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Abstract: Detecting vulnerable road users is a major challenge for autonomous vehicles due to their
small size. Various sensor modalities have been investigated, including mono or stereo cameras
and 3D LiDAR sensors, which are limited by environmental conditions and hardware costs. Radar
sensors are a low-cost and robust option, with high-resolution 4D radar sensors being suitable for
advanced detection tasks. However, they involve challenges such as few and irregularly distributed
measurement points and disturbing artifacts. Learning-based approaches utilizing pillar-based
networks show potential in overcoming these challenges. However, the severe sparsity of radar
data makes detecting small objects with only a few points difficult. We extend a pillar network with
our novel Sparsity-Robust Feature Fusion (SRFF) neck, which combines high- and low-level multi-
resolution features through a lightweight attention mechanism. While low-level features aid in better
localization, high-level features allow for better classification. As sparse input data are propagated
through a network, the increasing effective receptive field leads to feature maps of different sparsities.
The combination of features with different sparsities improves the robustness of the network for
classes with few points.

Keywords: 4D radar; 3D object detection; attention

1. Introduction

Detecting vulnerable road users (VRU), such as pedestrians, cyclists, etc., is a major
challenge for autonomous vehicles. Vulnerable road users are defined in the ITS Directive
of the Directorate-General for Mobility and Transport of the European Commission [1]
as non-motorized road users, such as pedestrians and cyclists, as well as motorcyclists
and persons with disabilities or reduced mobility and orientation. These road users are
particularly challenging to detect due to their small size, especially when compared to
other objects in a scene, frequent occlusion, and high vulnerability. For this reason, a wide
variety of methods have been developed to detect these VRUs as robustly as possible, with
such detection crucial for systems such as emergency braking assistants. These systems
differ in terms of the sensor modality used. In scientific publications, the use of mono or
stereo cameras is the most common [2], followed by 3D LiDAR sensors [3]. Both modalities
show convincing results on scientific datasets under good weather conditions but are
unfortunately limited in practical application. This is due to the strong dependence on
environmental conditions [4]—night, rain, fog, etc.—and, in the case of LiDAR, to the
substantial hardware costs.

While traditional 3D radar sensors have been an integral part of basic driver assistance
systems for a long time, the recently available high-resolution 4D (or 3 + 1D) radar systems
introduce new possibilities for advanced detection tasks. In 3D radars, the three dimensions
are range, azimuth, and Doppler information. Azimuth and range can be interpreted as a
2D point cloud (x- and y-coordinates). Furthermore, the Doppler information can be used to
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measure the speed of the detected object relative to the sensor. This limited spatial resolution
is not sufficient to reliably detect VRUs. In certain situations, VRUs may be mistaken for
other objects, making them undetectable by the sensor. In contrast, 4D radars provide
four dimensions: range, azimuth, elevation, and Doppler information. The additional
dimension compared to 3D radars is the elevation, which provides the ability to compute a
3D point cloud (x-, y-, and z-coordinates) that includes velocity, as shown in Figure 1. This
new category of radar sensors allows 3D detection algorithms to be applied to these sensors.
Compared to 3D radar sensors, 4D radars are much denser while maintaining robustness
in challenging weather conditions. Based on their characteristics, these 4D radar sensors
are well suited for VRU detection but are currently still significantly under-researched
compared to competing camera or LiDAR approaches. This is partly because sensors have
only recently become widely available and partly because large-scale datasets that include
annotations, such as View-of-Delft [5], have only recently become accessible.

For this reason, radar sensors are often used in the field, even though the point
clouds provided are significantly sparser compared to LiDAR sensors. Radars combine the
advantages of relatively low costs with great robustness against weather influences.

Figure 1. The detection of vulnerable road users (VRU) from 4D radar data (colored dots) is particu-
larly challenging due to the sparsity of radar sensor data, especially for small objects. With our SRFF,
we present a method that specifically targets the detection (green boxes) of these objects.

At the same time, 4D radar sensors also present various challenges. The toughest
challenge might be the limited number of 3D measurement points obtained from the
sensors. In addition, these measurement points are distributed very irregularly, depending
on the scene geometry. VRUs are at a natural disadvantage, as larger objects such as
cars or trucks have a higher point density compared to cyclists. In addition, there are
also disturbing artifacts caused by reflections and the multipath effect [6]. While classical
rule-based approaches have proven to be effective at extracting geometric features such
as lines [7,8], the detection of entire objects remains challenging. Consequently, classical
rule-based approaches are not suitable for detection tasks. Learning-based approaches, in
particular, show their full potential in this regard.

In the recent state of the art for point cloud detection, pillar-based deep learning
methods have proven to be particularly effective [9]. We extend a pillar network with a
multi-resolution neck to enable the detection of smaller objects, such as VRUs, with just a
few points. The high-resolution features enable regions of interest (ROIs) to detect smaller
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objects already in the head. In addition, we include our novel Sparsity-Robust Feature
Fusion (SRFF), which combines high- and low-level features with a lightweight attention
mechanism. Here, low-level features aid in better localization, while high-level features
allow for better classification. The multi-level features each have different sparsities due to
their effective receptive field. Our combination of features with different sparsities makes
the network more robust for classes with few points. All of these characteristics enable
us to accurately identify VRUs in 4D radar data. For instance, this capability allows for
operation in adverse weather conditions where other sensor systems may not function
correctly.

Section 2 discusses the current state of the art and highlights the most important
related works. Following this, Section 3 presents our proposed network and SRFF. Section 4
presents both the qualitative and quantitative evaluations, which are then discussed in
Section 5.

2. Related Works

The processing of radar data remains a challenge due to the low density and noisiness
of the captured information. This severe limitation in resolution can lead to the issue
that objects are only captured partially, leading to the limited classification abilities of
current algorithms and incorrect bounding box sizes. For this reason, some methods
include segmentation or focus only on localization [10]. To counteract this sparsity, some
datasets overlap data from multiple sensors [11,12]. In addition to this inherent sparsity,
conventional radar data (2D + 1D) is not able to represent the height of an object, making it
difficult to separate static objects from environmental clutter and introducing errors when
calibrating with respect to other sensors [13]. Additionally, ghost targets can be difficult
to distinguish, with some research focusing exclusively on the detection of these radar
errors [6]. While modern 4D radar sensors are able to capture height, data remain sparse.
In addition to these difficulties, there are various representation methods for radar data,
leading to a variety of deep learning methods.

2.1. Three-Dimensional Radar Perception

Due to the lack of height information, conventional 3D radar methods (sometimes
referred to as 2D+1D) usually take a bird’s-eye-view (BEV) approach. The 2D-BEV ap-
proach by Dreher et al. [14] combines a classification network with a segmentation net-
work for semantic masking to provide input for a box regression network for detection.
Meyer et al. [15] instead used a graph convolution network with a 2D-CNN, processing
range–azimuth–Doppler information for object detection.

Sensor fusion is a method that has proven to counteract the sparsity of LiDAR data [16]
and is a natural approach to complement radars’ missing height information. Image data
are dense and include height information but lack depth information, which radar can
provide. LiDAR sensors provide 3D data, and while denser than radar data, these data are
sparser compared to image data. Additionally, a large part of the rotating LiDAR data is
not used during fusion, as the horizontal field of view of radar sensors only covers a part
of the 360° data.

RODNet [17] uses an image–radar teacher network to teach a temporal range–azimuth
radar network for object localization. RADDET [18] additionally includes Doppler infor-
mation and uses an image–radar network to perform pseudo-labeled instance annotations.
RAMP-CNN [19] utilizes three different temporal views and networks, which are fused
and supervised by an image network. CenterFusion [20] uses an image network for monoc-
ular object detection, refining the results through frustum association with radar data.
Zhou et al. [21] combined image and BEV networks, classical filtering, temporal radar
information, and fusion in an ROI-based approach for object detection. RadarNet [22]
combines LiDAR and radar in a voxel-based approach for bird’s-eye-view detection. Other
researchers have combined image, radar, and LiDAR modalities [23,24], even including
temporal information [25], to obtain dense data.
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2.2. Four-Dimensional Radar Perception

The recent advent of 4D radar and the introduction of height information have made
the adaption of 3D point cloud methods, such as frameworks for 3D voxelization, to
radar-only detection approaches possible.

The pillar representation divides a point cloud into an even grid. However, in contrast
to voxels, each grid cell has an unlimited height, shaped like a pillar, summarizing all points
inside that cell. The reduction of height allows for a 2D bird’s-eye representation over the
point cloud. Pillar networks apply a 2D backbone to this representation. The multi-scale
backbone features are further processed by a network neck, followed by detection heads to
output detection predictions. Pillar networks have proven effective, especially for accurate
and robust real-time point cloud detection.

RPFA-Net [26] and VoD [5] make use of this concept and adapt the PointPillars architec-
ture [9] in combination with attention mechanisms to create 2D pseudo-images, which are
processed in a BEV perspective by a 2D-CNN. Bai et al. [27] used vector attention [28].

Four-dimensional data are comparatively new, and for this reason, there is limited
research in this area. Four-dimensional radar still suffers from sparsity, and as such, there is
a natural imbalance between classes (large objects such as cars have more points than small
objects such as pedestrians). Attention mechanisms have been studied for a single layer but
remain under-explored in aggregating multi-scale information. VRU detection has been
studied with other sensor modalities [3], but it has yet to be studied with 4D radar data.

3. Method

In this section, we introduce our novel Radar Pillar Feature Fusion Network. We base
our approach on PointPillars [9] for 3D object detection in LiDAR point clouds, extending
the network with our novel Sparsity-Robust Feature Fusion (SRFF). The propagation of
sparse data through a neural network is heavily influenced by the receptive fields of
individual layers. Later layers with a larger effective receptive field have more valid
information within their feature maps [29]. For this reason, SRFF uses multi-scale features
to enhance the network’s ability to detect particularly small objects with few points, e.g.,
pedestrians, in sparse radar point clouds. The complete network architecture of our Radar
Pillar Feature Fusion Network is shown in Figure 2.

Pillar-
VFE 

Text

Figure 2. Representation of our Radar Pillar Feature Fusion Network. First, pseudo-images are
created from the radar point cloud. Subsequently, the backbone is used to generate deep semantic
features, which are, in turn, fused by the Sparsity-Robust Feature Fusion (SRFF) to ensure robust
pedestrian detection by the anchor head.
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3.1. Sparsity-Robust Radar Pillar Feature Fusion Network

Unlike the original PointPillars network, our Radar Pillar Feature Fusion Network
uses the unprocessed and sparse radar point clouds in the form of N points × 6 as input,
as shown in Figure 2. Here, 6 refers to the amount of information recorded for each point.
Each point can be described by p = [x, y, z, vr, vrc, RCS], where (x, y, z) are the spatial
coordinates, vr is the radial Doppler velocity, vrc is the radial velocity compensated with
ego-motion, and RCS is the radar cross-section. We provide comprehensive details on
the data used in Section 4.1. These sparse irregular point clouds are first converted into
voxels via Pillar-Voxel Feature Extraction (Pillar-VFE) [30]. Subsequently, these voxels are
used to generate a two-dimensional pseudo-image of size 160 × 160 × 64, which serves
as input to a CNN backbone for generating deep semantic features. Note that a large
number of pixels in the pseudo-image are empty, as voxels are not occupied. The backbone,
depicted in Figure 2, consists of three stages, each spatially reducing the pseudo-image
by a factor of 2 per stage and doubling the number of channels. We use resolutions
i ∈ {1, 2, 3} as (Hi, Wi) ∈ Mi × Mi for each stage, with M = {160, 80, 40}, respectively,
and the corresponding feature depths di = {64, 128, 256}. Each layer in the 2D backbone
is composed of a 3 × 3 convolution, batch normalization [31], and a non-linear activation
in the form of a ReLU function. The final features of each backbone stage are fused
using our novel Sparsity-Robust Feature Fusion (see Section 3.2). These fused features are
processed again with a 3 × 3 convolutional layer and upsampled to the desired resolution.
The resolution depends on the corresponding network configuration, and we test the
resolutions {64, 128, 256}. Our experiments in Section 4.3 show that a higher resolution
leads to better detection of small objects, which is why the final resolution is preferably set
to 160 × 160. In the final step, we use two convolution layers as an anchor-based detection
head, supporting the high resolution of input features.

We choose an anchor-based RPN head following our SRFF neck for all experiments.

3.2. Sparsity-Robust Feature Fusion

The main contribution of our Radar Pillar Feature Fusion Network is the Sparsity-
Robust Feature Fusion (SRFF) neck, which is used to fuse high- and low-level features from
our backbone via a lightweight attention module. Early features from a network backbone
capture low-level patterns and provide localization, while deeper features represent high-
level concepts and allow for better classification. Sparse data can pose a challenge for
traditional convolution layers as initially, most of the information in the filter’s receptive
field is empty. With progressive layers, the valid information is propagated through the
network and increases in density [16,29,32]. For this reason, while early low-level features
can represent small structures due to their large spatial size, the sparsity of this information
can be complemented by high-level features with denser information. The multi-level
features each have different sparsities due to their effective receptive field. The combination
of these features makes the network more robust for classes and small structures with
few points.

The input of the SRFF, as shown in Figure 2, is the aggregated outputs of each backbone
stage, each with a different scale. The SRFF module is inspired by the work of Shi et al. [2],
which follows a similar approach in the context of 2D object detection. However, our
approach is specially adapted to the processing of sparse radar data. For SRFF, several
feature maps of different shapes serve as input to the module. By applying convolutions,
these are standardized to have a uniform height and width and then concatenated. For the
largest feature maps with a resolution of 160 × 160, a convolution layer of 5 × 5 is used,
whereas for those with a resolution of 80× 80, a 3× 3 layer is used. The stride s of each layer
is calculated as s = k+1

2 , where k refers to the size of the corresponding filter kernel. The
resulting feature is then passed to the attention module, which refines the fused features.
The output of the attention module is also the output of the SRFF. During development,
two possible lightweight attention mechanisms were used and compared in an ablation
study. Specifically, we compared the Convolutional Block Attention Module (CBAM) [33]
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and Channel-Spatial Attention Mechanism (CSAM) [34]. The CBAM (Figure 3a) is used
to selectively emphasize or suppress the relevant channel and spatial features of a given
image and is composed of two sub-modules: the Channel Attention Module (CAM) and the
Spatial Attention Module (SAM). The CAM sub-module aggregates the spatial information
of its input x by utilizing average (AvgPool) and max (MaxPool) pooling operations on
two vectors of the shape 1 × 1 × C, with C corresponding to the channel depth. The inter-
dependencies between channels are modeled by a multi-layer perceptron (MLP), followed
by the sigmoid activation σ to produce a channel-wise attention vector. The shared MLP
with one hidden layer reduces the parameter overhead with a hidden activation size of
C/r, where r is the reduction ratio. The channel attention Ac can be computed as:

Ac(x) = σ(MLP(AvgPool(x)) + MLP(MaxPool(x))) (1)

CAM SAM

(a)

(b)

Figure 3. Overview of CBAM [33] and CSAM [34] architectures. (a) CBAM architecture [33].
(b) CSAM architecture [34].

The output of the CAM is used to modulate and reweight the original features x,
resulting in x′. The SAM functions in a similar manner, compressing the channels at
each spatial location by utilizing spatial average and max pooling along the channel axis
and concatenating them to generate a feature descriptor. The resulting two-channel map
is processed by a large kernel convolution to produce a spatial attention map As. This
spatial attention map captures the relevance of each spatial location with respect to its large
kernel neighborhood and is multiplied with the original features x′ for spatial reweighting,
resulting in x′′. The spatial attention As can be computed as:

As(x) = σ(Conv2D([AvgPool(x′); MaxPool(x′)])) (2)

Thus, the final output x′′ of the CBAM can be calculated accordingly:

x′′ = As(x′) · x′ with x′ = Ac(x) · x (3)

The CSAM is very similar to the CBAM but differs in the way it obtains attention maps.
In the CBAM, the channel and spatial attention maps are computed separately and then
multiplied element-wise with the original features. In contrast, the CSAM computes feature-
wise attention maps through a 3D convolution layer, followed by a sigmoid activation
σ, considering both inter-channel and inter-spatial dependencies. The attention map is
multiplied by the input features and a scale factor, β, before being added to the original
features. The scale factor is initialized to 0, enabling the network to adaptively include
attention information. This means that the CSAM provides more flexibility in determining
the relative importance of the channel and spatial attention maps, whereas the CBAM
assumes equal importance for both maps. The CSAM can be computed as:

x′ = βσ(Conv3D(x) · x + x) (4)
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However, the CBAM has been shown to outperform the CSAM in some benchmark
datasets, suggesting that its approach of multiplying attention maps sequentially may be
more effective in some cases. For this reason, in our evaluation, we examine both modules
for their usability for radar data.

4. Evaluation

We conduct an evaluation and ablation study of our novel method, focusing on the
detection of VRUs from 4D data. In the ablation study, we examine the impact of multi-
scale information and the resolution of SRFF on detecting from sparse data. We utilize
the View-of-Delft (VoD) [5] dataset, which provides calibrated and synchronized LiDAR,
camera, and 4D radar data for 3D object detection of road-user classes.

4.1. Radar Data

The annotations for static and moving road users are represented by three-dimensional
bounding boxes. In our work, we exclusively use 4D radar data. As mentioned in Section 3.1,
the radar outputs a point cloud of shape N × 6 for each scan, where N represents the number
of points and 6 refers to the recorded information per point. Each point in the dataset can be
described by a set of parameters, denoted as p = [x, y, z, vr, vrc, RCS], where (x, y, z) represent
the spatial coordinates, vr denotes the Doppler velocity, vrc corresponds to the radial velocity
compensated with proper motion, and RCS refers to the radar cross-section. The VoD dataset
allows for the use of radar data accumulated over three or five scans.

The VoD dataset annotates 13 classes across 8693 frames. Each object within the FOV
of the camera and within 50 m of the recording vehicle is labeled with a bounding box that
includes six degrees of freedom. In total, the VoD dataset contains 26,587 pedestrian, 10,800
cyclist, and 26,949 car labels.

4.2. Training Details

In this section, we explain the training procedure for our SRFF network and its variants.
All models are implemented in the OpenPCDET framework [30]. Each model is trained for
80 epochs on the training set of the VoD dataset with a total batch size of 8. Following the
methodology described in [5], we use the accumulated five scans in our experiments. The
learning rate (LR) is defined using the one-cycle policy [35] with a minimum LR of 0.001
and a maximum LR of 0.01. For optimization, we use the Adam [36] algorithm. We utilize
random mirroring of the point cloud along the x-axis and randomized scaling by a factor of
0.95–1.05 as data augmentation. Furthermore, only random mirroring of the point cloud on
the x-axis of the recording vehicle and randomized scaling are used for data augmentation.
We choose voxel sizes of 0.16, 0.16, and 5 m for x, y, and z, respectively. Because the VoD
dataset does not label beyond 50 m and the radar sensor has a limited receptive field, point
clouds are clipped to 0 m–51.2 m for the x-axis, ±25.6 m for the y-axis, and −3 m–2 m for
the z-axis prior to voxelization. We use a maximum of 16, 000 voxels during training and
40, 000 during testing. All training runs are performed on a single Nvidia RTX 3060.

4.3. Results

The evaluation employed the Mean Average Precision (mAP) with the three-dimensional
Intersection over Union (IoU), which was calculated analogously to the evaluation of the
KITTI [37] dataset. IoU and mAP are two metrics commonly used in object detection tasks.
IoU quantifies the overlap between the predicted and ground-truth bounding boxes to
determine whether a predicted bounding box correctly localizes an object. mAP considers
both the precision and recall of a model across multiple classes and aggregates IoU scores
to provide an overall assessment of detection performance. The threshold for correct
predictions was defined as an overlap of the predicted bounding box with the ground
truth of 50% for cars and an overlap of 25% for pedestrians and cyclists. Two areas in the
View-of-Delft evaluation split were evaluated: the entire annotated area and the driving
corridor, defined as a rectangle at ground level in front of a driving train. Thus, only objects
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that were at most four meters to the left or right and at most 25 m forward from the origin
of the camera were analyzed.

The results of our evaluation study are depicted in Table 1. We studied the impact
of our SRFF neck, comparing its performance to the baseline. At the time of writing, the
PointPillars version by Palffy et al. [5] is the only comparable method following the original
method that uses the accumulated five scans for training and evaluation. Additionally, we
studied a combined version, where we fused the feature maps at three different resolutions
(40 × 40, 80 × 80, and 160 × 160), followed by three separate detection heads.

Table 1. Evaluation of the influence of our SRFF module on the PointPillars [9] detection network,
using different resolutions. We trained and evaluated on the VoD [5] dataset.

Entire Annotated Area Driving Corridor

Class SRFF Resolution Pedestrians Cyclists Cars All Pedestrians Cyclists Cars All
Metric AP25 AP25 AP50 mAP AP25 AP25 AP50 mAP

PointPillars [9] - 35.8 65.3 40.2 47.1 45.5 85.4 72.2 67.7

+SRFF-CBAM 160 × 160 36.8 65.0 36.7 46.2 47.2 84.3 69.1 66.9
+SRFF-CBAM 80 × 80 29.7 60.2 33.8 41.2 39.0 73.2 68.5 60.2
+SRFF-CBAM 40 × 40 30.6 63.1 35.8 43.2 43.4 81.4 68.7 64.5
+SRFF-CBAM Comb 32.9 63.3 36.1 44.1 43.2 76.9 67.9 62.7

+SRFF-CSAM 160 × 160 34.2 64.6 39.5 46.1 43.8 84.5 71.1 66.5
+SRFF-CSAM 80 × 80 31.9 60.2 34.3 42.2 39.2 81.9 68.8 63.3
+SRFF-CSAM 40 × 40 29.7 62.0 32.1 41.2 36.5 81.1 65.7 61.1
+SRFF-CSAM Comb 30.3 59.4 34.3 41.4 40.9 81.1 68.4 63.4

Most notably, our results show that the resolution of the neck output had a large
impact. For most comparisons, larger neck feature maps significantly improved not only the
detection of VRUs but also the overall mAP. The largest increase was observed when using
the CSAM, with the 160 × 160 version improving the mAP by 6 over the 80 × 80 variant.
Larger neck features proved beneficial overall for the pillar network. Additionally, the
choice of lightweight attention fusion had a large impact on the overall performance of
smaller network neck resolutions. The CBAM outperformed the CSAM in most 40× 40 and
80 × 80 variants. A probable explanation for this is that the initial channel reweighting in
the CBAM already benefits the following spatial attention mechanism, which is not possible
in the CSAM due to the combined attention calculation. Additionally, the 3D convolution
kernel has a much smaller receptive field than the kernels in the CBAM, especially when
reweighting the channel features. The combined variant of our network performed better
than the small neck output feature, but worse than the 160 × 160 variant. This indicates
that the addition of small-resolution neck features can actually be detrimental to overall
network performance.

When observing VRUs, multi-scale feature fusion improved detection over the baseline.
Attention fusion with the CBAM performed better than the CSAM. In the 160 × 160 variant,
pedestrian detection improved by 1 mAP over the baseline, with only an additional 0.2 M
parameters (ca. 1.1% of the total 18 M), whereas cyclist detection was the same. When
considering only the driving corridor, pedestrian detection improved by 1.7 mAP. The results
indicate that multi-resolution feature fusion is beneficial in detecting small objects.

The qualitative results in Figures 1 and 4 show that even with very few points or partial
occlusion, our network reliably captured VRUs. The results were consistent in terms of
visual quality for both the driving corridor and the entire scene. Notably, the height of the
pedestrians was accurately determined, which can largely be attributed to the third dimension
in 4D radar data. However, the images also reveal some incorrect predictions. Most notably,
in the top-right image, a pedestrian was incorrectly predicted, where some points of the first
car were misclassified. Another example is the missed cars in the top-left image.
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Figure 4. Qualitative evaluation of our pillar-based network with the novel SRFF module on the
View-of-Delft dataset [5]. The network is able to detect smaller objects with just a few points from 4D
radar data. The classes are color-coded: cars (blue), pedestrians (green), and cyclists (red).

5. Conclusions and Discussion

In this paper, we extended a pillar detection network with our novel Sparsity-Robust
Feature Fusion (SRFF) neck to detect smaller objects with just a few points from 4D radar data.
Our novel Sparsity-Robust Feature Fusion (SRFF) combines high- and low-level features from
multiple resolutions to enhance both localization and classification. The low-level features
aid in better localization, whereas the high-level features allow for better classification. The
effective receptive field of the backbone layers significantly impacts the amount of valid data
in feature maps produced from sparse data. Through this multi-resolution approach, the
network is more robust for classes with few points, as it combines features with different
sparsities due to their effective receptive field. We studied lightweight attention mechanisms
for an intelligent fusion of these features, improving the detection performance of vulnerable
road users with negligible additional overhead. Our contributions are supported by extensive
experiments on the well-known View-of-Delft dataset.

At this point, we want to emphasize that our results are based on 4D radar sensors
only. These have the advantage that the results are independent of weather conditions
and also work reliably at night and in the rain. This cannot be proven quantitatively
with the View-of-Delft dataset, but the physical properties of the sensors confirm this
claim [5]. When comparing our results with detections from high-resolution images or
quasi-dense LiDAR point clouds under good visibility conditions, our method exhibits
worse accuracy. In bad weather conditions, however, various publications have shown
that the accuracy of camera- and LiDAR-based methods drops significantly and sometimes
approaches zero [38]. This property of 4D radar makes it suitable for standalone systems
or in synergy with other sensors in order to compensate for their disadvantages. For
maximum robustness, a combination of different sensor types (e.g., LiDAR or camera)
is recommended to compensate for the disadvantages of the individual sensors. This is
why we are convinced that we have made an important contribution to research in the
automotive sector with a purely radar-based processing system. In the context of future
work, our method could be explored in related modalities, such as LiDAR or depth sensing.
Additionally, the lightweight nature of our method lends itself to subsequent research on
real-time detection.



Appl. Sci. 2024, 14, 2781 10 of 11

Author Contributions: Conceptualization, L.R. (Leon Ruddat), L.R. (Laurenz Reichardt), N.E. and
O.W.; methodology, L.R. (Leon Ruddat), L.R. (Laurenz Reichardt), N.E. and O.W.; software, L.R. (Leon
Ruddat) and L.R. (Laurenz Reichardt); validation, L.R. (Leon Ruddat) and L.R. (Laurenz Reichardt);
formal analysis, L.R. (Leon Ruddat) and L.R. (Laurenz Reichardt); investigation, L.R. (Leon Ruddat);
resources, L.R. (Leon Ruddat), L.R. (Laurenz Reichardt), N.E. and O.W.; data curation, L.R. (Leon
Ruddat) and L.R. (Laurenz Reichardt); writing—original draft preparation, L.R. (Laurenz Reichardt),
N.E. and O.W.; writing—review and editing, L.R. (Leon Ruddat), L.R. (Laurenz Reichardt), N.E. and
O.W.; visualization, L.R. (Laurenz Reichardt), N.E. and O.W.; supervision, N.E. and O.W.; project
administration, N.E. and O.W.; funding acquisition, O.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partly funded by the Federal Ministry of Education and Research,
Germany, under the project PreciRaSe (01IS23023B).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: VoD data were obtained from Plaffy et al. [5] and are available at
https://github.com/tudelft-iv/view-of-delft-dataset/ (accessed on 30 October 2023) . All rights
are held by Delft University of Technology, and the data can be used under the following li-
cense https://intelligent-vehicles.org/datasets/view-of-delft/view-of-delft-dataset-research-use-
license/ (accessed on 30 October 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mobility and Transport. Mobility and Transport ITS & Vulnerable Road Users; Standard; European Commission: Brussels,

Belgium, 2011.
2. Shi, Y.; Fan, Y.; Xu, S.; Gao, Y.; Gao, R. Object detection by attention-guided feature fusion network. Symmetry 2022, 14, 887.

[CrossRef]
3. Fürst, M.; Wasenmüller, O.; Stricker, D. LRPD: Long range 3d pedestrian detection leveraging specific strengths of lidar

and rgb. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece,
20–23 September 2020.

4. Yoshida, T.; Wasenmüller, O.; Stricker, D. Time-of-flight sensor depth enhancement for automotive exhaust gas. In Proceedings of
the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1955–1959.

5. Palffy, A.; Pool, E.; Baratam, S.; Kooij, J.F.; Gavrila, D.M. Multi-class road user detection with 3+ 1D radar in the View-of-Delft
dataset. IEEE Robot. Autom. Lett. 2022, 7, 4961–4968. [CrossRef]

6. Chamseddine, M.; Rambach, J.; Stricker, D.; Wasenmüller, O. Ghost target detection in 3d radar data using point cloud
based deep neural network. In Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), Milan, Italy,
10–15 January 2021; pp. 10398–10403.

7. Liu, Z.; Xin, X.; Xu, Z.; Zhou, W.; Wang, C.; Chen, R.; He, Y. Robust and Accurate Feature Detection on Point Clouds. Comput.-Aided
Des. 2023, 164, 103592. [CrossRef]

8. Xin, X.; Huang, W.; Zhong, S.; Zhang, M.; Liu, Z.; Xie, Z. Accurate and Complete Line Segment Extraction for Large-Scale Point
Clouds. Int. J. Appl. Earth Obs. Geoinf. 2024, 36, 54–68. [CrossRef]

9. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point
clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019.

10. Zhou, Y.; Liu, L.; Zhao, H.; López-Benítez, M.; Yu, L.; Yue, Y. Towards deep radar perception for autonomous driving: Datasets,
methods, and challenges. Sensors 2022, 22, 4208. [CrossRef] [PubMed]

11. Schumann, O.; Hahn, M.; Scheiner, N.; Weishaupt, F.; Tilly, J.F.; Dickmann, J.; Wöhler, C. RadarScenes: A real-world radar point
cloud data set for automotive applications. In Proceedings of the IEEE International Conference on Information Fusion (FUSION),
Sun City, South Africa, 1–4 November 2021; pp. 1–8.

12. Bansal, K.; Rungta, K.; Zhu, S.; Bharadia, D. Pointillism: Accurate 3D bounding box estimation with multi-radars. In Proceedings
of the Conference on Embedded Networked Sensor Systems, Virtual, 16–19 November 2020; pp. 340–353.
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