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Abstract: Although neural machine translation has made great progress, and the Transformer
has advanced the state-of-the-art in various language pairs, the decision-making process of the
attention mechanism, a crucial component of the Transformer, remains unclear. In this paper, we
propose to understand the model’s decisions by the attention heads’ importance. We explore the
knowledge acquired by the attention heads, elucidating the decision-making process through the
lens of linguistic understanding. Specifically, we quantify the importance of each attention head
by assessing its contribution to neural machine translation performance, employing a Masking
Attention Heads approach. We evaluate the method and investigate the distribution of attention
heads’ importance, as well as its correlation with part-of-speech contribution. To understand the
diverse decisions made by attention heads, we concentrate on analyzing multi-granularity linguistic
knowledge. Our findings indicate that specialized heads play a crucial role in learning linguistics.
By retaining important attention heads and removing the unimportant ones, we can optimize the
attention mechanism. This optimization leads to a reduction in the number of model parameters and
an increase in the model’s speed. Moreover, by leveraging the connection between attention heads
and multi-granular linguistic knowledge, we can enhance the model’s interpretability. Consequently,
our research provides valuable insights for the design of improved NMT models.

Keywords: neural machine translation; interpretability; linguistics

1. Introduction

With the advent of attentional mechanisms [1] and sequence-to-sequence learning [2],
neural machine translation (NMT) has rapidly advanced, narrowing the gap between
machine and human language capabilities, particularly in understanding and generating
translations. The Transformer model [3] excels across a spectrum of machine translation
tasks, with its attention mechanism being a pivotal component that offers exceptional
parallelism, facilitating efficient large-scale data processing. Despite these advancements,
the intricacy of the model’s structure and the opaque nature of decision making in NMT
models render them akin to black boxes. This obscurity hinders a clear understanding of
the specific decisions made and the precise attributes of attention learned. Moreover, the
inherent complexity of machine translation tasks, coupled with the sophisticated model
architectures designed to tackle them, exacerbates this challenge [4].

For humans, NMT models often appear as “black boxes”, while interpretability serves
as a “crystal ball” that elucidates the models’ internal decision-making processes. This
clarity not only aids researchers in debugging the models but also provides a theoretical
foundation for trustworthy AI. The interpretability of NMT models has been tackled from
two primary, complementary perspectives. One approach emphasizes visualizing the
decision-making processes and simulating the models’ internal mechanisms to cultivate
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genuine trust between humans and the models [5]. The other perspective aims to thor-
oughly understand the decisions made by the model from a human standpoint, identifying
the model’s learned content through language knowledge that is accessible to people [6].

We chose the state-of-the-art NMT model, the Transformer model, as our object of
study. This model is a neural network based on the self-attention mechanism and includes
multiple layers of encoders and decoders. Each layer is composed of several attention
mechanism modules and feed-forward neural network modules. In our experiments,
we employ the standard Transformer model configuration, where both the encoder and
decoder consist of six layers, with each layer having eight attention heads.

In this paper, we delve into the importance of attention heads in deciphering the
decision-making processes of the model. Employing the saliency method enhances the
model’s interpretability [7]. Specifically, we evaluate the impact of each attention head on
the translation performance of NMT models by employing the Masking Attention Heads
method, which serves as a metric to ascertain the importance of each attention head [8].
The verification of the importance of attention heads is achieved by masking them, thereby
confirming their importance. An analysis is conducted on the distribution of important
attention heads from diverse perspectives. Through the application of two correlation
evaluation techniques, Pearson’s correlation coefficient and KL divergence, our research
indicates a significant relationship between the importance of attention heads and their
contribution to part-of-speech (POS), revealing varying levels of relevance across different
POS categories to the attention heads [9].

To enhance our comprehension of the decision-making processes within the model,
we translate the obscure decisions of the model into linguistic knowledge that is accessible
to humans. Our analysis examines the correlation between the importance of attention
heads and linguistic knowledge across three distinct levels: POS, dependency relations,
and syntactic trees. This analysis sheds light on how the Transformer model processes
information at the word, phrase, and sentence levels. We posit that linguistic knowledge
can facilitate our understanding of model decisions. Our experiments reveal that important
attention heads acquire more knowledge about nouns and adjectives. Moreover, preposi-
tions are predominantly learned by the most important attention head, whereas verbs are
distributed more evenly across all attention heads.

In summary, the organization of this paper is outlined as follows: Section 1 introduces
the concept of interpretability in NMT, setting the stage for our research objectives and
forthcoming experimental investigations. Section 2 provides an overview of the current
landscape in interpretability and linguistics research, pinpointing prevalent issues and sug-
gesting potential remedies. Section 3 delves into the importance of attention heads utilizing
the masking method, affirms its validity, and explores the distribution of attention heads.
Section 4 delineates the relationship between attention heads and linguistic knowledge,
interpreting model behaviors through understandable linguistic insights. Finally, Section 5
offers conclusions and outlines future directions for this research.

Contributions

Our primary contributions are as follows:

• We offer a comprehensive examination of the three types of attention mechanisms in
the Transformer model: encoder self-attention, decoder self-attention, and encoder–
decoder attention. This thorough analysis enriches our understanding of the model’s
attention mechanisms;

• Our study investigated the distribution and importance of attention heads. This helps
researchers retain important attention heads and remove unimportant ones, thereby
reducing model parameters and improving model speed;

• Our findings reveal a link between attention heads and the understanding of specific
POS features, offering theoretical insights for future studies. Specifically, we suggest
that focusing on the acquisition of noun and verb knowledge in Chinese–English
machine translation could potentially improve model performance;
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• We analyze the decision-making processes of attention heads based on POS, depen-
dency relations, and syntactic trees, which may inform and inspire model design.
Our research indicates that certain linguistic elements, such as nouns, adjectives, and
adjective modifiers, are pivotal, whereas others, like determiners, are less critical. This
discovery suggests that in Chinese–English machine translation, the model focuses
more on certain information, which enhances the model’s interpretability.

2. Background
2.1. Interpreting Attention

Interpretability lacks a unified definition. Some researchers perceive it as the extent
to which people can understand the reasons behind decisions, while others believe that
interpretability refers to an individual’s ability to consistently and accurately predict the
outcomes of model predictions [10]. Due to the complexity of widely used neural network
models, their internal logic and working principles are difficult for users to understand.
Users are unclear about what comprehensible linguistic knowledge the model has acquired
through training and how the model processes language information. Consequently, we
propose that interpretability involves bridging the gap between models that are unintel-
ligible to humans and the integration of human-comprehensible linguistic knowledge to
elucidate model behavior.

In the realm of NMT interpretability, numerous studies have concentrated on ex-
plaining the importance of various model components. These studies enable an intuitive
observation of the elements crucial to model predictions, thereby enhancing the inter-
pretability of models. Recent inquiries into attention interpretability have honed in on the
functionalities of attentional mechanisms and the implications of attention weights, with
research on attention heads gaining increasing traction [11]. There has been a significant
emphasis on dissecting the influence of diverse components within models for enhancing
interpretability [12]. Attention as the driving force behind the Transformer, the state-of-
the-art NMT model, is garnering escalating scholarly attention. Previous investigations
underscored the intrinsic value of attention. For example, Serrano [13] employed intermedi-
ate representation erasure to ascertain the impact of attentional mechanisms, while Li [14]
explored the alignment effect of attention weights. However, as recent studies indicate,
relying solely on attention weights to interpret attentional processes is inadequate [15].
The debate over the explicability of attention also constitutes a major discourse [16,17].
Therefore, in our approach to interpreting attention, we pivot towards leveraging linguistic
knowledge that is understandable to humans.

The core of the attention layer is the multi-head attention, formed by concatenating
the outputs of multiple attention heads. This architecture allows for the learning of di-
verse feature aspects. Recent studies have scrutinized the redundancy within multi-head
attention mechanisms, revealing that attention heads vary in importance [8]. Voita [18]
utilized Layer-wise Relevance Propagation (LRP) [19] to ascertain the contribution of in-
dividual attention heads in each layer towards model predictions, further investigating
the functions of critical attention heads. The importance of attention heads has also been
explored in multilingual and cross-linguistic contexts [20]. Motivated by research into the
information processed by attention mechanisms [21], we aim to analyze the multi-grain
linguistic knowledge acquired by important attention heads, thereby elucidating the factors
influencing model decisions [22].

In our experiments, we analyze the relationship between attention heads and multi-
granularity linguistic knowledge by masking each attention head in every layer of three
different types of attention mechanisms: encoder self-attention, decoder self-attention, and
encoder–decoder attention. We aim to explain the reasons and content behind the model’s
decisions using linguistic knowledge that humans can understand.



Appl. Sci. 2024, 14, 2798 4 of 22

2.2. Linguistic Knowledge

Linguistics delves into the structure, function, and essence of human language, encom-
passing areas such as language structure, phonology, word formation, syntax, and semantics.

In the realm of interpretability, linguistic knowledge is particularly valued for its
ability to render model decisions understandable to humans. Many researchers advocate
for using linguistic knowledge as a basis for elucidating models [23]. Recent studies
have increasingly interpreted NMT models using linguistic insights, including aspects like
morphology [6] and POS [24]. However, these studies primarily focus on the impact of
individual word information in NMT. Consequently, we have explored the utilization of
inter-word interactions and multi-word information to shed light on model decisions [25].
Understanding the interplay between words and leveraging multiple-word information
can make translations smoother, achieving the “faithfulness, expressiveness, and elegance”
standard of translation. Additionally, this approach can improve the accuracy and fluency
of translations involving complex sentence structures, such as idioms and colloquialisms.

This paper investigates the decisions made by the model’s important heads at three
different granularities of linguistic knowledge: POS, dependency relations, and syntactic
trees. POS reflects the role of individual word information in a sentence in NMT and
helps us understand how the model handles individual words. Dependencies reflect the
dominant relationship between two words in a sentence and help us understand how the
model handles inter-word relationships. The syntax tree reflects the relationships between
words in a sentence and helps us understand how the model handles multiple words as
well as syntactic structure.

Finally, in Table 1, we compared two categories of interpretability: visualization
and linguistic interpretation. We explained their strengths and limitations and provided
explanations for some references and their main contributions in order to better understand
the main contributions of our study.

Table 1. An overview of the strengths and limitations of visualization and linguistic interpretation, as
well as some references and their main contributions.

Categories Strengths Limitations References Contributions

Visualization

1. Intuitive representation
of textual data and

processes;
2. Provides visually

intuitive charts;
3. Accessible to

non-experts.

1. Difficulty in explaining
complex grammatical

structures;
2. May overlook subtle

nuances in text;
3. Limited in-depth
linguistic analysis.

Visualizing and
understanding neural

machine translation [5].

Understanding the
internal workings of NMT

models through
attention-based

visualization techniques.

Rethinking the value of
transformer components

[12].

Understanding the
importance of each
component of the

Transformer model
through visualization.

Towards Understanding
Neural Machine

Translation with Word
Importance [26].

Understanding the
importance of words in

generating sentences
through visualization.

Linguistic interpretation

1. Provides in-depth
analysis and interpretation

based on linguistic
theories;

2. Explains reasons and
patterns behind language

phenomena;
3. Aids understanding of
language structures and

semantics.

1. Requires linguistic
expertise for

interpretation;
2. Relies heavily on

corpora and linguistic
resources;

3. May not cover all
language phenomena,

especially non-structural
and abstract features.

Interpreting language
models with contrastive

explanations [23].

Explaining the model’s
behavior by contrasting

through word
replacement.

What do neural machine
translation models learn
about morphology [6]?

Explaining the internal
processing of the model

through morphology.

Evaluating layers of
representation in neural
machine translation on

part-of-speech and semantic
tagging tasks [24].

Explaining the internal
processing of the model

through POS and
semantic.
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Numerous studies have explored the interpretability of NMT. In this paper, we link the
importance of attention heads to linguistic knowledge, using visualization to understand
the importance of attention heads in the model, and employing linguistic knowledge to
understand the content of the model’s decision making.

3. Attention Heads’ Importance
3.1. Experimental Setup

To perform a robust and reproducible evaluation of the disclosed approach, we chose
a large-scale, publicly available dataset for our study. Specifically, for the Chinese–English
translation task, we use the CWMT21 Chinese–English dataset, which contains 9.0M
sentence pairs [27]. As detailed in Table 2, this dataset is segmented into training, testing,
and validation sets in the ratio of 0.9:0.05:0.05. Following the standard NMT procedure,
we adopt the standard byte pair encoding (BPE) [28] for all language pairs. We use the
standard SacreBLEU score as the evaluation metric for translation performance. The
BLEU score is a widely used metric for evaluating the quality of machine translation.
It measures the similarity between the machine-generated translation and one or more
reference translations based on n-gram precision and a brevity penalty [29].

Table 2. The dataset for Chinese–English.

ZH-EN

casia2015 corpus 1 million

9 million

casict2011 corpus 2 million
casict2015 corpus 2 million
datum2015 corpus 1 million
datum2017 corpus 1 million

neu2017 corpus 2 million

We employ the state-of-the-art Transformer, which is composed of two parts: an
encoder and a decoder. Each part is divided into six layers, each layer has eight attention
heads. A particularity of this model is that it features three distinct attention mechanisms:
encoder self-attention (Enc-Enc), decoder self-attention (Dec-Dec), and encoder–decoder
attention (Enc-Dec), all of which use multi-headed attention (MHA). Our study analyzed the
importance of the attention head to all of these three attention mechanisms. We analyzed
the learning of attention heads in the Transformer model, which includes information
on individual words (part of speech), inter-word relationship information (dependency
relations), and overall sentence structure information (syntax tree). Based on the importance
ranking of the attention heads, we established a relationship between these three types of
human-understandable, multi-granular linguistic knowledge (part of speech, dependency
relations, syntax tree) and the attention heads. Most of the experiments were carried out on
the test set, and the model was trained by fairseq [30] in standard settings.

3.2. Multi-Headed Attention

NMT is a technique for translating one natural language x = {x1, . . . , xM} into another
natural language y = {y1, . . . , yN}, In autoregressive NMT, each word of the target sentence
is generated step by step. Therefore, the generation of the nth target word yn is influenced
by the source sentence x and the part of the target sentence that has already been generated,
denoted as y<n:
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P(y|x) =
N

∏
n=1

P(yn|y<n, x) (1)

where x is the source sentence, y is the target sentence, yn is the generation of the nth target
word, and y<n is the n − 1 target words that have already been generated. The model
generates an output word based on the source sentence x and the partial translation y<n.

The output values of numerous attention heads are combined to produce MHA. The
following is the attention mechanism formula:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

where Q, K, and V are three linearly transformed matrices, and dk is the vector dimension
of Q, K. First, calculate the degree of similarity between each query and each key. Second,
so f tmax is employed to derive the weights. Third, the weights are then averaged with the
corresponding value.

Finally, the output values of MHA are then obtained by concatenating the output
values of each layer’s attention heads:

MultiHead(Q, K, V) = Concat(h1, . . . , hi, . . . , hn)WO (3)

where hi denotes the output value of the ith attention head in the MHA. WO is a linear
transformation matrix used to transform the concatenated output of all attention heads.

In machine translation, masking is a crucial technique that helps the model learn
and predict data more effectively. The application of this technique markedly boosts the
model’s efficiency and accuracy, rendering it an essential component of contemporary
NMT systems. Masking enables the model to better understand and process sentences of
varying lengths and to utilize contextual information more effectively, thereby enhancing
the quality of translation. It is worth mentioning that in our research, we investigated the
importance of attention heads by employing masking to obscure them.

In this paper, we attribute the importance of attention heads to the effect on translation
performance. We modified the attention formula to implement the masking operation of
the attention heads:

h = φAttention(Q, K, V) (4)

where φ is a discrete value, which can be 0 or 1. When φ is 0, it indicates that the attention head
is masked; when φ is 1, it means that the attention head is retained in the complete model.

Our experiments were implemented in the Transformer, which has three different
attention mechanisms: Enc–Enc, Dec–Dec, and Enc–Dec. The impact of each attention
head on translation performance serves as the attention heads’ importance. We masked
each attention head in each attention mechanism in turn [31]. We used the heatmap to
display the information regarding the importance of attention heads that we obtained. It
provides an intuitive representation of the distribution of attention head importance. We
used the Matplotlib library to implement the drawing of the heatmap. We used the change
in BLEU score values due to masking each attention head as an input and set the parameter
minimum value to −1.0.

Figure 1 illustrates the heatmap of the attention heads’ importance in the Transformer,
which reflects the impact of each attention head on the translation performance. In contrast to
the findings of Michel [7], not all attention heads are important; some are and some are not.
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Figure 1. Attention heads’ importance. The heatmap reflects the impact of each attention head in the
model on translation performance. The x-axis from zero to seven represents the eight attention heads
in each layer of the model. The y-axis represents the different layers of the three attention mechanisms
in the model. Specifically, 0–5 represent the 1–6 layers of encoder self-attention, 6–11 represent the
1–6 layers of decoder self-attention, and 12–17 represent the 1–6 layers of encoder–decoder attention.
The numbers represent the impact of each attention head on translation performance. A higher value
indicates that the attention head is less important, while a lower value indicates that the attention
head is more important. The color reflects the importance of the attention head, with the darker one
indicating more importance.

3.3. Attention Head Analysis

We mask several important attention heads, unimportant attention heads, and random
attention heads based on the attention heads’ importance we acquired to show that it is
accurate. By looking at the degradation in translation performance, we evaluate the validity
of attention heads’ importance.

Figure 2 illustrates the effect of masking multiple attention heads on translation
performance. There is a significant degradation in translation performance when masking
several important attention heads, while masking multiple unimportant attention heads
results in minimal impact. This outcome validates the accuracy of our attention head
importance ranking.

To ensure the reliability of our experimental results, we assessed the distribution of
attention head importance and its correlation with the contribution of attention heads to POS.

Wang [12] posits that certain components of the Transformer model are more impor-
tant than others, particularly within the attention layer. They suggest that the decoder
self-attention layers are the least critical, whereas the upper encoder-attention layers in
the decoder are more significant than the lower ones. We conducted two experiments
to investigate the distribution of attention head importance and verify if it aligns with
these suggested properties. First, we want to know which layers in the model are more
important and which are less important. This can help us understand the importance of
the attention layers. Therefore, the initial experiment aims to assess the importance of
the attention heads in each layer. Specifically, the translation performance is evaluated
as a function that aggregates the contributions of all attention heads within a layer. If
this function demonstrates a significant influence, the layer is deemed crucial. Otherwise,
it is considered non-essential. Then, we want to know whether the important attention
heads are concentrated in a particular layer and whether retaining only a few attention
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heads in a certain layer can allow the model to function normally. Therefore, the second
experiment examines the distribution of important and unimportant attention heads. We
specifically count the 30 most important and the 30 least important attention heads in the
model, based on their importance. A layer is considered important if it contains a high
number of crucial attention heads and a low number of non-essential ones. Conversely, it is
deemed unimportant if this is not the case.
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Figure 2. Evolution of BLEU score when heads are pruned. Respectively masking important head
(yellow), unimportant head (blue), and random head (green).

Figure 3 represents the importance of attention layers, which is the sum of the impacts
of all attention heads in each layer of the three types of attention mechanisms in the model
on translation performance. We find that the encoder self-attention (0–5) and encoder–
decoder attention (12–17) are more important, while the decoder self-attention (6–11) is less
important. Overall, we observe that higher layers are more crucial than lower layers across
different attention layers. Particularly, in encoder–decoder attention, we find that the higher
layers (15, 16, 17) have a more significant impact on translation performance, indicating that
higher layers in encoder–decoder attention are more important than lower layers. Figure 4
represents the distribution of important and unimportant attention heads in the model. We
observe that important attention heads are primarily concentrated in encoder self-attention
(0–5 in Figure 4a) and encoder–decoder attention (12–17 in Figure 4a), while unimportant
attention heads are mainly found in decoder self-attention (6–11 in Figure 4b). This finding
indicates that encoder self-attention and encoder–decoder attention are more crucial to
the model than decoder self-attention. Moreover, from Figure 4a’s 12–17, we can see that
important attention heads are more concentrated in higher layers than in lower layers,
implying that higher layers are more important than lower layers in the encoder–decoder
attention mechanism. According to the results of two experiments, Figures 3 and 4, we
find that the encoder self-attention layers (0–5) and the encoder–decoder attention layers
(12–17) are important, while the decoder self-attention layers (6–11) are unimportant. And
in the encoder–decoder attention layer (12–17) the higher layers are more important than
the lower layers. These results support Wang’s [8] findings, confirming the validity of the
attention heads’ importance we obtained.
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3.4. Correlation Analysis

Previous research has identified that important attention heads frequently possess
specific and interpretable functions [18]. To verify whether the attention heads’ impor-
tance is consistent with the interpretable function, we analyzed the correlation between
attention head importance and attention head POS contribution. The attention head con-
tributes to the accurate translation of each POS word, which is the attention head POS
contribution. Specifically, we evaluate the impact on the translation accuracy of each POS
word when masking the attention head. For more details see Section 4.1. We employed
various statistical methods to evaluate these correlations, including Pearson correlation
and KL divergence. The Pearson correlation measures the linear correlation between two
variables and the KL divergence is an asymmetric measure of the difference between
two probability distributions. The value of the Pearson correlation is easy to understand
and directly reflects the strength of the linear relationship between variables. The KL
divergence can sensitively capture subtle differences between two probability distribu-
tions and is widely used in machine learning. Since the data contain negative values,
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we must normalize it to [0, 1] before computing the KL divergence. We use two normal-
ization methods. The first is KLNorm = (xi − xmin)/(xmax − xmin). The second method
takes the logarithm of the data a = [x1, . . . , xi, . . . , xn] in the interval (−∞,+∞) to obtain
the data b = [ln x1, . . . , ln xi, . . . , ln xn] in the interval (0,+∞), then normalizes the data
KLSo f tmax = xi/sum(x).

The correlation between attention head importance and attention head POS contri-
bution among three distinct relevance evaluation criteria is shown in Table 3. We have
established a connection between human-understandable POS information and the impor-
tance of attention heads, significantly enhancing the model’s interpretability and aiding in
our understanding of why some attention heads are important. Moreover, the experiment
employs statistical analysis of a large number of sentences to ensure the accuracy and va-
lidity of the results. Overall, there was a discernible positive correlation between attention
head importance and their contributions to various POS categories, indicating that the
important attention heads we identified possess specific and interpretable functions. This
aligns with the research findings of Voita [18]. A more substantial correlation was observed
between attention head importance and the contributions to nouns and verbs. This could
be attributed to the pivotal role of nouns and verbs in Chinese–English machine translation,
suggesting that important attention heads have a deeper understanding of these POS. Such
insights motivate us to refine the model design to facilitate enhanced learning of nouns
and verbs by the attention heads, potentially improving the model’s overall performance.

Table 3. The correlation between attention head importance and attention head POS contribution.

Pearson KLNorm KLSoftmax

None 0.85586148 0.00288859 0.01695689
Verb 0.81776615 0.00448712 0.01009835

Adjective 0.6634828 0.12858195 0.05381574
Adverb 0.59999701 0.12642623 0.07041694

Preposition 0.61585583 0.10229620 0.12294885
Determiner 0.36217017 0.11767329 0.34239231

4. Linguistic Knowledge

In this section, we analyze how the attention head learns linguistic information at
various granularities, which better reveals how NMT makes decisions. Through various lin-
guistic knowledge granularities—POS, dependency relations, and syntax trees—we explore
how NMT models process word information, inter-word relations, multi-word informa-
tion, and syntactic structure information. We strive to elucidate model decisions that are
beyond human comprehension by leveraging linguistic knowledge that is understandable
to humans [32].

We masked several important and unimportant attention heads according to the
attention heads’ importance to identify the various linguistic knowledge that these attention
heads had acquired. Three steps comprised our investigations. In the first step, the
reference translation was annotated by StanfordCoreNLP 4.5.4. StanfordCoreNLP is an
open-source natural language processing toolkit that integrates various NLP tools, enabling
comprehensive linguistic analysis. Therefore, we chose it for our experiments. The accuracy
of the reference translation and the translation generated from the complete model are
compared in the second step. In the third step, we compare the accuracy of the translation
generated by the pruning model and the reference translation. We believe that when the
important attention heads are masked, the performance of the model is not as good as the
complete model, leading to a decrease in the accurate translation rates of various types
of linguistic information and the occurrence of negative accuracy. This experiment helps
us explore which key linguistic information the model has learned and which pieces of
linguistic information are more important. On the other hand, when the less important
attention heads are masked, it may have a positive effect on some linguistic information,
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providing new insights for model pruning. The following is a detailed explanation of
specific linguistic knowledge.

4.1. Part-of-Speech

In this experiment, we masked several important attention heads and unimportant at-
tention heads according to attention heads’ importance to identify different POS knowledge
learned by these attention heads. Specifically, we evaluate the POS information learned by
the attention head in the translation accuracy of each POS in the translations generated by
the masking model.

In the first step, according to the POS types in Penn Treebank [33], we used Stanford-
CoreNLP to POS annotate the reference translation. Penn Treebank is a large-scale corpus
that provides precise POS and syntactic annotations, which are extremely useful for the
training and evaluation of language models. It is widely referenced in natural language
processing research and serves as a benchmark dataset for numerous algorithms and mod-
els. Therefore, we chose it for our experiments. POS information represented the function
of the individual word information in a sentence for NMT. For this study, we focused on
the six POS types that are most frequently used: the noun (N), verb (V), adjective (ADJ),
adverb (ADV), preposition or subordinating conjunction (IN), and determiner (DT). Since
various POS are divided into POS subclasses, for example, general adjectives, adjectival
comparatives, and adjectival maxims are three categories of adjectives, we cluster nouns,
verbs, adjectives, and adverbs individually [34]. We statistically counted the number of
words of each POS type in the reference translation, as shown in Table 4, and the total
number of words of POS type p in the reference translation was indicated as totalp,re f .

Table 4. Number of words in each POS category, number of combinations of dependent words, and
number of syntactic tree path patterns in the reference translation.

Types Number

Part-of-speech

None 1209801
Verb 639937

Adjective 325112
Adverb 168872

Preposition 521772
Determiner 421079

Dependency

Root 253109
Nsubj 300879

Obj 200308
Advmod 183645

Det 401812
Amod 285112
Nmod 229550

Compound 242266

Syntax tree

NP-NP-NN 185474
NP-PP-IN 139905
PP-NP-NN 148864
NP-NP-DT 126033
VP-PP-IN 131974

In the second step, we compare the number of correct translations of each POS word
in the translation generated by the complete model with the reference translation. The total
number of correctly translated words of POS type p in the translations generated by the
complete model is as follows:

Np,model = Σs
j=1Σm

i=1min
(

nwi ,re f , nwi ,model

)
(5)
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where s denotes the number of sentences in the dataset and m denotes a non-repeating
word of POS p in a sentence. For the ith non-repeating word wi of POS p in the jth sentence
of the reference translation, the number in the reference sentence nwi ,re f and the number in
the complete model-generated sentence nwi ,model are counted.

In the third step, we use the masking model for translation and count the total number
of correctly translated words of POS type p in the translation generated by the masking
model as

Np,head = Σs
j=1Σm

i=1min
(

nwi ,re f , nwi ,maskhead

)
(6)

In the end, we obtain the insights of the attention head learning POS information:

accp,model =
Np,model

totalp,re f
(7)

accp,head =
Np,head

totalp,re f
(8)

These formulas represent the accuracy of the complete model and the model with
masked attention heads in correctly translating words of each POS, relative to the reference
translation, where accp,model represents the accuracy of the complete model in correctly
translating words of POS p, serving as the baseline for POS experiment. accp,head represents
the accuracy of the model with masked attention heads in correctly translating words of
POS p.

Figure 5 displays the experimental results, which show how masking important
attention heads, unimportant attention heads, and random attention heads affects various
POS information. Overall, for each POS, the accuracy of the words’ correct translations
decreased when important heads were masked, demonstrating that important attention
heads have the propensity to engage in a lot of information about the POS. The accuracy of
the words’ correct translations of each POS remained stable when masking the unimportant
attention heads. When randomly masking attention heads, the change in the correct
translation accuracy for words of different parts of speech falls between the accuracy
changes caused by masking important and unimportant attention heads, a phenomenon
that aligns with general patterns.

To better understand the findings of our experiment, we selected an example from the
dataset we used. As shown in Table 5, we display the reference translation, the translation
generated by the complete model, the translation generated when important attention
heads are masked, and the translation generated when unimportant attention heads are
masked. It can be observed that when important attention heads are masked, words
of various POS, such as the verb “provides”, the adjective “theoretical”, and the noun
“checking”, are not translated correctly. In addition, when unimportant attention heads are
masked, there is almost no change in the translation results.

Table 5. The example of reference translation, the translation generated by the complete model, the
translation generated when important attention heads are masked, and the translation generated
when unimportant attention heads are masked.

Reference
The analysis method provides some theoretical
foundation for the safe assessment on welded

joint strength in a rotation blade.

Transformer This method provides a theoretical basis for the
strength-checking of rotary welded joints.

Mask Important Attention heads The analysis method is used to verify the
welding strength of the joints.

Mask Unimportant Attention heads This method provides a theoretical basis for the
strength-checking of the rotary joint.
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We discovered that the decreasing trend of the words’ correct translations was different
for each type of POS information while masking important attention heads. We examine
the alteration in the accuracy of the words’ correct translations when masking the important
attention head to better understand how the model learns various POS information, as
shown in Figure 6. It can be seen that all POS information is important for model decisions.
However, due to the different baseline values for each part of speech, we cannot intuitively
determine which part of speech experiences the greatest decrease in correct translation
accuracy. Therefore, we have presented in table format the correct translation accuracies of
words for each part of speech generated by the complete model, as well as the decrease in
these accuracies when important attention heads are masked, as shown in Table 6. This
method allows for an effective observation of the changes in correct translation accuracy
when multiple attention heads are masked [14]. We observed that the attention head
learned more about adjectives and nouns when the important attention head was masked.
This is presumably due to the reason that nouns and adjectives play a more significant
part in sentence structure in English. When masking the most important attention heads
(e.g., five), we found that the accuracy of prepositions reduced the fastest, indicating that
preposition-related knowledge primarily exists in the most important attention heads.
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Table 6. The changes in the accuracy of correct translations for words of each POS between the
complete model and the pruned model. All data in the table are represented as percentages. The
leftmost column lists the POS. The “Complete Model” column shows each part’s translation accuracy,
while the “Pruned Model” column, labeled “5–30”, displays the percentage decrease in accuracy after
masking 5 to 30 attention heads.

Complete
Model

Pruned Model

5 10 15 20 25 30

N 55.07 12.54 13.19 20.61 27.74 32.79 34.46
V 40.05 6.39 7.22 12.84 16.56 19.01 21.01

ADJ 53.85 14.27 15.15 35.83 38.63 39.77 40.23
ADV 43.79 18.69 20.07 30.03 30.59 31.01 31.92

IN 58.87 18.61 20.33 21.08 22.38 25.30 28.41
DT 65.01 13.55 15.74 11.69 10.15 11.93 18.26
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4.2. Dependency

In this section, we explored the knowledge of various dependencies learned by the
attention heads by masking several important attention heads and unimportant attention
heads to better understand the information about inter-word relationships learned by each
attention head in the model, as in the experiments on POS.

In the first step, we used stanfordCoreNLP to extract dependencies from reference
translations, and this tool can extract all dependencies of a sentence. Dependency is
linguistic knowledge that reveals the dominant relationship between two words. A sentence
has a root that does not depend on other words, all other words depend on one word of the
sentence, and no one word can depend on two or more words. For this study, we focused
on the eight dependency types that are most frequently used: root, nsubj, obj, advmod, det,
amod, nmod, and compound. We statistically counted the number of word combinations
of each dependency type in the reference translation, as shown in Table 4, and the total
number of word combinations of dependency type dep in the reference translation was
indicated as totaldep,re f .

In the second step, we extracted the dependencies from the translations generated by
the complete model. The number of correct translations for the word combination of each
dependency in the translation is counted as Ndep,model , and the formula is as follows:

Ndep,model = Σs
j=1Σm

i=1 φ
(

DEPre f ,j, DEPmodel,j,i

)
(9)

where s denotes the number of sentences in the dataset and m denotes a word combination
of dependency dep in a sentence. φ() is an indicator function, DEPre f ,j denotes all word
combinations where dependency is dep in the jth sentence of the reference translation, and
DEPmodel,j,i denotes the ith word combinations where dependency is dep in the jth sentence
of the translation generated by the complete model. If the word combination of DEPmodel,j,i
exists in DEPre f ,j, the word combination is considered to be translated correctly and the
output of the indicator function is 1, otherwise the output is 0.

In the third step, we extracted the dependencies from the translations generated by the
masking model and calculated the total number of correctly translated word combinations
whose dependencies are dep as

Ndep,model = Σs
j=1Σm

i=1 φ
(

DEPre f ,j, DEPmaskhead ,j,i

)
(10)

In the end, we obtained the insights of attention head learning dependency information:

accdep,model =
Ndep,model

totaldep,re f
(11)

accdep,head =
Ndep,head

totaldep,re f
(12)

These formulas represent the accuracy of the complete model and the model with
masked attention heads in correctly translating word combinations for each dependency,
relative to the reference translation, where accdep,model represents the accuracy of the com-
plete model in correctly translating word combinations for dependency dep, serving as the
baseline for dependency experiment. accdep,head represents the accuracy of the model with
masked attention heads in correctly translating word combinations for dependency dep.

The effect of masking the attention heads on the accuracy of word combinations that
correspond to each dependency in the translation reveals the attention head’s learning of
knowledge of various dependencies. The experimental results are shown in Figure 7. When
the important attention heads were masked, the accuracy of the correct translation of each
dependent word combination decreased, demonstrating that the attention head had become
acquainted with the dependence. Similarly, we analyzed the variation in the accuracy of
each dependency when masking important attention heads, as shown in Figure 8 and
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Table 7. We discovered that attention heads learned more inter-word information about
adjectival modifiers (amod). This supports the findings of POS experiments, which suggest
that adjectives are essential to English sentence construction.
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Table 7. The changes in the accuracy of correct translations for word combinations for each depen-
dency between the complete model and the pruned model. All data in the table are represented
as percentages. The leftmost column lists the dependency. The “Complete Model” column shows
each part’s translation accuracy, while the “Pruned Model” column, labeled “5–30,” displays the
percentage decrease in accuracy after masking 5 to 30 attention heads.

Complete
Model

Pruned Model

5 10 15 20 25 30

root 32.92 2.36 3.61 9.47 14.26 17.69 20.49
nsubj 22.57 3.62 4.79 9.98 12.91 14.58 16.72

obj 19.17 3.50 4.54 8.62 11.72 13.45 14.76
advmod 19.02 7.95 9.08 14.12 15.02 15.37 15.83

det 36.72 9.04 11.19 12.40 15.58 19.18 22.35
amod 31.31 7.80 9.96 22.08 24.86 26.09 26.55
nmod 23.03 7.64 9.84 12.06 16.10 18.00 19.03

compound 33.93 4.60 7.22 14.58 19.99 22.22 24.12

4.3. Syntax Tree

In this section, we studied the change in the accuracy of syntactic tree information in
the translation while masking several important attention heads and unimportant attention
heads to evaluate the impact of attention heads on the model’s processing of multiple-word
information and overall syntactic structure [35]. A syntactic tree is an abstract syntactic
structure that represents the structure of a sentence.

In the first step, we constructed the syntactic analysis of the reference translation
using stanfordCoreNLP, a tool that constructs syntactic trees of sentences. We summarize
the patterns of the bottom three nodes in the syntactic tree paths of each word to better
examine the syntactic structure knowledge acquired by the attention head because there
are plenty of ways to combine syntactic tree paths. For this study, we focused on the
five syntactic tree path patterns that are most frequently used: NP-NP-NN, NP-PP-IN,
PP-NP-NN, NP-NP-DT, and VP-PP-IN. We statistically counted the number of words of
each syntactic tree path pattern in the reference translation, as shown in Table 4, and the
total number of words of each syntactic tree path pattern path in the reference translation
was indicated as totalpath,re f .
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In the second step, we constructed syntactic trees for the translations generated by the
complete model. We counted the total number of words in the translation generated by the
complete model and the reference translation whose word paths have the same syntactic
tree path pattern, denoted as Npath,model , with the following formula:

Npath,model = Σs
j=1Σm

i=1 φ
(

PATHre f ,j, PATHmodel,j,i

)
(13)

where PATHre f ,j denotes the word where the syntactic tree path pattern is path in the jth
sentence of the reference translation, and PATHmodel,j,i denotes the ith word where the
syntactic tree path pattern is path in the jth sentence of the translation generated by the
complete model. The other parameters were consistent with the experimental settings of
dependency.

In the third step, we constructed syntactic trees for the translations generated by the
masking model and calculated that the total number of correctly translated words with the
syntactic tree path pattern is path:

Npath,model = Σs
j=1Σm

i=1 φ
(

PATHre f ,j, PATHmaskhead ,j,i

)
(14)

In the end, we obtained the insights of attention head learning syntactic tree information:

accpath,model =
Npath,model

totalpath,re f
(15)

accpath,head =
Npath,head

totalpath,re f
(16)

These formulas represent the accuracy of the complete model and the model with
masked attention heads in correctly translating words for each syntactic tree path pattern
relative to the reference translation, where accpath,model represents the accuracy of the
complete model in correctly translating words for the syntactic tree path pattern path,
serving as the baseline for the dependency experiment. accpath,head represents the accuracy
of the model with masked attention heads in correctly translating words for the syntactic
tree path pattern path.

Figure 9 displays the variety of attentional head learning syntactic information that
we discovered. The attention head commonly learns knowledge related to syntax tree
information. Meanwhile, we find that some syntactic tree path patterns benefit when some
attention heads are masked. Below, we examine the situation by masking the important
attention heads on each syntactic tree path pattern. As shown in Figure 10 and Table 8, when
the most important heads (e.g., 5, for example) are masked, the accuracy of all syntactic
tree path patterns rapidly decreases. Additionally, when more attention heads are masked,
the accuracy of some syntactic tree path patterns (e.g., NP-PP-IN and NP-NP-DT) increases
before decreasing again. We hypothesize that the concentration of syntactic knowledge
in a few crucial attention heads during the learning of syntactic information might be the
reason for this observation. This idea provides a direction for future research.
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Table 8. The changes in the accuracy of correct translations for words for each syntactic tree path
pattern between the complete model and the pruned model. All data in the table are represented as
percentages. The leftmost column lists the syntactic tree path pattern. The “Complete Model” column
shows each part’s translation accuracy, while the “Pruned Model” column, labeled “5–30”, displays
the percentage decrease in accuracy after masking 5 to 30 attention heads.

Complete
Model

Pruned Model

5 10 15 20 25 30

NP-NP-NN 34.20 7.51 9.82 11.11 15.01 18.84 20.69
NP-PP-IN 59.12 14.00 18.39 8.00 5.83 7.68 15.01
PP-NP-NN 37.83 11.84 13.13 13.51 16.18 19.91 20.49
NP-NP-DT 56.55 13.54 17.69 9.64 7.83 9.26 19.48
VP-PP-IN 41.43 14.31 15.67 17.53 19.25 22.05 24.11

5. Conclusions

In this paper, we explore the importance of attention heads in understanding NMT.
We confirmed the correctness of the importance of the attention head and investigated its
distribution. The correlation between attention head importance and their contribution to
POS was assessed using three evaluative criteria. Our investigation covered how attention
heads acquire language knowledge at three different granularities: POS, dependency
relationships, and syntactic trees, enhancing our understanding of their learning processes.

We find that not all attention heads are important, and the important attention heads
are more distributed in the encoder self-attention layer and the encoder–decoder attention
layer. These findings have propelled us towards a deeper understanding of the internal
structure of NMT models and have opened up new research directions for subsequent
related studies. Specifically, these discoveries can guide us in conducting in-depth analyses
of critical components within the model to enhance its performance. Additionally, they
also support pruning non-critical parts of the model to reduce parameters and improve
operational efficiency. In addition, the important attention heads in Chinese–English ma-
chine translation contribute more to the generation of nouns and verbs in their translations.
Finally, we discovered that the attention heads had varying degrees of POS, dependence,
and syntax tree learning. These findings offer valuable guidance for future model design.
For instance, when designing Chinese–English machine translation models, we should
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pay closer attention to the processing of linguistic elements such as nouns and adjectives.
This ensures that the attention mechanism functions more effectively, thereby enhancing
translation quality. Overall, we investigated the multigranularity of linguistic knowledge
within the context of attention heads making decisions.

For future work, we plan to explore the role of attention heads in learning other lin-
guistic knowledge, such as morphology. Additionally, we will conduct comparisons using
other salience methods, including layer-wise relevance propagation (LRP) and gradient-
based approaches, to examine the decisions made by important attention heads from
different perspectives.
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