589 0.8187 0.9186 0.9031 0.9318 0.9121
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Table 17. Performance results of feature selection for each group for Type 3.

Group 1 Group 2 Group 3 Group 4 Group 5Feature Selection
Algorithm F1-Score AUC F1-Score AUC F1-Score AUC F1-Score AUC F1-Score AUC

None 0.7334 0.6379 0.7515 0.6853 0.7586 0.7233 0.8262 0.8266 0.8313 0.8901
Forward Selection 0.7345 0.6277 0.7541 0.6743 0.7622 0.7142 0.8285 0.8244 0.8356 0.8799

Backward Elimination 0.7379 0.6220 0.7488 0.6823 0.7488 0.7246 0.8295 0.8255 0.8373 0.9019
RFECV 0.7414 0.6431 0.7526 0.6890 0.7605 0.7285 0.8332 0.8309 0.8389 0.9043

Proposed Algorithms 0.7414 0.6584 0.7581 0.6914 0.7726 0.7355 0.8430 0.8955 0.8754 0.9115
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Figure 13. Average F1 and AUC scores for feature selection algorithm across groups 1–5 for Type 2.
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Figure 14. Average F1 and AUC scores for feature selection algorithm across groups 1–5 for Type 3.

In the case of forward selection, the F1 and AUC scores for Types 2 and 3 decreased
when compared with that in the case where no feature selection was performed, mainly
because the number of selected features was too small. In Type 2, when compared with the
results obtained when no feature selection was performed, the average F1 score decreased
by 0.41% and the AUC score decreased by 0.1%. In Type 3, the F1 score decreased by
0.32% and the AUC score decreased by 0.85% when compared with the results for the
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case when no feature selection was performed. With backward elimination, there was no
significant improvement in the performance when compared with the results obtained
when no feature selection was performed. In Type 2, the average F1 score increased by
0.25% and the AUC score increased by 1.54%, whereas in Type 3, the average F1 score
increased by 0.03% and the AUC score decreased by 0.14%. This was because backward
elimination removes a relatively small number of features. The performance of RFECV
was better than the performance of forward selection and backward elimination. This
was because RFECV can remove or include important features through recursive model
retraining during the feature selection process. In Type 2, RFECV showed an average
increase of 1.19% in the F1 score and 2.54% in the AUC score when compared with the
results obtained when no feature selection was performed. In Type 3, average increases
of 0.83% in the F1 score and 1.51% in the AUC score were observed when compared with
the results when no feature selection was performed. Finally, the proposed algorithm
outperformed the other feature-selection algorithms. Type 2 demonstrated an average
increase of 2.09% in the F1 score and 4.64% in the AUC score. Similarly, for Type 3, the
proposed algorithm showed an average increase of 1.76% in the F1 score and 2.72% in the
AUC score.

5. Conclusions

In this paper, we presented an adaptive stacking ensemble technique to effectively
identify various COVID-19 severity levels in patients. This technique could be particularly
useful in the early stages of the healthcare response to pandemics, such as COVID-19, even
when resources are limited. To enhance the generalizability of our model, we utilized a
nationwide dataset provided by the South Korean government, which included data on
5644 patients from more than 100 hospitals. Using a data-driven strategy, we grouped the
clinical variables, developed adaptive models for various combinations, and presented the
results for each group and severity type. We also analyzed important clinical variables
using feature selection methods to improve our severity prediction model’s performance
by focusing on highly important features and removing variables of low relevance. Finally,
we proposed a method for automatically constructing an adaptive stacking ensemble
model that predicts the severity levels more accurately than existing single classifiers and
AutoML approaches.

Despite our contributions, our research faced several limitations. Stacking ensem-
ble models typically face challenges such as computational complexity and an extensive
computation time. Although our processes, such as data preprocessing, feature selection,
and oversampling, are automated using our proposed algorithms, they still require signif-
icant computational resources. Consequently, rapidly generating these models remains
challenging in time-sensitive tasks and during data updates. Furthermore, although our
implementation outperformed AutoML approaches in experimental evaluations, we were
unable to enhance computational efficiency compared to AutoML approaches, which often
utilize cloud computing or parallel processing. Instead, our goal was to enhance the perfor-
mance in the identification of various COVID-19 severity levels within the constraints of
clinical environments. Moreover, since our research was based on data from South Korean
patients, the results may not be generalizable to other ethnic groups, such as Caucasians
or Middle Eastern Asians. Therefore, external validation using a more diverse popula-
tion is necessary to evaluate the effectiveness of the model across different ethnic groups.
Additionally, our model’s performance needs to be verified in real-world scenarios. Our
research was limited to clinical epidemiological datasets.

In future work, we aim to apply our technique to diverse datasets, including those
from various ethnic groups. To achieve this, we plan to develop a user-friendly web
application. This application will enable a real-time training framework that allows our
model to learn from prospectively collected data and provides optimizations to reduce
computational overhead via the use of cloud computing resources. Furthermore, the
surge in COVID-19 cases has led to a significant increase in medical documents, such as
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clinical notes, offering new opportunities for our approach to identify patient severity
through NLP and LLMs. However, LLMs present their own challenges, including the risk
of generating hallucinated content and a dependency on prompt engineering for quality
results. We intend to address these challenges and incorporate LLMs into our technique.
This will automate the interpretation of text-based unstructured data. This integration
could significantly enhance the strengths of our data-driven strategy. Furthermore, we
will examine the model’s adaptability and relevance in the post-COVID period, aiming to
enhance its practical implementation. Our goal is not only to refine the technical aspects of
our approach but also to ensure its practical applicability in real-world healthcare settings.
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Appendix A. Performance Results of the Comparison with All 14 Individual Classifiers
and AutoML Approaches

Table A1. Detailed performance results of Type 1 severity for Groups 1–5.

Group Model Precision Recall F1 Score Specificity AUC

Group 1

Logistic Regression (LR) 0.9416 0.7740 0.8496 0.7604 0.8989
Support Vector Machine 1 (SVM 1) 0.8902 0.7846 0.8341 0.7336 0.8503
Support Vector Machine 2 (SVM 2) 0.8824 0.7895 0.8334 0.3898 0.7718
Stochastic Gradient Descent (SGD) 0.9089 0.7766 0.8376 0.7262 0.8438

K-Nearest Neighbor (KNN) 0.8814 0.8443 0.8625 0.4832 0.6513
Multi-Layer Perceptron (MLP) 0.9087 0.7121 0.7985 0.7841 0.8505
Gaussian Naïve Bayes (GNB) 0.9049 0.8306 0.8662 0.6058 0.8312

Decision Tree (DT) 0.8835 0.8434 0.8630 0.5106 0.5930
Extra Trees Classifier (ExTree) 0.8861 0.8394 0.8621 0.5517 0.6086

XGBoost (XGB) 0.8883 0.8735 0.8808 0.4644 0.8007
Light Gradient Boosting Machine (LGBM) 0.8932 0.8770 0.8850 0.5059 0.8105

Random Forest (RF) 0.8859 0.8602 0.8729 0.4911 0.8097
AdaBoost (ADA) 0.8922 0.8540 0.8697 0.4756 0.8445
CatBoost (CAT) 0.8922 0.8757 0.8839 0.5540 0.8197
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Table A1. Cont.

Group Model Precision Recall F1 Score Specificity AUC

Group 1

PyCaret (CatBoost (CAT)) 0.9188 0.8997 0.9091 0.6092 0.7849
H2O.ai (Gradient Boosting Machine (GBM)) 0.9347 0.9101 0.9223 0.7278 0.8406

Proposed Model (Group 1-CSS Type 1)
(Stacking: 1st layer: LGBM, 2nd layer: XGB, MLP,

Meta: LR)
0.9262 0.9301 0.9281 0.6026 0.8722

Group 2

Logistic Regression (LR) 0.9479 0.7939 0.8641 0.8168 0.9327
Support Vector Machine 1 (SVM 1) 0.9155 0.7925 0.8496 0.7892 0.8799
Support Vector Machine 2 (SVM 2) 0.8691 0.8671 0.8726 0.2650 0.7755
Stochastic Gradient Descent (SGD) 0.9146 0.7585 0.8293 0.8076 0.8735

K-Nearest Neighbor (KNN) 0.8962 0.9138 0.9049 0.6083 0.7117
Multi-Layer Perceptron (MLP) 0.9105 0.8107 0.8577 0.7077 0.8616
Gaussian Naïve Bayes (GNB) 0.9150 0.7996 0.8534 0.7758 0.8540

Decision Tree (DT) 0.8944 0.8695 0.8818 0.5605 0.6250
Extra Trees Classifier (ExTree) 0.8970 0.8589 0.8775 0.6355 0.6571

XGBoost (XGB) 0.9040 0.8876 0.8957 0.5823 0.8495
Light Gradient Boosting Machine (LGBM) 0.9055 0.8894 0.8964 0.5893 0.8562

Random Forest (RF) 0.9006 0.8721 0.8861 0.5482 0.8626
AdaBoost (ADA) 0.9014 0.8729 0.8869 0.5482 0.8739
CatBoost (CAT) 0.9084 0.8847 0.8974 0.5759 0.8645

PyCaret (Random Forest (RF)) 0.8993 0.8933 0.8963 0.5423 0.8462
H2O.ai (Stacking: 1st layer: 1 GBM, 1 GLM, 2

DRF, Meta: GLM) 0.9354 0.8592 0.8957 0.8096 0.8410

Proposed Model (Group 2-CSS Type 1)
(Stacking: 1st layer: CAT, 2nd layer: CAT, LR,

Meta: LR)
0.9407 0.9421 0.9414 0.7214 0.9098

Group 3

Logistic Regression (LR) 0.9497 0.8129 0.8760 0.8180 0.8880
Support Vector Machine 1 (SVM 1) 0.9185 0.8005 0.8554 0.8172 0.8851
Support Vector Machine 2 (SVM 2) 0.8595 0.8744 0.8669 0.0167 0.7862
Stochastic Gradient Descent (SGD) 0.9170 0.7903 0.8489 0.8097 0.8863

K-Nearest Neighbor (KNN) 0.9029 0.8775 0.8900 0.4367 0.7164
Multi-Layer Perceptron (MLP) 0.9100 0.8324 0.8695 0.6678 0.8549
Gaussian Naïve Bayes (GNB) 0.9148 0.8138 0.8613 0.7561 0.8403

Decision Tree (DT) 0.8949 0.8629 0.8786 0.5945 0.6385
Extra Trees Classifier (ExTree) 0.8927 0.8567 0.8743 0.5872 0.6319

XGBoost (XGB) 0.9054 0.8916 0.8984 0.5619 0.8578
Light Gradient Boosting Machine (LGBM) 0.9008 0.8947 0.8977 0.6240 0.8698

Random Forest (RF) 0.9098 0.8925 0.9011 0.5554 0.8654
AdaBoost (ADA) 0.9098 0.8972 0.9035 0.5554 0.8777
CatBoost (CAT) 0.9080 0.8943 0.9011 0.5758 0.8715

PyCaret (CatBoost (CAT)) 0.9032 0.9075 0.9053 0.5237 0.8532
H2O.ai (Gradient Boosting Machine (GBM)) 0.9358 0.8760 0.9049 0.8085 0.8426

Proposed Model (Group 3-CSS Type 1)
(Stacking: 1st layer: LGBM, CAT, RF, 2nd layer:

LGBM, GNB, Meta: LR)
0.9471 0.9474 0.9472 0.6526 0.9129

Group 4

Logistic Regression (LR) 0.9363 0.8850 0.9099 0.8914 0.9412
Support Vector Machine 1 (SVM 1) 0.9340 0.8744 0.9032 0.8907 0.9412
Support Vector Machine 2 (SVM 2) 0.8533 0.8898 0.8712 0.0602 0.8965
Stochastic Gradient Descent (SGD) 0.9354 0.8810 0.9074 0.8912 0.9401

K-Nearest Neighbor (KNN) 0.9395 0.9199 0.9296 0.6803 0.8510
Multi-Layer Perceptron (MLP) 0.9467 0.9182 0.9322 0.8798 0.9445
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Table A1. Cont.

Group Model Precision Recall F1 Score Specificity AUC

Group 4

Gaussian Naïve Bayes (GNB) 0.9277 0.8536 0.8891 0.8550 0.9035
Decision Tree (DT) 0.9491 0.9292 0.9390 0.7635 0.8564

Extra Trees Classifier (ExTree) 0.9310 0.9075 0.9191 0.6726 0.8001
XGBoost (XGB) 0.9573 0.9363 0.9467 0.8741 0.9469

Light Gradient Boosting Machine (LGBM) 0.9565 0.9358 0.9460 0.8534 0.9476
Random Forest (RF) 0.9566 0.9358 0.9461 0.8603 0.9474

AdaBoost (ADA) 0.9566 0.9343 0.9453 0.8603 0.9478
CatBoost (CAT) 0.9575 0.9343 0.9458 0.8741 0.9479

PyCaret (Logistic Regression (LR)) 0.9313 0.8997 0.9152 0.8852 0.9410
H2O.ai (Stacking: 1st layer: 1 GBM, 1 GLM, 2

DRF, Meta: GLM) 0.9357 0.9136 0.9245 0.8685 0.8439

Proposed Model (Group 4-CSS Type 1)
(Stacking: 1st layer: RF, 2nd layer: RF, LR,

Meta: LR)
0.9871 0.9872 0.9871 0.8959 0.9974

Group 5

Logistic Regression (LR) 0.9376 0.8965 0.9166 0.8646 0.9407
Support Vector Machine 1 (SVM 1) 0.9358 0.8903 0.9125 0.8642 0.9405
Support Vector Machine 2 (SVM 2) 0.8633 0.8908 0.8768 0.0602 0.8571
Stochastic Gradient Descent (SGD) 0.9386 0.8996 0.9187 0.8648 0.9384

K-Nearest Neighbor (KNN) 0.9322 0.9115 0.9217 0.6454 0.8145
Multi-Layer Perceptron (MLP) 0.9455 0.9173 0.9312 0.8660 0.9420
Gaussian Naïve Bayes (GNB) 0.9221 0.8447 0.8817 0.7994 0.8935

Decision Tree (DT) 0.9500 0.9270 0.9384 0.8459 0.8965
Extra Trees Classifier (ExTree) 0.9148 0.8938 0.9042 0.5066 0.7102

XGBoost (XGB) 0.9561 0.9350 0.9454 0.8671 0.9460
Light Gradient Boosting Machine (LGBM) 0.9558 0.9345 0.9450 0.8671 0.9473

Random Forest (RF) 0.9588 0.9389 0.9487 0.8329 0.9467
AdaBoost (ADA) 0.9588 0.9389 0.9487 0.8329 0.9469
CatBoost (CAT) 0.9583 0.9372 0.9476 0.8879 0.9476

PyCaret (CatBoost (CAT)) 0.9176 0.9318 0.9246 0.8321 0.9024
H2O.ai (Stacking: 1st layer: 1 GBM, 1 GLM, 2

DRF, Meta: GLM) 0.9355 0.9180 0.9267 0.8679 0.8433

Proposed Model (Group 5-CSS Type 1)
(Stacking: 1st layer: RF, MLP, SGD 2nd layer: RF,

SGD, Meta: LR)
0.9901 0.9908 0.9904 0.9443 0.9977

Average

Logistic Regression (LR) 0.9426 0.8325 0.8832 0.8302 0.9203
XGBoost (XGB) 0.9222 0.9048 0.9134 0.6700 0.8802

PyCaret 0.9140 0.9064 0.9101 0.6785 0.8655
H2O.ai 0.9354 0.8954 0.9148 0.8165 0.8423

Average of 14 Single Classifiers 0.9168 0.8698 0.8920 0.6676 0.8487
Average of 2 AutoML Approaches 0.9247 0.9009 0.9125 0.7475 0.8539

Average of All Single Classifiers and AutoML 0.9178 0.8737 0.8946 0.6776 0.8494
Proposed Model (CSS Type 1) 0.9582 0.9595 0.9588 0.7634 0.9380
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Table A2. Detailed performance results of Type 2 severity for Groups 1–5.

Group Model Precision Recall F1 Score Specificity AUC

Group 1

Logistic Regression (LR) 0.8060 0.7186 0.7598 0.7670 0.7632
Support Vector Machine 1 (SVM 1) 0.8031 0.7265 0.7629 0.6833 0.7562
Support Vector Machine 2 (SVM 2) 0.7718 0.6659 0.7149 0.5858 0.6890
Stochastic Gradient Descent (SGD) 0.7766 0.7341 0.7548 0.6144 0.6720

K-Nearest Neighbor (KNN) 0.7769 0.7721 0.7745 0.5030 0.6243
Multi-Layer Perceptron (MLP) 0.8133 0.6558 0.7261 0.7047 0.7590
Gaussian Naïve Bayes (GNB) 0.7960 0.7447 0.7695 0.6366 0.7314

Decision Tree (DT) 0.7629 0.7619 0.7624 0.4485 0.5652
Extra Trees Classifier (ExTree) 0.7590 0.7416 0.7502 0.4641 0.5615

XGBoost (XGB) 0.7690 0.8243 0.7957 0.4468 0.7470
Light Gradient Boosting Machine (LGBM) 0.7783 0.8162 0.7968 0.5067 0.7569

Random Forest (RF) 0.7699 0.7977 0.7836 0.4472 0.7469
AdaBoost (ADA) 0.7699 0.7977 0.7836 0.4472 0.7086
CatBoost (CAT) 0.7767 0.8163 0.7960 0.5172 0.7426

PyCaret (AdaBoost (ADA)) 0.7971 0.8226 0.8096 0.5954 0.7299
H2O.ai (Generalized Linear Modeling (GLM)) 0.8047 0.8150 0.8098 0.6021 0.7511

Proposed Model (Group 1-CSS Type 2)
(Stacking: 1st layer: LGBM, ADA, 2nd layer: RF,

GNB, SVM2 Meta: LR)
0.8119 0.8204 0.8161 0.5340 0.7522

Group 2

Logistic Regression (LR) 0.8172 0.6952 0.7513 0.7561 0.7852
Support Vector Machine 1 (SVM 1) 0.8226 0.7023 0.7577 0.7458 0.7861
Support Vector Machine 2 (SVM 2) 0.7134 0.7620 0.7369 0.1542 0.7154
Stochastic Gradient Descent (SGD) 0.8139 0.7218 0.7651 0.7074 0.7740

K-Nearest Neighbor (KNN) 0.7790 0.7572 0.7679 0.4741 0.6349
Multi-Layer Perceptron (MLP) 0.8186 0.6736 0.7391 0.7554 0.7662
Gaussian Naïve Bayes (GNB) 0.8105 0.7059 0.7546 0.6960 0.7727

Decision Tree (DT) 0.7720 0.7377 0.7545 0.4820 0.5773
Extra Trees Classifier (ExTree) 0.7806 0.7253 0.7519 0.5345 0.6011

XGBoost (XGB) 0.7938 0.7987 0.7962 0.4634 0.7736
Light Gradient Boosting Machine (LGBM) 0.8007 0.8010 0.8008 0.4928 0.7890

Random Forest (RF) 0.7903 0.7979 0.7941 0.4562 0.7913
AdaBoost (ADA) 0.7898 0.7961 0.7938 0.4537 0.7663
CatBoost (CAT) 0.7909 0.7890 0.7899 0.4820 0.7697

PyCaret (AdaBoost (ADA)) 0.8058 0.8212 0.8134 0.6072 0.7996
H2O.ai (Generalized Linear Modeling (GLM)) 0.8116 0.8532 0.8318 0.6102 0.7629

Proposed Model (Group 2-CSS Type 2)
(Stacking: 1st layer: RF, Meta: LR) 0.8303 0.8480 0.8391 0.6105 0.7769

Group 3

Logistic Regression (LR) 0.8213 0.6815 0.7449 0.7701 0.7886
Support Vector Machine 1 (SVM 1) 0.8257 0.6873 0.7502 0.7687 0.7923
Support Vector Machine 2 (SVM 2) 0.7038 0.7740 0.7372 0.1092 0.7231
Stochastic Gradient Descent (SGD) 0.8202 0.6802 0.7437 0.7565 0.7780

K-Nearest Neighbor (KNN) 0.7895 0.7448 0.7665 0.4365 0.6327
Multi-Layer Perceptron (MLP) 0.8130 0.7041 0.7546 0.6997 0.7663
Gaussian Naïve Bayes (GNB) 0.8507 0.1030 0.1838 0.7396 0.7589

Decision Tree (DT) 0.7839 0.7443 0.7636 0.5162 0.5975
Extra Trees Classifier (ExTree) 0.7669 0.7178 0.7415 0.4705 0.5748

XGBoost (XGB) 0.8018 0.8045 0.8031 0.4783 0.7812
Light Gradient Boosting Machine (LGBM) 0.8078 0.8067 0.8072 0.5004 0.7950
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Table A2. Cont.

Group Model Precision Recall F1 Score Specificity AUC

Group 3

Random Forest (RF) 0.8043 0.8054 0.8048 0.4761 0.8010
AdaBoost (ADA) 0.8043 0.8054 0.8048 0.4761 0.7319
CatBoost (CAT) 0.7985 0.7943 0.7964 0.4992 0.7800

PyCaret (Logistic Regression (LR)) 0.8073 0.8428 0.8247 0.6142 0.8003
H2O.ai (Gradient Boosting Machine (GBM)) 0.8069 0.8467 0.8263 0.6115 0.7721

Proposed Model (Group 3-CSS Type 2)
(Stacking: 1st layer: LGBM, SGD, Meta: LR) 0.8628 0.8550 0.8589 0.7585 0.8187

Group 4

Logistic Regression (LR) 0.8577 0.7665 0.8095 0.8453 0.8716
Support Vector Machine 1 (SVM 1) 0.8596 0.7576 0.8054 0.8345 0.8720
Support Vector Machine 2 (SVM 2) 0.6891 0.7974 0.7393 0.0845 0.8003
Stochastic Gradient Descent (SGD) 0.8471 0.7757 0.8098 0.8011 0.8352

K-Nearest Neighbor (KNN) 0.8275 0.8023 0.8147 0.6232 0.7293
Multi-Layer Perceptron (MLP) 0.8629 0.8089 0.8350 0.8057 0.8743
Gaussian Naïve Bayes (GNB) 0.8768 0.1114 0.1977 0.8193 0.8127

Decision Tree (DT) 0.8353 0.7961 0.8152 0.7075 0.6899
Extra Trees Classifier (ExTree) 0.8175 0.7634 0.7895 0.6439 0.6722

XGBoost (XGB) 0.8714 0.8540 0.8626 0.7299 0.9057
Light Gradient Boosting Machine (LGBM) 0.8834 0.8624 0.8728 0.7645 0.9126

Random Forest (RF) 0.8703 0.8492 0.8596 0.7365 0.9011
AdaBoost (ADA) 0.8703 0.8492 0.8596 0.7365 0.7862
CatBoost (CAT) 0.8739 0.8567 0.8652 0.7301 0.9021

PyCaret (Gaussian Naïve Bayes (GNB)) 0.8084 0.8248 0.8165 0.8193 0.8262
H2O.ai (Gradient Boosting Machine (GBM)) 0.8191 0.8590 0.8386 0.8025 0.7931

Proposed Model (Group 4-CSS Type 2)
(Stacking: 1st layer: LGBM, RF, Meta: LR) 0.9203 0.9169 0.9186 0.8683 0.9031

Group 5

Logistic Regression (LR) 0.8624 0.7700 0.8136 0.8683 0.8654
Support Vector Machine 1 (SVM 1) 0.8645 0.7616 0.8098 0.8444 0.8661
Support Vector Machine 2 (SVM 2) 0.6888 0.7974 0.7391 0.0821 0.7721
Stochastic Gradient Descent (SGD) 0.8500 0.7607 0.8029 0.8135 0.8111

K-Nearest Neighbor (KNN) 0.8130 0.7846 0.7985 0.5535 0.7180
Multi-Layer Perceptron (MLP) 0.8548 0.8094 0.8315 0.7621 0.8753
Gaussian Naïve Bayes (GNB) 0.8735 0.4325 0.5785 0.8233 0.8290

Decision Tree (DT) 0.8537 0.8182 0.8356 0.7337 0.7369
Extra Trees Classifier (ExTree) 0.8001 0.7536 0.7762 0.5801 0.6399

XGBoost (XGB) 0.8767 0.8598 0.8682 0.7157 0.9062
Light Gradient Boosting Machine (LGBM) 0.8807 0.8611 0.8708 0.7425 0.9115

Random Forest (RF) 0.8715 0.8514 0.8613 0.7367 0.9036
AdaBoost (ADA) 0.8715 0.8514 0.8613 0.7367 0.6562
CatBoost (CAT) 0.8726 0.8554 0.8639 0.7276 0.9038

PyCaret (CatBoost (CAT)) 0.7936 0.8504 0.8210 0.8083 0.8295
H2O.ai (Generalized Linear Modeling (GLM)) 0.8139 0.8550 0.8339 0.8251 0.8084

Proposed Model (Group 5-CSS Type 2)
(Stacking: 1st layer: LGBM, DT, SGD, Meta: LR) 0.9330 0.9307 0.9318 0.8269 0.9121

Average

Logistic Regression (LR) 0.8329 0.7264 0.7758 0.8014 0.8148
XGBoost (XGB) 0.8225 0.8283 0.8252 0.5668 0.8227

PyCaret 0.8024 0.8324 0.8170 0.6889 0.7971
H2O.ai 0.8112 0.8458 0.8281 0.6903 0.7775

Average of 14 Single Classifiers 0.8127 0.7501 0.7705 0.6101 0.7627
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Table A2. Cont.

Group Model Precision Recall F1 Score Specificity AUC

Average

Average of 2 AutoML Approaches 0.8068 0.8391 0.8226 0.6896 0.7873
Average of All Single Classifiers and AutoML 0.8120 0.7612 0.7770 0.6200 0.7658

Proposed Model (CSS Type 2) 0.8717 0.8742 0.8729 0.7196 0.8326

Table A3. Detailed performance results of Type 3 severity for Groups 1–5.

Group Model Precision Recall F1 Score Specificity AUC

Group 1

Logistic Regression (LR) 0.7172 0.5643 0.6316 0.6878 0.6396
Support Vector Machine 1 (SVM 1) 0.7100 0.6355 0.6707 0.6171 0.6429
Support Vector Machine 2 (SVM 2) 0.6593 0.4865 0.5599 0.5579 0.6078
Stochastic Gradient Descent (SGD) 0.7091 0.5652 0.6290 0.6739 0.6322

K-Nearest Neighbor (KNN) 0.6665 0.6161 0.6403 0.4775 0.5241
Multi-Layer Perceptron (MLP) 0.7167 0.5440 0.6185 0.6972 0.6431
Gaussian Naïve Bayes (GNB) 0.6968 0.6342 0.6640 0.5810 0.6371

Decision Tree (DT) 0.6792 0.6232 0.6500 0.5162 0.5240
Extra Trees Classifier (ExTree) 0.6803 0.6152 0.6461 0.5147 0.5269

XGBoost (XGB) 0.6709 0.7050 0.6875 0.3913 0.6458
Light Gradient Boosting Machine (LGBM) 0.6825 0.7098 0.6959 0.4239 0.6568

Random Forest (RF) 0.6787 0.6731 0.6759 0.4709 0.6331
AdaBoost (ADA) 0.6787 0.6731 0.6759 0.4709 0.5697
CatBoost (CAT) 0.6767 0.6904 0.6835 0.4419 0.6422

PyCaret (Logistic Regression (LR)) 0.7109 0.7509 0.7304 0.6571 0.6461
H2O.ai (Stacking: 1st layer: 5 GBM, 1 GLM, 2

DRF, Meta: GLM) 0.6849 0.7907 0.7340 0.4725 0.5425

Proposed Model (Group 1-CSS Type 3)
(Stacking: 1st layer: LGBM, GNB, 2nd layer:

MLP, LR, Meta: LR)
0.7157 0.7691 0.7414 0.5333 0.6584

Group 2

Logistic Regression (LR) 0.7299 0.5263 0.6116 0.7353 0.6900
Support Vector Machine 1 (SVM 1) 0.7264 0.5674 0.6371 0.7011 0.6913
Support Vector Machine 2 (SVM 2) 0.6197 0.6731 0.6453 0.2271 0.6385
Stochastic Gradient Descent (SGD) 0.7213 0.4644 0.5650 0.7421 0.6825

K-Nearest Neighbor (KNN) 0.6862 0.6435 0.6642 0.4971 0.5649
Multi-Layer Perceptron (MLP) 0.7329 0.5254 0.6120 0.7329 0.6859
Gaussian Naïve Bayes (GNB) 0.7201 0.5798 0.6424 0.6779 0.6700

Decision Tree (DT) 0.6919 0.6333 0.6613 0.5465 0.5428
Extra Trees Classifier (ExTree) 0.6618 0.5913 0.6246 0.4834 0.5116

XGBoost (XGB) 0.6957 0.7253 0.7102 0.4394 0.6972
Light Gradient Boosting Machine (LGBM) 0.7013 0.7306 0.7157 0.4510 0.7096

Random Forest (RF) 0.6982 0.7284 0.7130 0.4621 0.7042
AdaBoost (ADA) 0.6982 0.7284 0.7130 0.4621 0.6159
CatBoost (CAT) 0.6997 0.7191 0.7093 0.4552 0.7089

PyCaret (Gaussian Naïve Bayes (GNB)) 0.7328 0.7717 0.7517 0.6951 0.6897
H2O.ai (Stacking: 1st layer: 22 GBM, 1 GLM, 2

DRF, Meta: GLM) 0.7001 0.7654 0.7313 0.4936 0.6975

Proposed Model (Group 2-CSS Type 3)
(Stacking: 1st layer: LGBM, RF, ADA, 2nd layer:

MLP, LR, Meta: LR)
0.7420 0.7749 0.7581 0.5805 0.6914
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Table A3. Cont.

Group Model Precision Recall F1 Score Specificity AUC

Group 3

Logistic Regression (LR) 0.7386 0.5343 0.6251 0.7472 0.7017
Support Vector Machine 1 (SVM 1) 0.7313 0.5458 0.6318 0.7264 0.7101
Support Vector Machine 2 (SVM 2) 0.6078 0.6577 0.5639 0.2054 0.6346
Stochastic Gradient Descent (SGD) 0.7243 0.4617 0.6622 0.7515 0.6781

K-Nearest Neighbor (KNN) 0.6786 0.6466 0.6228 0.4842 0.5539
Multi-Layer Perceptron (MLP) 0.7189 0.5493 0.1050 0.6778 0.6886
Gaussian Naïve Bayes (GNB) 0.7284 0.0566 0.6692 0.8529 0.6083

Decision Tree (DT) 0.6910 0.6488 0.6410 0.5159 0.5405
Extra Trees Classifier (ExTree) 0.6827 0.6041 0.7158 0.5336 0.5423

XGBoost (XGB) 0.7025 0.7297 0.7234 0.4512 0.7024
Light Gradient Boosting Machine (LGBM) 0.7105 0.7368 0.7225 0.4549 0.7084

Random Forest (RF) 0.7125 0.7328 0.7225 0.4754 0.7236
AdaBoost (ADA) 0.7125 0.7328 0.7111 0.4754 0.5969
CatBoost (CAT) 0.7012 0.7213 0.6201 0.4535 0.7112

PyCaret (Random Forest (RF)) 0.7231 0.7897 0.7549 0.4928 0.7128
H2O.ai (Generalized Linear Modeling (GLM)) 0.6954 0.7825 0.7408 0.7036 0.7367

Proposed Model (Group 3-CSS Type 3)
(Stacking: 1st layer: LGBM, RF, ADA, 2nd layer:

MLP, LR, Meta: LR)
0.7566 0.7892 0.7726 0.5906 0.7355

Group 4

Logistic Regression (LR) 0.7899 0.6249 0.6978 0.8429 0.8122
Support Vector Machine 1 (SVM 1) 0.7884 0.6134 0.6900 0.8038 0.8186
Support Vector Machine 2 (SVM 2) 0.5916 0.7368 0.6563 0.1413 0.7181
Stochastic Gradient Descent (SGD) 0.7766 0.6280 0.6944 0.7861 0.7685

K-Nearest Neighbor (KNN) 0.7340 0.6966 0.7148 0.5933 0.6222
Multi-Layer Perceptron (MLP) 0.7882 0.6851 0.7330 0.7816 0.8123
Gaussian Naïve Bayes (GNB) 0.7872 0.1004 0.1781 0.8111 0.7191

Decision Tree (DT) 0.7615 0.7174 0.7388 0.6804 0.6283
Extra Trees Classifier (ExTree) 0.7308 0.6568 0.6918 0.6370 0.5978

XGBoost (XGB) 0.7915 0.7948 0.7931 0.6450 0.8660
Light Gradient Boosting Machine (LGBM) 0.7916 0.7917 0.7916 0.6607 0.8744

Random Forest (RF) 0.7908 0.7890 0.7899 0.6780 0.8541
AdaBoost (ADA) 0.7908 0.7890 0.7899 0.6780 0.6274
CatBoost (CAT) 0.7830 0.7855 0.7842 0.6507 0.6274

PyCaret (Gaussian Naïve Bayes (GNB)) 0.7346 0.7775 0.7554 0.7558 0.7305
H2O.ai (Stacking: 1st layer: 22 GBM, 1 GLM, 2

DRF, Meta: GLM) 0.6965 0.7966 0.7432 0.7214 0.7484

Proposed Model (Group 4-CSS Type 3)
(Stacking: 1st layer: LGBM, LR, 2nd layer: MLP,

Meta: LR)
0.8239 0.8631 0.8430 0.7626 0.8995

Group 5

Logistic Regression (LR) 0.7887 0.6240 0.6967 0.8264 0.8079
Support Vector Machine 1 (SVM 1) 0.7923 0.5975 0.6812 0.8183 0.8140
Support Vector Machine 2 (SVM 2) 0.5917 0.7377 0.6567 0.1414 0.6941
Stochastic Gradient Descent (SGD) 0.7761 0.6117 0.6842 0.7980 0.7692

K-Nearest Neighbor (KNN) 0.7237 0.6846 0.7036 0.5756 0.6066
Multi-Layer Perceptron (MLP) 0.7714 0.7129 0.7410 0.7137 0.8088
Gaussian Naïve Bayes (GNB) 0.7678 0.3883 0.5158 0.8107 0.6786

Decision Tree (DT) 0.7639 0.7147 0.7385 0.6815 0.6257
Extra Trees Classifier (ExTree) 0.7110 0.6417 0.6746 0.5775 0.5797

XGBoost (XGB) 0.7855 0.7956 0.7905 0.6272 0.8658
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Table A3. Cont.

Group Model Precision Recall F1 Score Specificity AUC

Group 5

Light Gradient Boosting Machine (LGBM) 0.7854 0.7925 0.7889 0.6363 0.8720
Random Forest (RF) 0.7786 0.7890 0.7838 0.6391 0.8475

AdaBoost (ADA) 0.7786 0.7890 0.7838 0.6391 0.6228
CatBoost (CAT) 0.7820 0.7895 0.7857 0.6477 0.8603

PyCaret (CatBoost (CAT)) 0.7231 0.7883 0.7543 0.6782 0.7362
H2O.ai (Gradient Boosting Machine (GBM)) 0.7054 0.7895 0.7451 0.6926 0.7187

Proposed Model (Group 5-CSS Type 3)
(Stacking: 1st layer: LGBM, SVM2, 2nd layer:

MLP, LR, Meta: LR)
0.8564 0.8952 0.8754 0.7068 0.8834

Average

Logistic Regression (LR) 0.7529 0.5748 0.6526 0.7679 0.7303
XGBoost (XGB) 0.7292 0.7501 0.7409 0.5108 0.7554

PyCaret 0.7249 0.7756 0.7493 0.6558 0.7031
H2O.ai 0.6965 0.7849 0.7389 0.6167 0.6888

Average of 14 Single Classifiers 0.7220 0.6430 0.6694 0.5923 0.6791
Average of 2 AutoML Approaches 0.7107 0.7803 0.7441 0.6363 0.6959

Average of All Single Classifiers and AutoML 0.7206 0.6601 0.6787 0.5978 0.6812
Proposed Model (CSS Type 3) 0.7789 0.8183 0.7981 0.6348 0.7736

Appendix B. Selected Features from Feature Selection Algorithm for All Groups

Table A4. Selected features from feature selection algorithm for all groups.

Groups Feature Selection Selected Feature (Clinical Variables)

Group 1

None (9) AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI
Forward Selection (5) AGE, PREG, BMI, HRI, TEMPI

Backward Elimination (5) AGE, PREGW, SBP, HRI, TEMPI
RFECV (5) AGE, BMI, SBP, HRI, TEMPI

Proposed Algorithm (5) AGE, BMI, SBP, HRI, TEMPI

Group 2

None (21) AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH,
SPUTUM, ST, RNR, MAM, FM, SOB, HEADA, ACC, VN, DIARR

Forward Selection (6) AGE, TEMPI, SOB, COUGH, SPUTUM

Backward Section (18) AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH,
SPUTUM, ST, RNR, MAM, SOB, HEADA, ACC

RFECV (16) AGE, SEX, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH, SPUTUM,
MAM, SOB, HEADA, VN, DIARR

Proposed Algorithm (13) AGE, SEX, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH, SPUTUM,
MAM, SOB, HEADA

Group 3

None (32)
AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH,
SPUTUM, ST, RNR, MAM, FM, SOB, HEADA, ACC, VN, DIARR, DM,
HTN, HF, CCD, ASTHMA, COPD, CKD, MALIG, CLD, RDAD, DEMEN

Forward Selection (9) AGE, TEMPI, FEVER, FM, SOB, ACC, HTN, RDAD, DEMEN

Backward Elimination (28)
AGE, SEX, PREG, PREGW, SBP, HRI, TEMPI, FEVER, COUGH, SPUTUM,
ST, RNR, MAM, FM, SOB, HEADA, ACC, DIARR, DM, HTN, CCD,
ASTHMA, COPD, CKD, MALIG, CLD, DEMEN

RFECV (26)
AGE, SEX, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH, SPUTUM, ST,
RNR, MAM, FM, SOB, HEADA, ACC, VN, DIARR, DM, HTN, CCD,
ASTHMA, MALIG, DEMEN

Proposed Algorithm (22)
AGE, SEX, SBP, HRI, TEMPI, FEVER, COUGH, SPUTUM, ST, RNR, MAM,
FM, SOB, HEADA, ACC, DIARR, DM, HTN, CCD, ASTHMA, MALIG,
DEMEN
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Table A4. Cont.

Groups Feature Selection Selected Feature (Clinical Variables)

Group 4

None (26)
AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH,
SPUTUM, ST, RNR, MAM, FM, SOB, HEADA, ACC, VN, DIARR, HGB,
HCT, LYMPHO, PLT, WBC

Forward Selection (13) AGE, SEX, SBP, TEMPI, COUGH, MAM, SOB, ACC, HGB, HCT, LYMPHO,
PLT, WBC

Backward Section (24)
AGE, SEX, PREG, PREGW, BMI, SBP, DBP, FEVER, COUGH, SPUTUM, ST,
RNR, MAM, FM, SOB, HEADA, ACC, VN, DIARR, HGB, HCT, LYMPHO,
PLT, WBC

RFECV (15) AGE, SEX, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH, SOB, HGB, HCT,
LYMPHO, PLT, WBC

Proposed Algorithm (16) AGE, SEX, BMI, SBP, DBP, TEMPI, FEVER, COUGH, MAM, SOB, ACC,
HGB, HCT, LYMPHO, PLT, WBC

Group 5

None (37)

AGE, SEX, PREG, PREGW, BMI, SBP, DBP, HRI, TEMPI, FEVER, COUGH,
SPUTUM, ST, RNR, MAM, FM, SOB, HEADA, ACC, VN, DIARR, DM,
HTN, HF, CCD, ASTHMA, COPD, CKD, MALIG, CLD, RDAD, DEMEN,
HGB, HCT, LYMPHO, PLT, WBC

Forward Selection (13) AGE, TEMPI, ST, MAM, SOB, ACC, DM, DEMEN, HGB, HCT, LYMPHO,
PLT, WBC

Backward Elimination (32)

AGE, SEX, PREG, PREGW, BMI, SBP, DBP, TEMPI, FEVER, COUGH,
SPUTUM, ST, RNR, MAM, FM, SOB, HEADA, ACC, DM, HTN, HF,
ASTHMA, COPD, CKD, MALIG, RDAD, DEMEN, HGB, HCT, LYMPHO,
PLT, WBC

RFECV (22)
AGE, SEX, BMI, TEMPI, FEVER, ST, SOB, HEADA, ACC, VN, DIARR, DM,
ASTHMA, COPD, MALIG, CLD, DEMEN, HGB, HCT, LYMPHO, PLT,
WBC

Proposed Algorithm (19) AGE, SEX, BMI, TEMPI, FEVER, ST, MAM, SOB, HEADA, ACC, DM,
HTN, COPD, MALIG, DEMEN, HGB, HCT, LYMPHO, PLT, WBC
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