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Abstract: The axillary buds that grow between the main and lateral branches of tomato plants
waste nutrients and lead to a decrease in yield, necessitating regular removal. Currently, these buds
are removed manually, which requires substantial manpower and incurs high production costs,
particularly on a large scale. Replacing manual labor with robots can lead to cost reduction. However,
a critical challenge is the accurate multi-target identification of tomato plants and precise positioning
for axillary bud removal. Therefore, this paper proposes a multi-target identification and localization
method for tomato plants based on the VGG16-UNet model. The average intersection and pixel
accuracies of the VGG16-UNet model after introducing the pretrained weights were 85.33% and
92.47%, respectively, which were 5.02% and 4.08% higher than those of the VGG16-UNet without
pretrained weights, achieving the identification of main branches, side branches, and axillary bud
regions. Then, based on the multi-objective segmentation of the tomato plants in the VGG16-UNet
model, the regions of the axillary buds in the tomato plants were identified by HSV color space
conversion and color threshold range selection. Morphological dilation and erosion operations were
used to remove noise and connect adjacent regions of the same target. The endpoints and centroids
of the axillary buds were identified using the feature point extraction algorithm. The left and right
positions of the axillary buds were judged by the relationship between the position of the axillary
bud centroid and the position of the main branch. Finally, the coordinate parameters of the axillary
bud removal points were calculated using the feature points to determine the relationship between
the position of the axillary bud and the position of the branch. Experimental results showed that the
average accuracy of the axillary bud pruning point recognition was 85.5%.

Keywords: tomato plant; axillary bud; image recognition; object detection; VGG16-UNet; removal
point localization

1. Introduction

With the advancement of agricultural science and technology, improving the efficiency
of monitoring and managing the growth status of crops is crucial for the agricultural in-
dustry. Among the world’s most widely grown vegetables, tomatoes stand out because
the growth of their shoots has a significant impact on both yield and quality, particularly
the axillary buds that develop between the main stem and the base of the lateral branches.
However, the current method of removing axillary buds relies on manual labor, resulting
in significant labor requirements and high production costs, especially in large-scale cul-
tivation [1,2]. The wide row spacing typical of large-scale tomato production makes the
automation of axillary bud removal feasible [3]. Therefore, the development of a tomato
axillary bud remover robot to replace manual labor is not only feasible but imperative. To
achieve automated tomato axillary bud pruning, the accurate detection of tomato main
branches, side branches, and axillary buds and the identification of pruning points are of
paramount importance.
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Currently, scholars have conducted relevant research on the automatic pruning of
plant branches and fruit and vegetable harvesting. In 2017, the Dutch company Priva
released a tomato branch and leaf-pruning robot, which can achieve the automatic pruning
of tomato branches and leaves [4]. Ning et al. [5] improved Mask R-CNN to identify and
segment grape stems, achieving an average recognition accuracy of 88% for grape stems.
Yan et al. [6] used the K-means clustering method to identify the branches of Lycium
barbarum, overcoming the problem of numerous interferences in the identification of wolf-
berry branches in natural environments. Peng et al. [7] used DeepLabv3+ to segment litchi
branches and obtained an average intersection over union ratio of 76.5% for model seg-
mentation. Peng et al. [8] proposed an improved deep learning model, RDf-DeepLabV3+,
to address the semantic segmentation of lychee branches in an orchard environment. The
main improvement of this model is the introduction of a new backbone network, called
ResDense, which integrates the ResNet and DenseNet networks and replaces the original
backbone network of DeepLabV3+. In addition, focal loss is used to replace the original
cross-entropy loss function. Experimental results show that the RDf-DeepLabV3+ model
outperforms all comparison models. Specifically, the mean intersection over union (mIoU)
of the RDf-DeepLabV3+ model is 0.848, 0.811, and 0.770 for images of simple, moderate,
and complex levels, respectively. Furthermore, the training and testing speeds of this model
are approximately 7.7% faster than Xception. This research provides a reliable deep learning
solution for the accurate segmentation of lychee branches in orchard environments, which
is of great practical importance for robotic lychee harvesting. Palacios et al. [9] combined
VGG19 with Segnet for the detection and segmentation of grape berries, achieving F1 scores
of 0.93 and 0.73, respectively. Afonso et al. [10] built a Mask R-CNN-based model for the
identification of ripe and unripe tomatoes, with recognition accuracies of 95% and 94%,
respectively. Wei et al. [11] used the DA2-YOLOv4 model to identify hedges with a recogni-
tion speed of 83.1 frames per second and an average accuracy of 98.5%. Ma et al. [12] used
an improved Mask R-CNN model to segment rice stalk contamination, achieving a segmen-
tation and detection accuracy of 91.12% with an average processing time of 3.57 s. Liang
et al. [13] used a fusion of YOLOv3 and UNet to detect and segment lychee and fruit stalks
in a nocturnal environment, demonstrating high accuracy and robustness. Jia et al. [14]
proposed an improved apple-picking robot vision detector model based on a modified
Mask R-CNN. They combined ResNet and DenseNet as the backbone network for feature
extraction, aiming to reduce input parameters while retaining valuable features for accurate
detection. The results show that the model achieved a precision of 97.31% and a recall
of 95.70%, meeting the requirements of the practical apple-picking robot vision system
in orchard environments. Liang et al. [15] segmented tomato plants using the improved
Mask R-CNN model and achieved the positioning of tomato lateral branch pruning points
through mask merging and conditional constraints. The average accuracy of pruning point
identification was 82.9%.

The above studies indicate some progress in the field of plant pruning and fruit
and vegetable harvesting. However, research into the identification of tomato axillary
pruning points is limited, with traditional image processing methods being predominantly
used. Traditional image processing methods and convolutional neural network detection
techniques are common approaches to target recognition. Due to the similar colors of tomato
lateral branches, main branches, and axillary buds, traditional threshold segmentation
methods perform adequately in certain scenarios. However, they are sensitive to variations
in plant state and growth environment, resulting in limited detection capabilities in complex
and changing growth environments. In contrast, deep learning models can effectively detect
the main branch, lateral branch, and axillary bud targets of tomato plants by leveraging
multi-dimensional features such as color, shape, and texture. These models demonstrate
adaptability to different scenarios and changes in plant status, thereby improving the ability
to detect multiple targets of tomato plants in dynamic growth environments.

To address the challenge of effectively segmenting axillary buds from a background of
similar colors using traditional image processing methods and to ensure robust recognition
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in dynamic environments, this paper proposes a methodology. We use the VGG16-UNet
deep learning model to achieve the segmentation of tomato plant main branches, lateral
branches, and axillary buds. In addition, we use techniques such as HSV color space
conversion and threshold segmentation to achieve fine segmentation and separation of
the main branches, lateral branches, and axillary buds. Feature points are then extracted
from the segmented regions. Subsequently, the axillary bud growth position is determined
based on these feature points, and the tomato axillary bud pruning point is calculated
using positional relationships. This approach aims to provide technical support for the
identification of pruning points by tomato axillary bud-picking robots.

The main contributions and innovations of this study are outlined as follows:

• Proposal of a multi-target segmentation method for tomato plants based on the VGG16-
UNet model. This method effectively performs pixel-level segmentation of the main
stem, lateral branches, and axillary buds of tomato plants, providing a solid basis for
calculating axillary bud removal points for automated agricultural robots.

• By combining the powerful VGG16 and ResNet models with the UNet architecture
and using pretrained weights, the accuracy and training efficiency of the model for
tomato plant image recognition is significantly improved. This fusion enhances feature
extraction capabilities and improves model generalization, enabling better adaptation
to complex agricultural scenarios.

• Development of a fine segmentation algorithm that combines HSV color space trans-
formation and morphological operations. This algorithm effectively separates key
structures of tomato plants from complex backgrounds, improving the accuracy of
axillary bud positioning and providing reliable technical support for automated agri-
cultural robots.

• The use of traditional semantic segmentation evaluation metrics alongside the intro-
duction of pixel-length correspondence analysis and specific rule evaluations. This
approach provides a new perspective for comprehensive model evaluation, ensuring
the effectiveness and reliability of the model in practical applications.

The remainder of this paper is divided into five sections. Section 2 presents the meth-
ods and technical approach used in this study. Section 3 describes the composition of the
dataset. Section 4 provides a detailed description of the models and methods used. Section 5
discusses the details of the experimental design, including parameters for model training,
evaluation metrics for assessing model performance, and a comprehensive analysis of the
experimental results. Finally, in Section 6 a comprehensive discussion of the experimental
results is provided, along with suggestions for possible future research directions.

2. Research Methods

The end effector pruning operation of the axillary bud removal robot is illustrated in
Figure 1 [15]. To ensure efficient pruning with the end effector, the process begins with the
inspection of the tomato plant. This step is crucial as the robot must accurately recognize
the position and structure of the plant in order to calculate the point of axillary bud removal
for subsequent operations. Figure 2 outlines the technical path of this document.
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Figure 2. Technology roadmap.

The workflow starts by annotating the collected images and applying data augmenta-
tion techniques to construct a dataset tailored to complex real-world environments. Next,
this dataset is fed into the VGG16-UNet network for training, aiming to develop a highly
efficient prediction model. This model will then be used to accurately detect the main
branches, lateral branches, and axillary bud areas of tomato plants in real-world scenarios.

Afterward, image processing techniques were used to finely segment the prediction
results of the neural network, focusing particularly on the main branch and axillary bud
areas. This involved contour extraction and landmark identification to achieve a more
accurate delineation of the plant structure. Finally, by analyzing the positions of the feature
points, we were able to determine the exact location of the axillary bud and calculate the
point for its removal.

3. Dataset Production

The quality and diversity of the dataset has a direct impact on the model’s ability to
learn features and generalize. This section first outlines the data collection and annotation
processes. Next, color jittering data augmentation is used to simulate different lighting
and environmental conditions, thereby enhancing the dataset and improving the model’s
adaptability to different complex scenes. Finally, the original and augmented images are
merged into a balanced dataset, which is then partitioned into training, validation, and test
sets for subsequent model training and evaluation in subsequent chapters.

3.1. Data Collection and Annotation

Based on the results of the survey, the removal of tomato axillary buds typically
begins around the seedling stage of approximately 30 days, with the targeted buds being
approximately 7 cm in length. Consequently, this study selected tomato seedlings aged
around one month old as experimental subjects, with the aim of reducing the risk of disease
due to the challenges associated with healing large wounds.

In this article, the image capture device has a resolution of 2400 × 1080, and the
screen measures 6.57 inches. The image data were collected from Hohhot Green Union
Planting Professional Cooperative, resulting in total of 541 images of tomato plants at
the seedling stage in JPG format. Figure 3a shows the original image of a tomato plant
featuring 7 tomato objects, including 1 main branch, 4 lateral branches, and 2 axillary buds.
As the axillary bud is the target for pruning operations, with the main branch and lateral
branch serving as auxiliary objects for axillary bud recognition, we used the version 3.16.7
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of the Labelme tool to annotate the root areas of the axillary bud, main branch, and lateral
branch point by point, generating a json file. This file was then converted to produce the
corresponding labeled image. As shown in Figure 3b, the red area represents the main
branch area, the green area represents the lateral branch area, the yellow area represents
the axillary bud area, and the black area represents the background area.
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3.2. Data Augmentation

Due to the limited number of images collected, color jitter brightness enhancement
was used to augment the dataset in order to increase the volume of training data and
improve the model’s ability to generalize. This method alters the brightness of the images
through shading while ensuring that the parameters remain consistent with the natural
environmental state to avoid image distortion. Specifically, it simulates both strong and
weak lighting conditions by adjusting the brightness accordingly. After data enhancement, a
total of 1082 enhanced images were obtained. Consequently, the final sample set comprised
a total of 1623 images, including both the original and enhanced images. Following an
8:1:1 ratio, these images were divided into 1299 images for the training set, 162 images
for the validation set, and 162 images for the test set. Sample images with partial data
enhancement are shown in Figure 4.
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4. Multi-Objective Segmentation and Localization Method for Tomato Plants
4.1. Based on VGG16-UNet Tomato Plant Segmentation Model

Due to its excellent segmentation performance and fast training speed on small sample
datasets [16–19], the UNet network is adopted by this paper as the basic model for the
segmentation task. The UNet architecture consists of an encoder and a decoder. The
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encoder extracts features from the input image to obtain four layers of feature maps,
while the decoder performs layer-by-layer upsampling through deconvolution operations,
accurately locating features and fusing them with the corresponding feature maps obtained
at each level by the encoder. At the same time, the VGG16 model demonstrates robust image
feature extraction and analysis capabilities. The use of large datasets for pretraining through
transfer learning can effectively improve model performance and generalization ability.
Therefore, the encoder part of the UNet model is replaced by the first 13 convolutional
layers of VGG16, resulting in the VGG16-UNet model, as shown in Figure 5.
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In this paper, tomato plant segmentation is performed using the VGG16-UNet semantic
segmentation model, and the parameter variations of each layer of the segmentation model
are shown in Figure 5. The first 13 convolutional layers of VGG16 serve as the feature
extraction network in the encoding structure. Each convolutional layer used a 3 × 3 kernel
size, with the number of kernels being 64, 128, 256, and 512, respectively. The activation
function used is ReLU. The encoder uses a stacking operation of convolution and pooling
to perform downsampling, progressively enlarging the receptive field and compressing
the image from an input size of 512 × 512 × 3 to a size of 32 × 32 × 512 after four
rounds of downsampling, thereby condensing the features of the tomato plant images.
In the corresponding decoding part, upsampling and feature fusion are used to achieve
tomato plant segmentation. Upsampling is performed using bilinear interpolation to
increase the size of the feature map, which speeds up the training of the tomato plant
segmentation model. Through continuous upsampling and convolutional stacking, the
decoder reconstructs the tomato plant map, restoring the size of the final output layer to
512 × 512. It then outputs the binary segmentation map of the tomato plant morphology.
The VGG16-UNet semantic segmentation model uses four rounds of feature fusion to
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perform plant segmentation. The convolutional feature map in the encoder is fused with
the corresponding upsampled feature map in the decoder. Using Skip-Connection cascade
fusion, shallow position information and deep semantic information of tomato plants are
fused across multiple channels to achieve the pixel-level segmentation of tomato plants.

4.2. Location of Axillary Bud Removal Points of Tomato Plants

In this paper, the process of the axillary bud removal point localization method for
tomato plants based on VGG16-UNet is shown in Figure 6.
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4.2.1. Fine Segmentation of Tomato Plants

In order to achieve an accurate segmentation of tomato plants, which is crucial for
the location of removal points, this study used image processing methods following the
coarse identification and segmentation of tomato plants based on VGG16-UNet. The steps
involved are outlined below.

Step 1: Obtain the multi-target coarse segmentation result map of the tomato plant.
Step 2: Convert the RGB result image obtained from the coarse segmentation to HSV

color space and separate the plant region from the background.
The HSV color space has three components: hue (H), saturation (S), and value (V).

Hue represents a specific color, and using only hue can conveniently represent the distribu-
tion of colors in an image, making it simpler than the RGB model in directly describing
colors [20]. After segmentation by the VGG16-UNet model, different targets of tomato
plants have specific colors. By adjusting the threshold range of the HSV channels, specific
color regions can be selected relatively easily without considering the complex combination
of the red, green, and blue channels in the RGB color space and the weight of each com-
ponent [21]. In addition, compared to the RGB model, the HSV model is more robust and
less sensitive to changes in lighting conditions, which is particularly important in outdoor
environments where tomato plants may be exposed to variations in sunlight. Therefore,
in this experiment, the segmented mask images obtained from the VGG16-UNet semantic
model are transformed from the RGB color space to the HSV color space for the subsequent
extraction of the axillary regions and calculation of axillary removal points. The RGB
images are separated into channels, and, after separation, each of the R, G, and B channels
is normalized according to Equation (1) to obtain r, g, and b.

r =
R

255
, g =

G
255

, b =
B

255
(1)
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After the normalized channels (r, g, b) are obtained, they are utilized to calculate the
corresponding HSV channels (H, S, V). The HSV channels are calculated as follows:

V = max (2)

S =

{ max−min
max , if max ̸= 0

0◦, otherwise
(3)

H =



0◦, if max = min
60◦ × (g−b)

(max−min) + 0◦, ifmax = randg ≥ b

60◦ × (g−b)
(max−min) + 360◦, ifmax = randg < b

60◦ × (b−r)
(max−min) + 120◦, ifmax = g

60◦ × (r−g)
(max−min) + 240◦, ifmax = b

(4)

The variables H, S, and V represent the values of the RGB image after conversion to
the HSV color space model. Here, max corresponds to the maximum value among r, g, and
b, while min corresponds to the minimum value among r, g, and b.

Step 3: Adjust the threshold range to achieve the separation of axillary buds of the
tomato plants. The thresholds values for the three channels of H, S, and V are set to [20, 40],
[100, 255], and [100, 255], respectively, to achieve axillary bud separation.

Step 4: Morphological manipulations
Using a 7 × 7 cross-shaped structural element, perform erosion and dilation oper-

ations on the binary image of the axillary bud region to remove interfering points and
connect adjacent areas belonging to the same shoot, thereby achieving finer segmentation
of tomato plants.

4.2.2. Axillary Bud Removal Point Calculation

Having achieved the accurate multi-target segmentation of tomato plants, the next
critical step is to accurately calculate the removal points for the axillary buds. This process
is critical for automated robotic pruning operations, as it directly affects pruning efficiency
and future plant growth. To ensure healthy post-pruning plant growth and increased
yield, the accurate localization of the axillary bud removal points requires consideration
of both the morphological features of the axillary buds and their positional relationships
to the main stem. In this section, we present the method for calculating the axillary bud
removal points based on the segmentation results obtained from the VGG16-UNet model.
This method includes contour detection, feature point extraction, axillary bud position
determination, and precise removal point calculation. Through this series of accurate
calculation steps, our aim is to provide the robot with accurate pruning guidance, thereby
enabling efficient and non-destructive axillary bud pruning.

Step 1: Contour detection and feature point extraction
The contour of the axillary bud region was delineated, and the left and right endpoints

of the axillary bud contour were determined, followed by the calculation of its centroid.
The centroid, denoted as p(nc, mc), is calculated by the weighted average of the coordinates
of each contour point, as described by the following formula:

nc =
M10

M00
(5)

mc =
M01

M00
(6)

M10 = ∑x ∑y x·I(x, y) (7)

M01 = ∑x ∑y y·I(x, y) (8)

M00 = ∑x ∑y I(x, y) (9)
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where nc and mc, respectively, represent the abscissa and ordinate of the axillary bud
centroid, while c denotes the centroid index, where (c = 1, 2, 3...), indicates the pixel value
at the center (x,y) of the region.

Step 2: Judging the left and right branches of the axillary buds
The vertical axis of each axillary bud center coordinate was extracted. Then, the

contour points of the main branch were traversed to find the points whose vertical axis
coincided with that of the axillary bud center. Subsequently, the horizontal axes of the two
points were compared to determine the left and right branches of the axillary buds.

Step 3: Calculating the axillary bud removal point
According to agricultural standards, the optimum length of axillary bud stubble is

approximately 1 cm, a criterion that aligns with the agronomic requirements [15]. Observa-
tions have shown that the points of axillary buds at around 30 days are predominantly in
the range of 7 ± 1 cm. Therefore, in this study, the axillary bud removal was chosen near the
end of the main branch and positioned at 1/4 distance from the center of the axillary bud.
This choice ensures that the axillary bud removal point meets the pruning requirements.

The tomato plant has an axillary bud (Edge1) at its left end and another axillary bud
(Edge2) at its right end. The coordinates (s1, t1), (s2, t2), and (n1, m1) represent the pixel
values of the left endpoint, the right endpoint, and the centroid of Edge1, respectively.
Similarly, (s4, t4), (s5, t5), and (n2, m2) denote the pixel values of the left endpoint, right
endpoint, and centroid of Edge2, as shown in Figure 7.
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The pruning point coordinates for the axillary bud (Edge1) located at the left end of
the main branch mask are calculated as follows:{

s0 = 3s2+n1
4

t0 = 3t2+m1
4

(10)

where s0 and t0 are the coordinates of the trim point of Edge1.
The formula for calculating the coordinates of the pruning point when the axillary

bud (Edge1) is at the right end of the main branch mask is as follows:{
s3 = 3s4+n2

4
t3 = 3t4+m2

4
(11)

where s3 and t3 are the coordinates of the trimming point of Edge2.

4.3. Experimental Workflow

The identification of tomato plants and the localization of axillary bud removal points
can be summarized as Algorithm 1.

Algorithm 1: Multi-target identification and localization of tomato plants based on the
VGG16-UNet model

Input:
Tomato plant image data

Output:
Multi-target mask map of a tomato plant;
Coordinates of tomato axillary bud removal points;

for each t ranging from 1 to the last tomato plant image N
1. Image pre-processing, standardization, resizing;
2. Implement encoder feature extraction based on the left half of Figure 5;
3. Implement a featured decoder based on the right half of Figure 5, perform pixel-level

segmentation of the tomato plant image;
4. Obtain the masked images for segmentation of tomato plant main stem, lateral branches,

and axillary buds;
5. Convert the masked image to HSV color space;
6. The yellow color range was extracted to obtain a binary graph containing only the axillary

bud region;
7. Based on 6, morphological operations were used to obtain the binary graph after fine

segmentation of axillary buds;
8. The Canny algorithm was used to find the contour of the binary image;
9. For each contour region in the binary segmented image:

a. left_point, right_point, centre_point = CalculateContourPoints(contour);
b. Determine whether the axillary bud (contour) is on the left or right side;
If on the left:

The take point for the axillary bud is 1/4 from the right endpoint to the midpoint;
Else:

The axillary bud removal point is 1/4th from the left endpoint to the midpoint;
c. Predicted axillary bud removal points in tomato plant images;

End for

According to Algorithm 1, the steps for the multi-target segmentation and localization
of tomato plants using the example image in Figure 8a are detailed as follows.

In step 1, the image is pre-processed by denoising, adjusting the brightness and
contrast, and resizing it to obtain a standardized image ready for input into the VGG16-
UNet model. In step 2, the pre-processed image is fed into the encoder section of the
VGG16-UNet model to extract image features. In step 3, a pixel-level semantic segmentation
of the tomato plant image is performed by the decoder section of the model to obtain a
segmentation mask image (Figure 8b), where different colors represent different regions
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such as main branches, lateral branches, and axillary buds. Next, in step 5, the segmentation
mask image is converted from the RGB color space to the HSV color space for more accurate
color information processing (Figure 8c). In step 6, based on the yellow threshold in the HSV
color space, a binary mask containing only the axillary bud region is generated (Figure 8d).
In step 7, morphological operations such as erosion and dilation are applied to the binary
mask image to remove noise and more precisely define the axillary bud region, resulting
in a refined binary image (Figure 8e). Using the Canny algorithm (step 8), contours are
detected in the refined binary image, and key points for each contour, including the left
endpoint, right endpoint, and centroid, are calculated (step 9a). Based on these points, the
position of the axillary buds is determined, and the removal points are calculated (step 9b),
which are then marked in Figure 8f. Finally, in step 9c, the calculated axillary bud removal
points are marked on the original image, resulting in the final image (Figure 8g), which
will guide automated agricultural robots in precise axillary bud pruning.
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5. Results and Analysis

This section evaluates the performance of the tomato plant multi-object recognition
and positioning system based on the VGG16-UNet model. The focus is on two main aspects:
segmentation performance and localization accuracy. For segmentation performance, the
ability of the model to identify main stems, lateral branches, axillary buds, and background
in the images will be evaluated using the intersection over union (IoU), mean intersection
over union (MIoU), pixel accuracy (PA), and mean pixel accuracy (mPA) metrics. In terms
of localization accuracy, two user-defined scoring criteria are used to determine whether
the predicted axillary bud removal points meet agronomic requirements. This evaluation is
critical to ensure that robots can accurately perform pruning tasks, which directly impacts
the efficiency and quality of agricultural production.

5.1. Experimental Environment Configuration

The hardware setup used in this study is based on an Intel Core i7-8700K CPU, NVIDIA
GeForce GTX 2080Ti GPU, and 64 GB of memory. The experiments were performed on



Appl. Sci. 2024, 14, 2804 12 of 19

a computer running the Windows 10 Professional operating system. The development
environment is based on Python 3.8, the PyCharm IDE, and the PyTorch 1.13.1 deep
learning framework.

5.2. Loss Function and Evaluation Index

The loss function is used to quantify the deviation between the predicted values
and the ground truth, allowing continuous model optimization towards convergence to
minimize the overall loss and achieve optimal prediction results. In order to effectively
balance the tomato plant and background contributions to the segmentation model loss,
and thereby improve the accuracy of tomato plant segmentation, Dice Loss was used as the
model training loss function, denoted by D. Dice Loss is particularly advantageous for its
ability to address the class imbalance commonly encountered in semantic segmentation
tasks, thereby promoting more accurate segmentation results.

D = 1 −
2

N
∑

i=1
y∗i yi + ε

N
∑

i=1
y∗i +

N
∑

i=1
yi+ε

(12)

In the formula, N represents the total pixel value in the image, y∗i denotes the true
value of the i pixel, yi represents the predicted value of the i pixel, and ε is a parameter
adjustment value used to prevent division by zero, set to 10−5.

During the training process, in addition to calculating the model loss, it is essential
to select appropriate parameters to evaluate the model performance. In this study, IoU,
MIoU, PA, and mPA were chosen as metrics to evaluate the segmentation performance of
the model. The formulas for these specific metrics are as follows [22,23]:

IoU =
TP

TP + FP + FN
(13)

PA =
TP + TN

TP + TN + FP + FN
(14)

MIoU =

n
∑

i=1
(IoUi)

n
(15)

mPA =

n
∑

i=1
(PAi)

n
(16)

where TP represents cases where a sample actually belongs to the positive class and the
model predicts it as such. FN represents cases where a sample actually belongs to the
positive class, but is misclassified as negative by the model. FP denotes samples that
actually belong to the negative class, but are misclassified as positive by the model. TN
denotes samples that actually belong to the negative class and are correctly classified as
negative by the model. n denotes the total number of classes.

5.3. Performance Analysis of Different Semantic Segmentation Models

This study compares and analyzes five popular semantic segmentation models, namely,
VGG16-UNet, Res-UNet, DeepLabv3+, PSPNet, and HRNet, to evaluate their performance
in segmenting tomato plant images, as shown in Table 1. According to Table 1, UNet
models with VGG16 and ResNet architectures outperform others in terms of both MIoU
and mPA. This superiority indicates their effectiveness in segmenting tomato plant images.
Consequently, VGG16-UNet and Res-UNet are selected as the baseline models for further
research and optimization.
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Table 1. Performance analysis of different semantic segmentation models.

Model MIoU mPA

VGG16-UNet 80.31% 88.39%
Res-UNet 75.65% 83.62%

DeepLabv3+ 57.94% 72.05%
PSPNet 51.61% 54.09%
HRNet 63.48% 69.64%

5.4. Evaluation of Multi-Objective Segmentation Accuracy of Tomato Plants

In the comparative experiments, the UNet model served as the baseline, while the
encoder part was replaced by two different feature extraction networks, VGG16 and ResNet,
resulting in the VGG16-UNet and Res-UNet models, respectively. These models were then
trained with the following settings: an initial learning rate of 0.0001, the Adam optimizer
to adjust the learning rate, 200 epochs, and a batch size of 2. This setup allowed for a
comprehensive comparison of the segmentation performance between the different models.

To accelerate the convergence speed of the model training and to improve its general-
ization ability, pretrained weights from the large ImageNet dataset were used in the training
of the tomato plant segmentation model via transfer learning. As shown in Figures 9 and 10,
VGG16-UNet (pretrain) represents the VGG16-UNet model using pretrained weights, while
Res-UNet (pretrain) represents the Res-UNet model using pretrained weights. It should be
noted that both models with pretrained weights show a significantly accelerated conver-
gence speed during training.
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The analysis of Table 2 shows that the VGG16-UNet model outperforms the Res-UNet
model when no pretrained weights are used. Similarly, when pretrained weights are used,
the performance of the VGG16-UNet model exceeds that of the Res-UNet model. Specifi-
cally, with pretrained weights, the VGG16-UNet model shows the highest performance,
achieving an average intersection over union (IoU) and pixel accuracy (PA) of 85.33% and
92.47%, respectively. This represents an improvement of 5.02% and 4.08%, respectively, over
the VGG16-UNet model without pretrained weights. Furthermore, its IoU values for all
segmentation categories (axillary buds, lateral branch, and main branch) are 75.91%, 78.86%,
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and 87.01%, respectively, representing an increase of 10.22%, 6.73%, and 2.92% compared
to the VGG16-UNet model without pretrained weights. Correspondingly, the PA values
for these categories are 87.47%, 89.53%, and 93.15%, representing improvements of 8.88%,
5.55%, and 1.8%, respectively, over the VGG16-UNet model without pretrained weights.
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Table 2. Comparison of the performance of each model.

Model Evaluation
Index

Pretrained
Weights

Axillary
Buds

Lateral
Branch Main Branch Background Mean

VGG16-UNet
IOU

False
65.69% 72.13% 84.09% 99.31% 80.31%

PA 78.59% 83.98% 91.35% 99.65% 88.39%

VGG16-UNet
IOU

True
75.91% 78.86% 87.01% 99.54% 85.33%

PA 87.47% 89.53% 93.15% 99.74% 92.47%

Res-UNet
IOU

False
59.58% 63.82% 80.11% 99.10% 75.65%

PA 70.80% 76.33% 87.73% 99.61% 83.62%

Res-UNet
IOU

True
67.67% 72.23% 83.32% 99.31% 80.63%

PA 80.09% 83.56% 90.11% 99.67% 88.36%

5.5. Comparison between Intelligent Segmentation and Manual Segmentation

To provide a more intuitive comparison of the segmentation performance of the
VGG16-UNet model, the tomato plants in the test set were segmented, and the segmentation
results of six images were selected for visual display, as shown in Figure 11. Overall,
despite the complex and variable growth background, the VGG16-UNet model shows a
high consistency between the multi-objective segmentation results of the tomato plants
and the manually segmented images. Therefore, it is selected as the default model for the
multi-objective segmentation and removal point localization method of tomato plants in
this paper.
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5.6. Evaluation of the Accuracy of Axillary Bud Removal Point Positioning

When the robot end effector performs the pruning task, ensuring the accuracy of
the pruning point is critical. In order to evaluate the accuracy of the pruning points, two
evaluation criteria have been established as follows: Rule 1: The removal point is on the
axillary branch; and Rule 2: The distance from the removal point to the junction of the main
branch and the axillary branch is less than 1 cm, i.e., the stump length is less than 1 cm.
Pruning points that meet both of these criteria are considered to be accurately identified.

To establish a correlation between the actual length of the axillary bud stump and the
pixels in the image, the concept of pixels per inch (PPI) must be considered. Pixel density
refers to the number of pixels per inch of screen, usually expressed in pixels per inch (PPI),
and is calculated using the following formula:

PPI =

√
W2 + H2

S
(17)

where W and H are the resolution width and height of the resolution, and S is the screen
size. The general formula for the actual length corresponding to the pixels in the image is
as follows:

Actual length(CM) =
2.54
PPI

× Pixel value (18)

In order to match the image processing results with the practical requirements of
agricultural operations, a statistical method based on pixel intervals was used, where
every 50 pixels was treated as an interval. The number of pixels within these intervals
and their corresponding actual lengths were statistically analyzed, as shown in Table 3.
From Table 3, it can be seen that within the [0, 150] pixel interval, the actual length of
the armpit is less than 1 cm, thus meeting the criteria for armpit removal. However,
below the interval with the highest pixel value, we used a different partitioning method
to simplify the analysis, as the pixel values in this interval no longer have any practical
agronomic significance for locating armpit removal points. Calculation of the actual length
corresponds to the pixel values according to the above formula. To ensure the results of the
image processing correspondent with the practical requirements of agricultural operations,
a statistical method based on pixel intervals was adopted, where every 50 pixels were
treated as an interval. Statistical analysis was conducted on the number of pixels within
these intervals and their corresponding actual lengths, as shown in Table 3. From Table 3, it
can be observed that within the [0, 150] pixel interval, the actual length of the armpit is less
than 1 cm, satisfying the criteria for armpit removal.



Appl. Sci. 2024, 14, 2804 16 of 19

Table 3. Statistics on the correspondence between pixels and actual lengths.

Pixel Value Actual Axillary Bud Length (cm) Rule 2 Is Met

[0, 50] 0–0.317
True[50, 100] 0.317–0.635

[100, 150] 0.635–0.950

[150–200] 0.950–1.247
False[200–700] 1.247–4.364

From the above calculations, the actual length in each interval can be obtained, and
further evaluation can be made to determine if the agronomic requirements are met. Statis-
tical analysis shows that within the [0, 150] pixel interval, the actual length of the axillary
buds is less than 1 cm, which meets axillary bud removal Rule 2.

To assess the accuracy of the removal point calculation method, 162 images from the
test set were selected for axillary bud identification. Compliance with Rule 1 and Rule 2
was recorded separately and the statistical results are presented in Figures 12 and 13 and
Table 4.
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Table 4. Axillary bud removal point identification results.

Rules Actual Number Eligible Not Eligible Accuracy (%)

Rules 1 701 643 58 91.7
Rules 2 701 653 48 93.2
Overall - - - 85.5

Figure 12 uses a pie chart to statistically analyze whether all detected axillary bud
removal points meet Rule 1, which refers to the number of removal points located on the
axillary buds. According to the statistics in Figure 12, there are a total of 701 axillary bud
objects, of which 643 removal positions are located on the axillary buds. Therefore, the
recognition accuracy of Rule 1 is 91.7%.

Figure 13 shows, by means of a pie chart, whether all the detected axillary bud removal
points meet Rule 2, which states that the stubble length should be less than 1 cm. Based on
the statistics from Figure 13, of the 701 axillary bud objects, 653 have a stubble length of
less than 1 cm. Therefore, the detection rate of Rule 2 is 93.2%.

Table 4 provides a comprehensive evaluation of the detection accuracy for Rule 1 and
Rule 2. In practical applications, accuracy and compliance with agricultural standards
for pruning operations by the robot end effector are only ensured when both rules are
satisfied simultaneously. Based on the integrated assessment of Rule 1 and Rule 2, the
overall accuracy rate for axillary bud removal points is 85.5%.

6. Conclusions

(1) A multi-target tomato plant identification model was developed. By using weights
pretrained on the large ImageNet dataset to train the tomato plant segmentation
model, the convergence speed of the model was accelerated. The model achieved
a mean intersection over union (MIoU) of 85.33% and a mean pixel accuracy (mPA)
of 92.47%, an improvement of 5.02% and 4.08%, respectively, over the VGG16-UNet
model without pretrained weights. In addition, the model achieved intersection-over-
union and pixel accuracies of 75.91%, 78.86%, 87.01%, and 87.47%, 89.53%, 93.15%
for all the segmentation categories (axillary branch, lateral branch, and main branch),
respectively. These results show an improvement of 10.22%, 6.73%, and 2.92% for
MIoU and 8.88%, 5.55%, and 1.8% for mPA compared to the VGG16-UNet model
without pretrained weights, allowing the accurate identification of the main, lateral,
and axillary branch regions of tomato plants.

(2) Implementation of the calculation of axillary bud removal points was achieved. Build-
ing on the multi-objective segmentation of the tomato plants in VGG16-UNet, the
axillary bud region of the tomatoes was identified by HSV color space conversion and
the selection of color threshold ranges. Morphological dilation and erosion operations
were used to remove noise and connect adjacent regions of the same target. The left
and right endpoints and the centroid of the axillary buds were determined using a
feature point extraction algorithm. The left and right positions of the axillary buds
were then determined based on the relationship between the position of the axillary
bud centroid and the position of the main branch. Finally, the axillary bud removal
points were calculated using feature points based on the relationship between the
axillary bud positions and the branch position.

(3) Two criteria were used to determine the accuracy of axillary bud removal points.
By correlating real lengths with pixels in the images, removal points located within
150 pixels of the axillary bud pruning point, near the end of the main branch, were
considered to meet the pruning length requirements. After experiments on 162 test
set images, the accuracy of the axillary bud removal point localization reached 85.5%.

The next plan is to optimize the model for efficient deployment on edge computing
devices. This will involve using network compression techniques or integrating advanced
lightweight network architectures such as MobileNet and DenseNet to reduce the size
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of the model while maintaining detection accuracy. These enhancements are critical for
the practical application of technologies in areas such as intelligent agriculture, and will
contribute to the automation and intelligence of agricultural production, thereby promoting
the development of sustainable agriculture.
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