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Abstract: Medical imaging description and disease diagnosis are vitally important yet time-consuming.
Automated diagnosis report generation (DRG) from medical imaging description can reduce clini-
cians’ workload and improve their routine efficiency. To address this natural language generation
task, fine-tuning a pre-trained large language model (LLM) is cost-effective and indispensable, and its
success has been witnessed in many downstream applications. However, semantic inconsistency of
sentence embeddings has been massively observed from undesirable repetitions or unnaturalness in
text generation. To address the underlying issue of anisotropic distribution of token representation, in
this study, a contrastive learning penalized cross-entropy (CLpCE) objective function is implemented
to enhance the semantic consistency and accuracy of token representation by guiding the fine-tuning
procedure towards a specific task. Furthermore, to improve the diversity of token generation in text
summarization and to prevent sampling from unreliable tail of token distributions, a diversity con-
trastive search (DCS) decoding method is designed for restricting the report generation derived from
a probable candidate set with maintained semantic coherence. Furthermore, a novel metric named
the maximum of token repetition ratio (maxTRR) is proposed to estimate the token diversity and to
help determine the candidate output. Based on the LLM of a generative pre-trained Transformer 2
(GPT-2) of Chinese version, the proposed CLpCE with DCS (CLpCEwDCS) decoding framework is
validated on 30,000 desensitized text samples from the “Medical Imaging Diagnosis Report Gener-
ation” track of 2023 Global Artificial Intelligence Technology Innovation Competition. Using four
kinds of metrics evaluated from n-gram word matching, semantic relevance, and content similarity
as well as the maxTRR metric extensive experiments reveal that the proposed framework effectively
maintains semantic coherence and accuracy (BLEU-1, 0.4937; BLEU-2, 0.4107; BLEU-3, 0.3461; BLEU-4,
0.2933; METEOR, 0.2612; ROUGE, 0.5182; CIDER, 1.4339) and improves text generation diversity
and naturalness (maxTRR, 0.12). The phenomenon of dull or repetitive text generation is common
when fine-tuning pre-trained LLMs for natural language processing applications. This study might
shed some light on relieving this issue by developing comprehensive strategies to enhance semantic
coherence, accuracy and diversity of sentence embeddings.

Keywords: diagnostic report generation; contrastive learning; cross entropy; diversity contrastive
search; large language model

1. Introduction

Text summarization aims to compress a long text document into a short and human-
readable form with the most important information of the source document [1]. There
are two broad kinds of approaches, extractive and abstractive. The extractive approaches
generate summaries through retrieving the most relevant and important phrases or sen-
tences from the original text, while the abstractive approaches delve into the meaning
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and semantics and utilizes natural language generation techniques to create a new and
comprehensive text summary [2].

As a specific application of text summarization, diagnosis report generation (DRG)
aims to make summaries and generate diagnostic reports according to the text description
of medical imaging findings. It is part of the medical report generation [3] task which
concentrates on using deep learning networks for generating diagnosis reports in terms of
the medical image input. Clinically, medical imaging description and disease diagnosis are
predominant in radiologists’ daily works. These works are vitally important yet tedious
and time-consuming. Accurate DRG from medical imaging description in an automated
manner can decrease clinicians’ workload dramatically, subsequently improving their
routine efficiency. However, medical imaging diagnostic reports involve specific field
vocabulary, complex organization structure and detailed visual description [4]. Due to the
professionalism in disease diagnosis, treatment planning and therapeutic delivery, higher
demands are required for the DRG quality, including precise comprehension of medical
terminology, content understanding and reasoning capabilities, coherent diagnosis and
ambiguity avoidance.

Abstractive approaches for high-quality DRG have been developed. Traditional meth-
ods mainly rely on statistics and shallow learning, such as using maximum entropy models
to predict words or constructing feature engineering and classifiers to generate key sen-
tences. These methods might be unable to handle large-scale text document inputs [5].
On the other hand, significant progress has been made in the field of natural language
processing (NLP) by using deep learning networks [6], such as recurrent neural networks
(RNNs) [7] and long short-term memory (LSTM) networks [8]. One milestone comes from
the attention mechanisms of Transformers [9] that build encoder–decoder-based sequence-
to-sequence models, and essential messages in the input text are concentrated on. Later,
as a cost-effective approach, a great deal of attention has been paid to pre-trained large
language models (LLMs), such as bidirectional encoder representations from Transformers
(BERT) [10] and generative pre-trained Transformer (GPT) [11]. Through pre-training on
large-scale corpora, LLMs can effectively improve the performance in massive downstream
tasks, including but not limited to clinical notes summarization [12], biomedical natural lan-
guage tasks [13] and text-to-image generation [14], and LLMs outperform medical experts
in clinical text summarization [15] that could help clinicians to focus more on patient care.

Unfortunately, when transferring a pre-trained LLM to a specific application, semantic
inconsistency of sentence embeddings has been massively witnessed from dull repetitions
and undesirable text generation. It might be derived from the inconsistent representation
of sentence embeddings, anisotropic distributions of token generation, and a narrow subset
of the entire representation space [16–18]. When the distance between different tokens in a
representation space is close, these tokens have high cosine similarity. A showcase reveals
that cosine similarities between tokens within a sentence could be larger than 0.95, and
therefore, duplicate tokens will be unavoidably generated at different stages [19].

To solve or to relieve this degradation problem, massive attempts have been made.
One feasible way is mapping the generated sentence vectors into an isotropic and uniform
distribution space. For instance, BERT-flow [20] turns the sentence representations from
BERT encoder into a smooth and isotropic Gaussian distribution space using a reversible
flow transformation. It achieves significant improvement on several semantic textural simi-
larity tasks. Wang and his colleagues [21] design a dual-stream attention mechanism and
use a positional residual strategy to improve the robustness of extractive summarization.
A summary method based on two-layer Transformer in [22] employs BART (bidirectional
and autoregressive Transformer) [23] and T5 (text-to-text transfer converter) [24] to ensure
the summary coherence. Another promising way is from contrastive learning (CL). Tradi-
tional text augmentation is used to construct positive and negative sample pairs from the
augmented sentence set. Its training objective becomes making the embeddings of positive
sample pairs closer and the distance of negative pairs farther. Debiased CL [25] is this kind
of approach that samples appropriate same-label data points, since negative pairs sampled
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from different labels or classes improve performance [26], achieving consistent improve-
ment on language, vision and reinforcement learning benchmarks. The contrastive learning
for sentence representation (CLEAR) method [27] employs multiple sentence-level augmen-
tation strategies, and during pre-training, different sentence augmentation strategies result
in improvement on specific tasks. Token-aware CL (TaCL) [18] is a continual pre-training
approach that is fully unsupervised and requires no additional samples. It embraces a
teacher model and a student model, and both are initialized with the same pre-trained
BERT. The objective function contains a masked language modeling term, a next sentence
prediction term and a token-aware contrastive learning term for learning an isotropic and
discriminative distribution of token representations. For reducing the impact of summary
false negatives and effectively maintaining spatial consistency, a metric score is employed
to dynamically penalize positive and negative samples during model training [28]. In
extractive multi-document summarization, a contrastive hierarchical discourse graph is
designed to capture complex discourse relationships and global topic coherence, and it
shows excellent performance [29]. In any case, compared to greedy search (GS) [30] and
nucleus search (NS) [31] decoding methods, some other decoding methods seem more
promising to relieve this anisotropy problem [32]. For instance, a contrastive search (CS)
decoding method injects CL into the text decoding stage, and its performance is verified to
be better than traditional decoding methods [19]. On open-ended text generation, an empir-
ical study [33] of CS and contrastive decoding indicates that CS substantially outperforms
contrastive decoding in terms of the diversity and coherence metrics. The fidelity-enriched
contrastive search (FECS) method [34] augments the CS framework with context-aware
regularization terms, and in both abstractive summarization and dialogue generation tasks,
it has been confirmed to improve semantic coherence among tokens, mitigate repetition,
and strengthen fidelity to the provided source labels in the generated output. To reduce
the number of repeated tokens in text generation when using encoder–decoder models, a
repetition reduction module (RRM) [35] is proposed to supervise the training procedure by
capturing the consistency of a sentence sample between the encoding and decoding sides.

In this study, a contrastive learning penalized cross-entropy with diversity contrastive
search (CLpCEwDCS) decoding framework is proposed. To improve the consistency of
sentence embeddings and to relieve the anisotropy issue, CL is integrated into the fine-
tuning stage and a novel objective function is formed as contrastive learning penalized cross-
entropy (CLpCE). Moreover, in the decoding stage, a diversity contrastive search (DCS)
decoding method is designed to balance the diversity and quality of report generation.
For mitigating degenerative behaviors, the core idea of the DCS decoding method is
different from the FECS method [34]. FECS promotes the diversity by augmenting a
faithfulness reward term into the CS framework, while DCS determines the outcome via
the estimation of the maximum token repetition ratio (maxTRR) of candidate outputs.
Specifically, the proposed metric maxTRR estimates the token repetitions in the token
space before the text generation, while the measure of word-, phrase-, and the sentence-
level consecutive repetitions [36] or the subsentence-level consecutive repetition [35] is for
performance evaluation after the text generation. Overall, the contributions of this study
can be summarized as follows:

1. An objective function CLpCE is designed for balancing both unsupervised and super-
vised learning in the model fine-tuning stage to enhance the consistency of feature
representation of sentence embeddings.

2. A novel decoding method DCS is developed to improve the representation diversity
and to relieve anisotropic distributions of token generation with maintained quality
of text summarization.

3. A supplementary metric named the maximum of token repetition ratio (maxTRR) is
implemented which estimates the token repetition and determines the outcome of
text generation.

4. The effectiveness of the proposed CLpCEwDSC decoding framework is verified, and
competitive performance and better diversity are observed on the DRG task.
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The remainder of this paper is organized as follows: Section 2 presents the relevant
techniques of GPT-2 and contrastive learning of sentence embeddings. The data collection,
the proposed framework, experiment design, implementation details and parameter set-
tings are shown in Section 3. We then report the DRG accuracy and diversity and the effect
of the diversity control in Section 4. After that, we discuss the results and some limitations
of this work in Section 5, and conclude this work and future directions in Section 6.

2. Related Techniques

This section introduces related techniques and computing theories, including GPT-2
decoder block, contrastive learning of sentence embeddings in semantic representation,
and contrastive search decoding.

2.1. GPT-2 Decoder Block

Figure 1 shows the diagram structure of Transformer decoder block and GPT-2 decoder
block. In comparison to the Transformer decoder block, GPT-2 decoder block is simplified
without multi-head self-attention module.

Figure 1. The structure of Transformer and GPT-2 decoder blocks.

GPT-2 is a large model trained in an unsupervised manner. For an unlabeled text
sequence t⃗ = {t1, · · ·, ti, · · ·, tn}, it is trained by maximizing the likelihood function as below,

LPT (⃗t) = ∑
i

log{P(ti|ti−k, ti−k+1, · · ·, ti−1; Θ)}, (1)

where PT stands for “pre-training”, Θ denotes model parameters, and k historical tokens
{ti−k, ti−k+1, · · ·, ti−1} are used to predict the current token ti.

In the fine-tuning stage for a specific task, labeled samples are used for supervised
learning. For an input sequence set {(⃗tj, yj)} with t⃗j = {tj

1, · · ·, tj
i , · · ·, tj

n} and label yj, the
fine-tuning of GPT-2 is by optimizing the loss function as

LFT (⃗t, y) = ∑
(⃗t,y)

log{P(y|⃗t)}

= ∑
(⃗t,y)

log{so f tmax(h[L]n · WY)}
(2)
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in which FT stands for “fine-tuning”, h[L]n denotes the hidden state output of the last token
in the t⃗ sequence from the last layer of the GPT-2 decoder block. WY ∈ Rd×l is the weight
matrix of the fully connected layer, where d is the embedding dimension and l is the
number of labels.

The GPT-2 embraces large and diverse multi-domain data for model pre-training, and
the parameters are shared across different tasks, both enhancing the generalization capacity
on specific downstream applications.

2.2. Contrastive Learning of Sentence Embeddings

Contrastive learning of sentence embeddings can improve semantic representation by
minimizing the distance between similar samples and maximizing the distance between
dissimilar samples [37]. For a small batch of sentence pairs D = {(xi, x+i )}, where x+i is the
positive sample of xi and they are semantically related sentence pairs, the training objective
function of (xi, x+i ) is

Li = − log
ecos(hi ,h

+
i )/τ

∑ ecos(hi ,h
+
i )/τ

cos(hi, h+i ) =
hT

i · h+i
∥hi∥ · ∥h+i ∥

(3)

where τ is the temperature coefficient, (hi, h+i ) is the sentence vector representation of
(xi, x+i ) obtained through pre-trained models h = fΘ(x⃗), and cos(hi, h+i ) calculates cosine
similarity between (hi, h+i ).

Simple contrastive learning of sentence embeddings (SimCSE) [38] is an efficient
framework. Its core principle can be described as follows. For a small batch of sentence
{xi}N

i=1, x+i is set equal to xi, and then, independently sampled dropout masks are used on
(xi, x+i ) to obtain forward sentence pairs. In general, Transformers set dropout after the
feed-forward layer and attention layer. Thus, hm

i = fΘ(xi, m), and m is a random mask of
dropout. By utilizing the random mask property of dropout, the same input is fed into the
encoder twice to obtain two different dropout masks {m, m+}.

In SimCSE [38], the embeddings of the forward sentence pairs and the training objec-
tive function can be expressed as

hmi
i = fθ(xi, mi)

h
m+

i
i = fθ(x+i , m+

i )

Li = − log
ecos(h

mi
i ,h

m+
i

i )/τ

∑ ecos(h
mi
i ,h

m+
i

i )/τ

(4)

in which m is from the built-in dropout of Transformer. It should be noted that no dropout
structures is added in our model, and the random noise brought by dropout can be viewed
as a form of data augmentation.

In the CL field, compared to traditional text augmentation methods, using the built-
in dropout mask in pre-trained models leads to simpler implementation, higher-quality
sentence embeddings and better performance on numerous unsupervised and supervised
downstream tasks [38].

2.3. Contrastive Search Decoding

In order to ensure the generated output semantically coherent with these generated
prefix texts, the key idea of CS decoding is to find out the most likely candidate set and to
guarantee the output with sufficient discriminative capacity. Given the previous generated
text x<t, the choice of generating xt at time t should satisfy
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x∗t = arg max
v∈V(k)

{(1 − α)× pθ(v|x<t)

− α × (max{cos(hv, hxj) : 1 ≤ j ≤ t − 1})}
(5)

in which V(k) denotes the prediction set of the probability distribution space pΘ(·|x<t),
pΘ(v|x<t) stands for the model confidence that presents the probability of the candidate
v, and max{cos(hv, hxj) : 1 ≤ j ≤ t − 1} is the degradation penalty which measures the
similarity of the candidate v and all tokens in the text set x<t.

A larger degradation penalty means candidate v is more similar to the previous text
x<t, and thus, it is more likely to represent the previous content. The parameter α ∈ [0, 1]
is used to adjust the importance between the components. When α = 0, CS decoding
degenerates into GS decoding.

3. Materials and Methods

This section presents the data collection and outlines the proposed framework. Subse-
quently, the experiment design, evaluation metrics, implementation details, and parameter
settings are described for performance comparison.

3.1. Data Collection

The dataset comes from the “Medical Imaging Diagnosis Report Generation” track
of a nationwide open competition “2023 Global Artificial Intelligence Technology Inno-
vation Competition” (https://gaiic.caai.cn/ai2023/, accessed on 19 March 2024) hosted
by the Chinese Association for Artificial Intelligence. It is the newest and highest-quality
dataset with the purpose of generating medical diagnosis reports according to medical
image descriptions.

The dataset consists of 30,000 plain-text data samples, including descriptions of patient
scans and corresponding diagnostic reports in Chinese. For instance, a text sample shows
“Image Description” as “There is a local bone defect in the left parietal bone. There are
small areas of decreased density adjacent to the lateral ventricles on both sides. An arc-
shaped cerebrospinal fluid density shadow is observed below the right frontal skull. The
ventricular system is enlarged, and the sulci, fissures, and cisterns of the brain are widened.
There is no displacement of the midline structures. Poor pneumatization is observed in
both mastoids, with increased density inside.” and its “Diagnosis Report” is as “There
is a local defect in the left parietal bone, which may require surgical intervention. There
are also scattered ischemic lesions in the brain. Additionally, there is a small amount of
subdural effusion in the right frontal region, and the patient has bilateral mastoiditis.”.

To avoid issues such as privacy leakage, the dataset provided for the competition
is desensitized on a character-by-character basis. Thus, the aforementioned text sample
becomes “Image Description” of the desensitized data “(14 108 28 30 15 13 294 29 20 18 23
21 25 32 16 14 39 27 14 47 46 69 70 11 24 42 26 37 61 24 10 79 46 62 19 13 31 95 19 28 20 18 10
22 12 38 41 17 23 21 36 53 25 10)” and “Diagnosis Report” of the desensitized data “(22 12
38 41 17 81 10)”.

3.2. The Proposed CLpCEwDCS Decoding Framework

This sub-section gives the reasons for backbone network selection and then elaborates
on the formulation of the CLpCE objective function and the DCS decoding procedure.
During DCS decoding, we construct a set of candidate token sequence outputs and select
the final outcome through the comparison of the maxTRR values.

3.2.1. The Backbone Network Selection

In this study, GPT-2 Chinese version [39] is used as the backbone network for further
fine-tuning the DRG task. The reasons for using the GPT-2 model are manifold. Above
all, this model holds promise in validating the effectiveness of the proposed framework,
encompassing both the objective function and the DCS decoding method for the DRG
task, all while accommodating our limited computing resources. Secondly, compared

https://gaiic.caai.cn/ai2023/
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to some other accessible models [23,40], GPT-2 was released earlier, and its pre-trained
model is readily available and user-friendly. It should be noted that some other advanced
models, such as GPT-4 [41], are powerful, while these models are not open-sourced, and
using GPT-4 turbo token limit entails considerable expenses. Based on BERT tokenizer,
the GPT-2 model can be re-trained for general language models and also support large
training corpus. The pretrained model was downloaded from github (https://github.com/
Morizeyao/GPT2-Chinese, accessed on 19 March 2024).

3.2.2. The CLpCE Objective Function

As an objective function, CE is widely used in the optimization procedure of text
generation. For a text input x containing m sentences with length n, assuming the corre-
sponding distribution is y and the predicted distribution is ŷ, the CE loss is calculated as in
Equation (6).

LCE =
1

mn

n

∑
i=1

m

∑
j=1

{−yi,j × log(ŷi,j)

− (1 − yi,j)× log(1 − ŷi,j)}
(6)

As to the same input as in Equation (6), the objective function of CL of text x can be
calculated as in Equation (7), and notably, the parameters are defined the same as those in
Equation (4).

LCL = −
n

∑
i=1

log(
ecos(hi ,h

+
i )/τ

∑N
j=1 ecos(hi ,h

+
i )/τ

) (7)

Inspired by CL [37] and SimCSE [38], CLpCE is designed for guiding the fine-tuning
process of GPT-2. The optimization goal of CLpCE can be defined as in Equation (8), where
parameter β ∈ [0, 1] is used to adjust the proportion of the loss functions. It should be
mentioned that when β = 0 and β = 1, the objective function CLpCE degenerates into CE
and CL, respectively.

LCLpCE = (1 − β)× LCE + β × LCL (8)

Figure 2 shows the model fine-tuning procedure. It consists of CE-based supervised
learning and CL-based unsupervised learning parts, both of which are weighted by β in
the CLpCE objective function.

Figure 2. The CLpCE-based model fine-tuning procedure. LCE guides the supervised learning and
LCL directs the unsupervised learning, both parts contributing to the fine-tuning of pre-trained LLMs
for accurate feature representation towards a specific task.

3.2.3. The DCS Decoding

Essentially, CS is a GS decoding method with an additional degradation penalty term.
When handling long texts, GS is prone to getting stuck in local optimal and generating
duplicate tokens [32]. To overcome this anisotropy problem, a penalty term is added. It
measures the similarity between the current candidate token and the previous tokens.

https://github.com/Morizeyao/GPT2-Chinese
https://github.com/Morizeyao/GPT2-Chinese
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However, CS considers only the word with the highest probability at the current time, and
the generated text lacks diversity.

The DCS decoding enriches the diversity, and meanwhile, it ensures the probability
difference to the best token acceptable. Given the previously generated text x<t, the output
of xt at time t via DCS can be described as the token generation,

xl
t = {(1 − ψ)× pθ(v|x<t)

− ψ × (max{cos(hv, hxj) : 1 ≤ j ≤ t − 1})}.
(9)

To enhance the text generation diversity, DCS decoding is designed which uses tokens
with the highest probabilities to form a candidate set. Firstly, the token x∗t with the highest
probability (pmax = px∗t ) at the current time is added into the candidate set. Then, the
probabilities (p) of the remaining tokens are compared to the highest probability. If the
difference of the probabilities between tokens is less than threshold ρ, the token is added to
the candidate set as well (Equation (10)).

xm
t ∈ {(pmax − pxm

t
) ≤ ρ × pmax} (10)

After that, selection of the candidate tokens will yield different outputs of token
sequences as {seql}k

l=1 and seql = {x<t, xl
t} for text generation. In the end, among the

generated outputs of token sequences ({seql}k
l=1), the final outcome is determined by the

maxTRR values as
out = min{maxTRR(seql)}k

l=1. (11)

In Equations (9)–(11), “max” and “min” denote the operation of maximization and
minimization, respectively. Since the parameter ρ dictates the quality of token generation,
its value should be carefully defined. The metric maxTRR is defined in Equation (12), and
it quantifies the token diversity in a candidate output of text summarization. In any case,
when the token with pmax is selected, DCS is degenerated into the CS decoding strategy.

3.3. Experiment Design

Extensive experiments are conducted to validate the effectiveness of the proposed
CLpCEwDCS decoding framework. In each experiment, the dataset is shuffled and ran-
domly divided into a training set and a testing set with an 8:2 ratio for model building
and validation.

Specifically, the effectiveness of the objective function CLpCE is validated with differ-
ent β values ({0.0, 0.1, · · ·, 0.9, 1.0}), and different methods of DCS (ours), CS [38], GS [30],
NS [31] and top-k search (TkS) [42] are used for decoding. The general trend and evaluation
metric values are presented.

In addition, the diversity of the DCS decoding method is explored by using different
control threshold ρ values. The generation accuracy, token candidate diversity, and visual
perception of the output examples are illustrated.

3.4. Evaluation Metrics

Four kinds of evaluation metrics are used to quantify the text generation quality from
various perspectives. The first metric is bilingual evaluation understudy (BLEU) [43],
which is commonly used in machine translation evaluation. It measures the word overlap
between generated and reference translations based on n-gram matching and fragment
accuracy evaluation. This study involves BLEU-1, BLEU-2, BLEU-3, and BLEU-4, and
higher scores indicate better text matching.

The second one is the evaluation of translation with explicit ordering (METEOR) [44].
It obtains the final score by exact word matching and semantic similarity at the word level
via weighted fusion. A higher value reveals better word matching and semantic similarity.
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The third one is recall-oriented understudy for gisting evaluation (ROUGE) [45]. It cal-
culates the score based on the length of the longest common subsequence. A higher metric
score denotes the generated summary more similar in content to the reference summary.

The fourth one is consensus-based image description evaluation (CIDER) [46]. It
considers many factors such as consistency, semantic relevance and n-gram similarity
comprehensively. A higher score shows better consistency and greater semantic similarity
between the generated description and the reference description.

Besides, a supplementary metric (maxTRR) is implemented in this study for evaluating
the token diversity. It is defined as the maximum repetition ratio of the tokens, and a lower
value indicates higher representation diversity in text generation. Assuming s tokens are
generated in a candidate output (seql), the jth token Tj appears tTj times, and the maxTRR
can be formulated as

maxTRR(seql) =
max{(tTj)}s

j=1

∑s
j=1(tTj)

, (12)

in which the denominator represents the total number of all s tokens, and the numerator is
the maximum number of times a token appears.

3.5. Implementation Details and Parameter Settings

The algorithms are implemented with python (version 3.10), pytorch (version 2.0.0 + cu118)
and Transformers (version 4.28.1). The codes are deployed on a 64bit Win10 system (Intel(R)
Core(TM) i9-12900K, 3.2 GHZ, and 128 GB RAM) with a 24GB GPU card (NVIDIA GeForce
RTX 3080). The codes are available online (https://github.com/NicoYuCN/nlpMIDRG,
accessed on 19 March 2024).

During model fine-tuning, the parameters of batch size (32), learning rate (0.0005),
iteration number (10 epochs), maximum length of input text (230), maximum length of
generated text (80) and optimizer (AdamW [47]) are defined, and the other parameters are
set with default values.

For the decoding methods, the weighting parameter of CS is α = 0.70 as suggested
in [19], k = 5 is set for TkS, the probability threshold ρ = 0.71 is for NS, and the other
parameters are set with default values.

4. Results

This section reports the DRG accuracy and diversity achieved through various de-
coding methods. It also includes ablation studies examining the impact of parameter β
in the CLpCE objective function (Equation (8)) on DRG accuracy and parameter ρ in the
DCS decoding (Equation (10)) on diversity control. In any case, achievement of the first-tier
teams on the competition is summarized.

4.1. DRG Accuracy

Table 1 presents the text summarization accuracy. To each DRG model, the highest
value of each metric is in boldface. It suggests that the optimal value of β in CLpCE is 0.60
regardless of decoding methods. On the other hand, no obvious difference is found among
the highest metric values from DCS and CS decoding methods, and GS decoding achieves
generally higher GOUGE and CIDER values.

Table 1 indicates the superiority of the objective function CLpCE over CE or CL.
When using DCS for decoding, CLpCE improves the report generation performance with
≈ 0.03 increases on BLEU and METEOR, 0.015 on ROUGE and 0.09 on CIDER metrics
when β = 0.6. This phenomenon can also be found when using other decoding methods.

Figure 3 shows the general trend of DRG accuracy when using different weighting
values (β ∈ {0.0, · · ·, 1.0}) and decoding methods (DCS, CS, GS, NS, and TkS). From the
perspective of β values, compared to β = 0.0, the other β values lead to a slight increase
(≤ 0.03) on metric values, except for β = 1.0. From the perspective of decoding methods,
TkS and NS cause inferior results, and CIDER values are less than 1.10 and 1.35, respectively.

https://github.com/NicoYuCN/nlpMIDRG
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The other decoding methods obtain slightly better performance, and the CIDER value from
GS decoding is correspondingly higher.

Figure 3. The effect of different β values and decoding methods on DRG text summarization. In
the plot, the horizontal axis denotes the β values in the CLpCE objective function, and the vertical
axis presents the values of evaluation metrics. Specifically, combinations of different types of lines,
markers and colors are used for identifying different metric values of a DRG model (BLEU-1, solid
black line with ⋆; BLEU-2, dashed black line with ◦; BLEU-3, dotted black line with ♢; BLEU-4,
dash-dotted black line with □; METEOR, dashed red line with ▷; ROUGE, dashed green line with △;
and CIDER, dashed blue line with ▽).

Table 1. Evaluation of CLpCE guided DRG models by using different decoding methods. The
values highlighted in bold represent the highest scores for each metric, while the β value underlined
indicates the objective function.

β
BLEU

METEOR ROUGE CIDER
BLEU-1 BLEU-2 BLEU-3 BLEU-4

DCS

0.0 (CE) 0.4638 0.3838 0.3223 0.2724 0.2487 0.5057 1.3607
0.1 0.4870 0.4049 0.3414 0.2893 0.2585 0.5170 1.4179
0.2 0.4864 0.4047 0.3414 0.2893 0.2586 0.5186 1.4118
0.3 0.4794 0.3987 0.3363 0.2853 0.2561 0.5154 1.4162
0.4 0.4784 0.3979 0.3358 0.2851 0.2560 0.5179 1.4391
0.5 0.4805 0.3997 0.3372 0.2860 0.2564 0.5154 1.4147
0.6 (CLpCE) 0.4937 0.4107 0.3461 0.2933 0.2612 0.5182 1.4339
0.7 0.4855 0.4040 0.3409 0.2894 0.2586 0.5199 1.4459
0.8 0.4854 0.4033 0.3400 0.2884 0.2582 0.5195 1.4533
0.9 0.4780 0.3968 0.3342 0.2834 0.2549 0.5147 1.4132
1.0 (CL) 0.0232 0.0013 0.0002 0.0000 0.0264 0.0284 0.0002
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Table 1. Cont.

β
BLEU

METEOR ROUGE CIDER
BLEU-1 BLEU-2 BLEU-3 BLEU-4

CS

0.0 (CE) 0.4645 0.3843 0.3227 0.2727 0.2491 0.5059 1.3611
0.1 0.4858 0.4039 0.3406 0.2887 0.2579 0.5166 1.4196
0.2 0.4866 0.4045 0.3410 0.2890 0.2585 0.5178 1.4125
0.3 0.4793 0.3987 0.3364 0.2856 0.2562 0.5159 1.4101
0.4 0.4767 0.3965 0.3346 0.2841 0.2552 0.5169 1.4255
0.5 0.4810 0.4003 0.3378 0.2867 0.2568 0.5162 1.4240
0.6 (CLpCE) 0.4939 0.4112 0.3470 0.2943 0.2616 0.5198 1.4477
0.7 0.4856 0.4042 0.3410 0.2894 0.2587 0.5196 1.4395
0.8 0.4864 0.4043 0.3408 0.2892 0.2586 0.5198 1.4525
0.9 0.4798 0.3984 0.3355 0.2845 0.2558 0.5156 1.4208
1.0 (CL) 0.0233 0.0012 0.0000 0.0000 0.0266 0.0286 0.0002

GS

0.0 (CE) 0.4681 0.3887 0.3274 0.2773 0.2489 0.5095 1.4090
0.1 0.4846 0.4036 0.3410 0.2898 0.2580 0.5210 1.4567
0.2 0.4881 0.4063 0.3431 0.2914 0.2592 0.5231 1.4684
0.3 0.4796 0.3999 0.3381 0.2875 0.2568 0.5199 1.4477
0.4 0.4809 0.4002 0.3376 0.2865 0.2567 0.5214 1.4542
0.5 0.4834 0.4034 0.3413 0.2904 0.2580 0.5213 1.4682
0.6 (CLpCE) 0.4901 0.4088 0.3458 0.2941 0.2611 0.5246 1.4861
0.7 0.4894 0.4077 0.3443 0.2925 0.2602 0.5247 1.4835
0.8 0.4865 0.4053 0.3424 0.2910 0.2591 0.5244 1.4864
0.9 0.4812 0.3998 0.3370 0.2860 0.2559 0.5186 1.4583
1.0 (CL) 0.0122 0.0009 0.0000 0.0000 0.0126 0.0169 0.0000

NS

0.0 (CE) 0.4654 0.3790 0.3136 0.2616 0.2422 0.4859 1.2368
0.1 0.4765 0.3907 0.3254 0.2728 0.2492 0.4996 1.3073
0.2 0.4800 0.3944 0.3290 0.2763 0.2511 0.5017 1.2831
0.3 0.4775 0.3925 0.3278 0.2757 0.2501 0.5009 1.3221
0.4 0.4793 0.3939 0.3285 0.2759 0.2504 0.5010 1.3049
0.5 0.4798 0.3944 0.3292 0.2766 0.2512 0.5017 1.3014
0.6 (CLpCE) 0.4858 0.3991 0.3326 0.2789 0.2535 0.5044 1.3143
0.7 0.4799 0.3942 0.3288 0.2758 0.2511 0.5033 1.3322
0.8 0.4803 0.3942 0.3286 0.2758 0.2511 0.5029 1.3259
0.9 0.4737 0.3878 0.3226 0.2703 0.2473 0.4961 1.2776
1.0 (CL) 0.0184 0.0007 0.0000 0.0000 0.0216 0.0226 0.0003

TkS

0.0 (CE) 0.4499 0.3554 0.2852 0.2304 0.2283 0.4542 0.9854
0.1 0.4627 0.3686 0.2986 0.2436 0.2360 0.4701 1.0701
0.2 0.4664 0.3712 0.3004 0.2447 0.2371 0.4718 1.0741
0.3 0.4582 0.3651 0.2956 0.2410 0.2342 0.4681 1.0553
0.4 0.4638 0.3695 0.2988 0.2434 0.2361 0.4710 1.0584
0.5 0.4624 0.3687 0.2987 0.2437 0.2359 0.4700 1.0584
0.6 (CLpCE) 0.4730 0.3775 0.3059 0.2496 0.2402 0.4715 1.0676
0.7 0.4654 0.3713 0.3008 0.2449 0.2376 0.4712 1.0555
0.8 0.4702 0.3745 0.3032 0.2470 0.2389 0.4743 1.0807
0.9 0.4613 0.3672 0.2969 0.2421 0.2352 0.4689 1.0557
1.0 (CL) 0.0206 0.0016 0.0000 0.0000 0.0225 0.0266 0.0002

4.2. DRG Diversity

Table 2 shows the representation diversity of text summarization using the CLpCE
objective function (β = 0.6). It reveals that the proposed DCS decoding method achieves
the lowest maxTRR value (0.12 ± 0.09), followed by CS and GS decoding methods. On the
other hand, the maxTRR values of all the decoding methods indicates that more than 6 out
of 50 generated tokens are the same, which cause unnaturalness or undesirable repetitions
in text generation.

Table 2. Representation diversity of text summarization.

DCS CS GS NS TkS

maxTRR 0.12 ± 0.09 0.22 ± 0.13 0.24 ± 0.15 0.27 ± 0.13 0.29 ± 0.16
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To enhance the understanding of DRG diversity, two cases with CS and DCS decoding
are shown in Table 3 for perception. The token with the maximum repeating times is
underlined, and the maxTRR is shown at the end of the output (CS) or the candidate output
(DCS). Case A is a relatively short desensitized data input, and text summarization seems
good because of low token repetition ratio. CS decoding generates 11 tokens, and no tokens
are the same. DCS decoding yields four candidates, while the fourth candidate has three
identical tokens out of the twelve tokens (maxTRR, 25%). Case B is much longer. The CS
decoding method yields seven tokens, and a token (“190”) appears four times, and thus,
maxTRR = 4/7. On the other hand, all four candidates from the DCS decoding method
show much lower repetition token ratios, and the third and fourth output contains up to 30
tokens. Therefore, DCS decoding could provide more choices of text summarization output
to balance both DRG accuracy and representation diversity for improved naturalness of
diagnositic report generation.

Table 3. Perception of DRG text summarization for diversity analysis. The token underlined shows
the token with the maxTRR value.

Desensitized Data Description

case A input 14 108 30 13 20 18 23 21 10 14 32 16 39 27 47 51 31 29 20 18 10 24 42 26 37 61 24 10 40
13 45 163 45 39 159 49 50 204 37 21 157 155 10

CS output 150 50 107 104 113 110 15 13 31 29 20 (maxTRR, 1/11)
DCS output (1) 150 50 107 66 17 81 76 33 81 10 (maxTRR, 1/10)

(2) 150 50 107 80 33 17 13 31 81 60 49 29 (maxTRR, 1/12)
(3) 150 50 107 80 33 17 81 76 33 31 81 60 49 29 (maxTRR, 1/14)
(4) 150 50 65 107 29 113 15 29 20 60 49 29 (maxTRR, 3/12)

case B input

83 12 38 41 17 1074 96 17 552 48 17 27 131 17 89 65 69 70 11 149 58 51 36 82 11 34 38 41
17 40 153 44 23 21 25 11 263 256 567 28 59 11 199 54 894 141 126 231 11 45 83 207 281
240 353 300 212 491 302 237 297 300 212 11 113 110 104 259 207 281 315 286 258 280 11
22 12 96 16 35 12 38 41 17 178 58 36 82 10 22 279 33 91 72 78 11 33 24 122 61 24 10 22 12
62 33 628 51 171 82 11 33 686 170 1119 11 22 12 119 17 143 175 105 744 26 37 72 78 11
22 12 38 41 17 210 143 170 179 10

CS output 190 57 190 190 190 79 10 (maxTRR, 4/7)
DCS output (1) 49 75 100 344 282 11 57 49 77 75 100 57 92 10 (maxTRR, 2/14)

(2) 49 75 100 344 282 49 57 49 77 75 100 57 92 10 (maxTRR, 3/14)
(3) 49 369 142 49 180 372 11 369 372 11 180 372 11 440 439 139 420 11 117 175 13 29 440
439 11 202 191 200 487 365 175 98 10 (maxTRR, 2/33)
(4) 49 369 142 49 180 372 11 369 372 11 180 372 11 440 439 139 420 11 117 487 384 440
439 11 202 191 175 98 278 10 (maxTRR, 2/30)

4.3. The Effect of the Diversity Control

Table 4 shows the effect of the control threshold ρ on the diverse text generation. Given
the CLpCEwDCS decoding framework (β = 0.60), it is found that the evaluation metric
values have no obvious difference when the ρ value increases, which indicates that the DCS
decoding maintains the token generation quality along with ρ increase.

Table 4. DRG accuracy of DCS decoding by using different control threshold values.

ρ
BLEU

METEOR ROUGE CIDER
BLEU-1 BLEU-2 BLEU-3 BLEU-4

0.00 0.4939 0.4112 0.3470 0.2943 0.2616 0.5198 1.4477
0.01 0.4939 0.4111 0.3470 0.2942 0.2612 0.5190 1.4459
0.05 0.4939 0.4113 0.3466 0.2940 0.2613 0.5188 1.4445
0.10 0.4937 0.4107 0.3461 0.2933 0.2612 0.5182 1.4339

Figure 4 shows the average candidate numbers in fifty experiments. The dotted red
line with ♢ shows ρ = 0.01, and the dashed blue line with ◦ indicates ρ = 0.10. It is
found that more candidate outputs of text summarization are generated when the control
threshold ρ values increase. When ρ = 0.10, the number of candidate outputs might be
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larger than 1.4 that is potential to maintain text generation coherence and decrease token
repetition ratio in DRG text summarization.

Figure 4. The effect of control threshold ρ on the text generation diversity (ρ = 0.01, dotted red line
with ♢; ρ = 0.10, dashed blue line with ◦).

4.4. Achievement of the First-Tier Teams on the Competition

According to the report of the “Medical Imaging Diagnosis Report Generation” compe-
tition, achieved results from the first-tier teams are shown in Table 5. All the teams explore
the tricks of exponential moving average of weights, fast gradient method and regularized
dropout [48] for improved robustness and accuracy. Team B, C and D additionally use
stochastic weight averaging [49] and label smoothing [50], and team E further integrates
extract loss and sentence shuffle in the fine-tuning stage.

Table 5. Current achievement of the first-tier teams on the competition.

Team Main Procedure in Diagnosis Report Generation Score

A CPT-base + noise-aware similarity bucketing + fine-tuning 2.327
B BART-large + GBPQ + fine-tuning 2.297
C (CPT-base + BART-base) + RAG + fine-tuning 2.285
D BART-large + fine-tuning 2.272
E BART-large + fine-tuning 2.263
F BART-large + fine-tuning 2.249

ours GPT2-Chinese + fine-tuning + CLpCEwDCS decoding 2.135

Based on the metric scores provided by the competition track, minor differences are
observable among the results of the first-tier participants (Table 5). It is found that the
teams focus on BART [23] and/or Chinese Pre-trained unbalanced Transformer (CPT) [40],
either base or large models, for the DRG task. Team A proposes the noise-aware similarity
bucketing [51] and generates the text summary output with the best prompt matching,
team B designs the graph beam search with priority queue (GBPQ) for speeding up the
reasoning procedure, and team C utilizes the retrieval augmented generation (RAG) [52]
strategy. These models outperform the proposed framework from 0.114 to 0.192 on the score
values. The score comparison also suggest that our framework dedicated to improving the
diversity maintains DRG accuracy and coherence well.

5. Discussion

Accurate and automatic DRG improves clinical efficiency, and fine-tuning a pre-trained
LLM is indispensable for realizing this specific application task. However, anisotropy de-
generation or semantic inconsistency of sentence embeddings has been massively observed
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from unnatural and undesirable text generation. To address this issue, a CLpCEwDCS
decoding framework is proposed and evaluated on this challenging task. In any case,
a supplementary metric (maxTRR) is designed to evaluate the token diversity in text
summarization, which is also important in DCS decoding.

The CLpCE improves the consistency and accuracy of the sentence embeddings. In
comparison to the CE objective function, the proposed CLpCE function leads to higher
DRG quality regardless of the decoding methods. It increases the vales of evaluation
metrics (Figure 3) and obtains superior performance when β = 0.60 (Table 1). Specifically,
when using DCS for decoding, CLpCE (β = 0.60) enhances 0.03 on BLEU-1 and BLEU-2,
0.02 on BLEU-3 and BLEU-4, 0.01 on METEOR and ROUGE, and 0.09 on CIDER over the
CE objective function (β = 0.00). Notably, this phenomenon can also be observed when
using other decoding methods. It indicates that CLpCE can quantitatively improve the
DRG quality from fragment accuracy, word matching, semantic similarity and content
consistency. The main reason is the penalty term. CL is a self-supervised representation
learning method by contrasting semantically similar and dissimilar pairs of samples [25]. Its
purpose is to minimize the distance of samples from same distributions and to maximize the
distance of samples from different distributions. Consequently, in the sentence embedding
space, intra-class tokens could be close, and inter-class tokens could be kept a long distance.
Thereby, the CL penalty term benefits LLM fine-tuning and guides the procedure towards
a specific application task, and in this study, it improves DRG quality.

The DCS decoding method relieves the anisotropy degeneration issue by decreasing
the frequency of token repetition. It achieves competitive DRG quality with the CS and
the GS decoding methods (Table 1). Most importantly, it leads to more candidate outputs
of text summarization in the token space (Figure 4) and decreases token repetition ratio
(Table 2) by using the minimum of the maxTRR values, while the generation cohesion
and accuracy are maintained well (Table 4). Of particular concern is the proposed metric
maxTRR (Equation (12)). Its value is applied to determine the final token sequence output
(Equation (11)) in an automated fashion. Additionally, two case examples further reveal
that DCS decoding provides more candidate outputs of text generation with lower repeats
and frequent tokens (Table 3). It should be admitted that there is discrepancy between the
human and model word distributions, and further training on more data could not rectify
this discrepancy [26,53]. Interestingly, the DCS decoding shows the potential to decrease
the discrepancy by improving the output diversity. It keeps the accuracy and coherence
as the CS decoding method and outperforms other traditional methods [19]. Therefore,
using a small control threshold value (ρ = 0.10) could keep these dissimilar tokens with
the top-high probabilities and generate diverse text summarization.

According to the track report, our framework achieves state-of-the-art performance
for the DRG competition (Table 5). A close look into these models reveals that BART and
CPT models are preferred due to their focus on text summarization tasks. Conversely, as a
general generation model, GPT-2 supports a broad spectrum of downstream applications,
and a slight drop on the score value becomes understandable. Meanwhile, the first-tier
teams utilize NLP tricks, including but not limited to exponential moving average of
parameters, fast gradient method and regularized dropout, and these tricks contribute to
the improved performance of text generation. The proposed framework stands to benefit
from these techniques if they are appropriately integrated into the fine-tuning stage.

There are several limitations in the current study. On the DRG task, the proposed
framework has been verified effectively relieving the anisotropy degeneration problem, and
its feasibility and generalizability on other NLP applications becomes desirable. However,
it definitely involves large-scale data processing and massive time cost that is beyond
our budget due to limited funding and computing resources. Secondly, as a result of
technological evaluation, more powerful LLMs [41,54,55] with hundreds of billions of
parameters are now available, while utilizing these models requires additional expenses
and heavy computing resources. The investigation into whether the proposed framework,
employing advanced models, would enhance the DRG task is currently underway. Thirdly,
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besides contrastive learning [37], other fine-tuning and decoding strategies, such as fidelity-
enriched contrastive search [34], self-supervised learning [56], and reinforcement learning
with human feedback [57], could reduce the dependency on the labeled data samples. Last
but not the least, combining with other data sources, such as dialogues, images, videos and
human feedback [58], could broaden the application fields of the proposed framework.

6. Conclusions

When fine-tuning pre-trained LLMs for some specific downstream application tasks,
the anisotropy degeneration problem has been massively witnessed. To address this prob-
lem, the CLpCEwDSC decoding framework is implemented that promotes the objective
function of CE with a CL penalty term for accurate representation of sentence embeddings
and designs a DCS decoding method for improving output diversity via selecting the
candidate token sequence with the minimum maxTRR value. It has been verified effec-
tive on the DRG task with five types of evaluation metrics, and further improvement of
the framework could be conducted by using more advanced models, proper fine-tuning
strategies, multi-modal data learning and generalizability verification.

In the field of medical imaging, there is a long way to go before a fully automated
medical image report generator can be used to facilitate clinical decision making. The
proposed framework, aimed at generating accurate and natural diagnostic reports from
medical image descriptions, could be further enhanced by integrating more powerful
LLMs and effective fine-tuning strategies. On the other hand, most attention should
be directed towards addressing other challenges, such as medical image understanding,
vision–language alignment, and interpretation of diagnosis reports, in order to expedite
the realization of automated and precise medical imaging diagnostic report generation.
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Abbreviations
The following abbreviations are used in this manuscript:

DRG Diagnostic report generation
LLM Large language model
CLpCE Contrastive learning penalized cross-entropy
DCS Diversity contrastive search
maxTRR Maximum of token repetition ratio
GPT Generative pre-trained Transformer
CLpCEwDCS CLpCE with DCS
BLEU Bilingual evaluation understudy
METEOR Evaluation of translation with explicit ordering
ROUGE Recall-oriented understudy for gisting evaluation
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CIDER Consensus-based image description evaluation
NLP Natural language processing
RNN Recurrent neural network
LSTM Long-short term memory
BERT Bidirectional encoder representations from Transformers
BART Bidirectional and autoregressive Transformer
T5 Text-to-text transfer converter
CL Contrastive learning
CLEAR Contrastive learning for sentence representation
TaCL Token-aware contrastive learning
GS Greedy search
NS Nucleus search
CS Contrastive search
FECS Fidelity-enriched contrastive search
RRM repetition reduction module
PT Pre-training
FT Fine-tuning
SimCSE Simple contrastive learning of sentence embeddings
TkS Top-k search
GBPQ Graph beamsearch with prioirity queue
RAG Retrival augmented generation
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