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Abstract: This paper presents prefix data augmentation (Prd) as an innovative method for enhancing
sentence embedding learning through unsupervised contrastive learning. The framework, dubbed
PrdSimCSE, uses Prd to create both positive and negative sample pairs. By appending positive
and negative prefixes to a sentence, the basis for contrastive learning is formed, outperforming
the baseline unsupervised SimCSE. PrdSimCSE is positioned within a probabilistic framework that
expands the semantic similarity event space and generates superior negative samples, contributing
to more accurate semantic similarity estimations. The model’s efficacy is validated on standard
semantic similarity tasks, showing a notable improvement over that of existing unsupervised models,
specifically a 1.08% enhancement in performance on BERTbase. Through detailed experiments, the
effectiveness of positive and negative prefixes in data augmentation and their impact on the learning
model are explored, and the broader implications of prefix data augmentation are discussed for
unsupervised sentence embedding learning.

Keywords: contrastive learning; sentence embedding; prefix data augmentation

1. Introduction

Sentence embedding learning has long been a core focus within the field of natu-
ral language processing, serving as a critical component in a wide array of downstream
applications [1–6]. Researchers have been constructing sentence vector models through
text-matching annotated datasets, where each sample is formatted as (Sentence A, Sen-
tence B, Label). When comparing or ranking pairs of sentences for semantic similarity,
we typically rely on the cosine value of the angle between sentence vectors for judgment,
as shown in Equation (1). Here, A and B represent sentence vectors, and cos(A, B) de-
notes the cosine value of the angle between them. This equation is based on a standard
coordinate basis, where the cosine value of the angle between different basis vectors is
0. Due to the high-dimensional nature of sentence vectors, using the cosine value of the
angle between vectors to measure semantic similarity offers the following advantages:
(1) it is unaffected by scale; (2) it effectively captures angular information; (3) it exhibits
high computational efficiency; and (4) it remains effective in high-dimensional spaces
(whereas metrics based on vector norms are susceptible to the curse of dimensionality in
high-dimensional spaces). Gao et al. [7] discovered that the sentence vectors learned via
Transformers exhibit anisotropy, a characteristic similarly identified in BERT and GPT-2 by
Ethayarajh [8]. “Anisotropy” refers to the phenomenon where word embeddings occupy
a narrow conical region in the vector space, implying that the coordinate system of the
sentence vectors is not a standard coordinate basis, rendering the equality in Equation (1)
invalid. Methods such as Bert-flow [9], Bert-whitening [10], IS-Bert [11], CT-Bert [12], and
Simcse [13] aim to eliminate or mitigate the anisotropy of the learned sentence vectors,
thereby enabling more accurate semantic similarity judgments between sentence pairs.
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cos(A, B) =
A · B

∥A∥∥B∥ (1)

In recent years, contrastive learning has seen successfully applied in sentence em-
bedding learning [13–15]. The goal of contrastive learning is to bring positive sample
pairs closer together in the encoding space, while pushing negative samples further apart.
Wang et al. [16] introduced two key concepts for measuring the quality of contrastive learn-
ing: alignment and uniformity. For alignment, two samples forming a positive pair should
be mapped to nearby features and thus be (mostly) invariant to unneeded noise factors.
For uniformity, feature vectors should be roughly uniformly distributed on the unit hyper-
sphere, preserving as much information from the data as possible. Therefore, constructing
positive samples and selecting negative samples are crucial for enhancing the effectiveness
of contrastive learning, among which SimCSE [13] stands out as a representative method.
SimCSE’s unsupervised model uses dropout [17] as a form of data augmentation to con-
struct positive samples with minimal noise. Specifically, SimCSE processes N sentences
as a batch, where each sentence undergoes two independent rounds of dropout masking
before being input into a pretrained BERT model. The resulting embeddings from the same
sentence serve as positive pairs, whereas embeddings from different sentences are treated
as negative pairs.

SimCSE assumes that dropout serves as the “minimal” form of data augmentation,
but a crucial weakness is overlooked. Because dropout aims to retain as much information
from the original sentence as possible, including the positional information of each token,
this approach inadvertently leads to a misunderstanding: sentences of the same length
are perceived to have a higher probability of being semantically similar. Conversely,
the unsupervised version of SimCSE does not effectively differentiate between various
negative examples. The supervised version of SimCSE, which uses a supervised natural
language inference (NLI) dataset, constructs hard negative samples to further enhance
the effect of contrastive learning. Wang et al. [18] proposed SNCSE, which acquires word
vectors through cue learning and syntactic parsing using spacy and constructs soft negative
examples. Nishikawa et al. [19] proposed Ease, which generates positive sample pairs by
associating entities sourced from Wikipedia. Negative entities are constrained to be the
same type as the positive ones and are excluded if they appear on the same Wikipedia page.
Randomly selected candidate entities that meet these criteria are used as hard negative data
to construct triplet data. However, these methods for distinguishing negative samples are
limited to annotated datasets and are not applicable in unsupervised learning scenarios.

To address these aforementioned issues, we propose PrdSimCSE, an unsupervised
contrastive learning framework based on prefix data augmentation. As illustrated in
Figure 1, PrdSimCSE uses prefix data augmentation (Prd) to construct positive samples
and differentiate negative samples. Next, Section 2 introduces the background knowledge
on text augmentation, including the basic concepts of sentence embedding and contrastive
learning. Section 3 details the prefix data augmentation method, including how to deter-
mine positive and negative prefixes and their impact on the model. Section 4 outlines the
unsupervised PrdSimCSE, covering algorithm design, experimental environment setup,
parameter settings, datasets, and baseline comparisons. Section 5 describes the progress
of prefix data augmentation determined through ablation studies, where we further dis-
cuss how to determine positive and negative prefixes and the semantic bias caused by
prefix data augmentation. Section 6 discusses the relationship between semantic similar-
ity events and prefix data augmentation, including the advantages and roles of positive
and negative prefixes. Section 7 concludes the paper by providing the contributions of
prefix data augmentation to unsupervised sentence embedding learning and directions for
future research.

The contributions of this paper can be summarized as follows:

• This paper introduces a novel text data augmentation method, prefix data augmenta-
tion. Positive samples are constructed using modal particle prefixes combined with
dropout, thus preserving the original semantics as much as possible while altering



Appl. Sci. 2024, 14, 2880 3 of 15

the positional information of each token. This approach enhances and facilitates
contrastive learning.

• Prefix data augmentation can also be used to modify the original semantics. By
constructing prompts that reverse the semantics and using them as prefixes, the
modified sentences can serve as negative samples. This method allows for the creation
of a richer set of negative samples from unsupervised corpora, thereby increasing the
discriminability between different negative samples.

• We developed a novel unsupervised sentence embedding learning approach, PrdSim-
CSE, which we used to construct both positive and negative samples through prefix
data augmentation. Additionally, the approach treats other sentences within the same
batch as negative samples.

• We evaluated PrdSimCSE across various datasets, and the experimental results demon-
strated that our proposed PrdSimCSE achieves superior performance in sentence rep-
resentation compared with prior approaches. Furthermore, through ablation studies,
we further examined the effectiveness of PrdSimCSE and discussed the advantages
and limitations of our method in detail.

Figure 1. Prefix data augmentation. PosPrd: positive prefix. NegPrd: negative prefix.

2. Background

Text Augmentation Text augmentation can be categorized into two main types based
on the generation method: back-translation and adding noise. Back-translation is a simple
and efficient text augmentation technique that generates more high-quality samples on
the basis of existing datasets by translating and then retranslating the text in scenarios
with few samples [20,21]. However, back-translation carries an implicit prior, whereas the
model is presented with input texts that, despite having different linguistic expressions,
share the same semantics. Adding noise involves directly performing operations such as
the addition, deletion, or replacement of sentences. The easy data augmentation (EDA)
technique proposed by Wei et al. [22] is a compilation of such methods. EDA consists
of four strategies: (1) synonym replacement (SR): randomly select nonstop words from a
sentence and replace them with randomly chosen synonyms; (2) random insertion (RI):
randomly identify a nonstop word in a sentence, find a synonym for it, and insert that
synonym into a random position in the sentence; then, repeat this process n times; (3) in
random swap (RS), two words in the sentence are randomly chosen, and their positions
are swapped, repeating this process n times; and (4) random deletion (RD): each word in
the sentence is randomly deleted with a probability p. Given that these methods involve
random operations, a question arises: can the text’s label remain unchanged after EDA
operations? To address this concern, Xie et al. [23] proposed unsupervised data augmenta-
tion (UDA), where the core idea involves replacing a certain proportion of nonessential
words in the text with unimportant words from a dictionary, thereby generating new texts.
However, in the context of contrastive learning for sentence representation, using such text
augmentation methods to construct positive samples for unsupervised learning typically
results in lower performance compared with supervised models. SimCSE has achieved
notable success in unsupervised learning, also demonstrating that dropout can serve as a
“minimal” form of text data augmentation, offering an alternative to other text augmenta-
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tion methods. However, dropout augmentation does not alter the positional information
of words within a sentence, which can introduce new biases to the model. Inspired by
SimCSE, we developed a text augmentation technique suitable for unsupervised learning:
prefix data augmentation.

Sentence Embedding Sentence embedding learning aims to convert natural language
text sequences into numerical sequences that machines can comprehend. Depending on
whether the training corpus is labeled, sentence embedding learning processes can be
categorized into supervised and unsupervised approaches. In this study, we primarily
focused on unsupervised sentence embedding learning. Word2Vec [24] was one of the
earlier models developed for the unsupervised learning of semantic knowledge from
large text corpora. Word2Vec proposed the CBOW and skip-gram methods. In CBOW,
surrounding words are predicted based on the center word; in skip-gram, the center word is
predicted based on surrounding words. BERT [25] introduced the masked language model
(MLM) and next sentence prediction (NSP) training methods, but the training data must be
at the document level. Subsequent models such as CrossThought [26] and CMLM [27] face
similar issues. SimCSE [13] is an unsupervised contrastive learning framework, enabling
direct sentence embedding learning using widely available short texts. SimCSE also adapts
well to downstream tasks that primarily involve short texts.

Contrastive Learning In the context of sentence embedding learning, the aim of
contrastive learning is to train an encoder that produces similar encodings for sentences of
the same class within the same dataset, while ensuring the encoding results for sentences
of different classes are as dissimilar as possible. Suppose we have a set of samples to be
learned, x0, x1

+, . . . , xm
+, x1

−, . . . xn
−, where x0 serves as the anchor sample, x+ serves as the

positive sample for x0, and x− serves as the negative sample for x0. We drew inspiration
from the infoNCE used in MoCo [28] and adopted the SimCSE approach, using other
samples within the same batch as negative samples. In a single batch, the contrastive
learning objective for the anchor sample x0 is

loss = − log
∑m

i=1 esim(x0,xi
+)/t

∑m
i=1 esim(x0,xi

+)/t + ∑n
j=1 esim(x0,xj

+)/t
(2)

where the batch size is denoted as N = 1 + m + n, where t is the temperature hyperparam-
eter, and sim is the function used to compute the cosine similarity between two vectors.
In our experiments, positive samples were generated only using PosPrd (positive prefix),
represented as m = 1 in the formula. For the selection of negative samples, in addition to
using other samples within the batch as negative samples, we employed NegPrd (negative
prefix). Subsequently, we used pretrained models such as BERT and RoBERTa [29] and
fine-tuned all parameters using the contrastive learning objective.

3. Prefix Data Augmentation

As the name suggests, prefix data augmentation involves changing text data by adding
prefixes to augment the dataset. In theory, any text can serve as a prefix for other texts.
However, from the perspective of constructing positive samples, we aimed for prefixes
that did not alter the original sentence’s semantics. When constructing negative samples,
we preferred prefixes that reversed or disrupted the semantics of the original sentence as
much as possible. Through multiple experiments and trials, we found that modal particle
prefixes are excellent positive prefixes, whereas prompts that reverse the semantics are
effective as negative prefixes.

In the field of computer vision, various effective data augmentation methods are
employed to construct positive examples for contrastive learning, such as cropping, rotation,
and color adjustments. These methods are employed because the information in images is
continuous [30], and partial pixel blocks of an image can convey information. However,
in natural language processing (NLP), the semantic information embedded in text data
is discrete. As shown in Table 1, text augmentation methods such as Random deletion,
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Word substitution, and Rearrangement substantially alter the semantics of the original
sentence, resulting in decreased similarity between the modified and original sentences.
However, the positive prefix preserves the original semantic information. SimCSE applies
dropout as a method that effectively addresses the challenge posed by the discrete nature of
semantics in text data. When using contrastive learning for sentence embeddings, dropout
can serve as a “minimal” positive data augmentation method for constructing positive
examples. However, the dropout method only deactivates certain positions in the sentence
embeddings. Does constructing positive samples using this approach ensure the encoder is
sensitive to the length and structure of sentences? To mitigate this issue, we introduced a
simple meaningless prefix in PosPrd.

Table 1. An example of different data augmentation techniques for changing the semantic meaning
of a sentence.

Data Augmentation Sentence Similarity

Origin I love natural language processing. 1
Positive prefix Um, I love natural language processing. 0.99
Random deletion I natural language processing. 0.65
Word substitution I love artificial language processing. 0.51
Rearrangement natural language processing love I. 0.32

We found that specific semantic reversal prefixes can serve as negative data augmen-
tation, used for constructing negative samples in contrastive learning. In the contrastive
learning of sentence embeddings, a common approach involves using other sentences
within the same batch as negative samples for the anchor sentence. This method is based
on the assumption that in a rich training corpus, each sentence belongs to two semantically
different categories. However, text data often contain a considerable amount of repetition.
For instance, in restaurant reviews, many sentences may belong to the positive semantic
category, whereas others belong to the negative semantic category. Consequently, during
training, many negative samples may be “problematic”, where two semantically similar
sentences are treated as negative pairs, which is detrimental to contrastive learning. By in-
troducing manually crafted negative prefixes, we ensure the original sentence is augmented
into a category with the opposite semantic meaning, thereby constructing higher-quality
negative samples. This approach contributes to increasing the effectiveness of contrastive
learning, enabling the model to more accurately capture semantic distinctions.

4. Unsupervised PrdSimcse
4.1. Algorithm Design

PrdSimCSE uses a pretrained BERT (uncased) or RoBERTa as the starting point for
training, with all data sharing the same encoder. As illustrated in Figure 2, the model
receives three inputs: the original sample, a positive sample that has undergone prefix data
augmentation, and a negative sample also enhanced with prefix data augmentation. The
output generated from the original sample is used to calculate the contrastive learning
loss according to Equation (2), after which gradients are back-propagated to update the
parameters of the entire model.
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Figure 2. PrdSimCSE constructs positive and negative samples with different prefixes.

4.2. Experimental Environment Setup

Table 2 presents the computational environment of our model, and all experiments
were conducted within this setup. We used Python 3.8 as our programming language. Ad-
ditionally, we employed PyTorch (version 1.7.1) and the Transformers library (version 4.2.1)
for the training, evaluation, and testing of PrdSimCSE.

Table 2. Experimental Environment Setup.

Attribute Details

System Development Environment Ubuntu22.04
Development Environment Visual Studio Code (version 1.83)

CUDA version 11.8
GPU NVIDIA 4080 (16 G)
CPU Intel i9 13900KF

Memory 32 GB

4.3. Parameter Settings

For PrdSimCSE, we trained the model for three epochs, conducting evaluations every
250 steps. We performed a grid search over batch sizes of 32, 64, 128 and learning rates of
1 × 10−5, 2 × 10−5, 3 × 10−5, 4 × 10−5, 5 × 10−5 on the STS-B development set. The final
hyperparameter settings are shown in Table 3. Additionally, we used dropout sampling
with a dropout rate of 0.1 and employed AdamW as the optimizer, with a weight decay of
0.01. For evaluations, we selected the [cls] token as the sentence representation and retained
the MLP layer. All experimental results were assessed using the Spearman correlation
coefficient as the evaluation metric.

Table 3. Parameter Settings.

Model Bertbase RoBERTabase

Batch size 32 64 128 32 64 128

Learning rate 4 × 10−5 4 × 10−5 3 × 10−5 3 × 10−5 2 × 10−5 1 × 10−5

4.4. Datasets

The training corpus was derived from an unlabeled dataset collected by Gao et al. [13],
consisting of 1 million English sentences randomly extracted from Wikipedia, with each
data entry being a single English sentence. For the PrdSimCSE’s evaluation, we employed
seven semantic similarity datasets and nine transfer task datasets, which are briefly intro-
duced here.
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The semantic similarity tasks includes STS12 [31], STS13 [32], STS14 [33], STS15 [34],
STS16 [35], SICK-R [36], and STS-B [37]. STS 12–16 are the datasets from the SemEval
competitions from 2012 to 2016, respectively. STS-B and SICK-R are also datasets from the
SemEval competition. In these datasets, each text pair was scored by humans on a scale of
0–5, indicating the level of similarity between the texts. For evaluation, we used the test
sets from all the semantic similarity tasks.

The transfer tasks included MR [38], CR [39], SUBJ [40], MPQA [41], SST-2 [42],
TREC [43], MRPC [44], BQ [45], and LCQMC [46]. Among these, MR, CR, SUBJ, and
SST-2 are sentiment classification datasets; MPQA and BQ are question answering datasets;
TREC and LCQMC are question classification datasets; MRPC is a dataset for sentence
pair similarity. Additionally, BQ and LCQMC are Chinese datasets; we first translated
them into English before inputting them into the model for testing. In essence, these tasks
were all text classification tasks, where each sentence was associated with a label (or a
matching sentence). During evaluation, the model received a sentence and then determined
its category; finally, we compared this prediction with the sentence’s label.

4.5. Baseline

Sentence embedding learning can be divided into supervised and unsupervised cate-
gories, with this study focusing on improvements in unsupervised contrastive learning. We
used unsupervised models such as IS-BERT [11], CT-BERT [12], and SimCSE [13] as base-
lines. IS-BERT ensures maximal consistency between global and local features, CT-BERT
aligns sentence embeddings of the same sentence from two different encoders, and SimCSE
aligns different embeddings of the same sentence from the same encoder. Additionally, we
compared our approach with postprocessing methods such as BERT-flow [9] and BERT-
whitening [10], as well as with naïve baselines such as average GloVe embeddings [47] and
average embeddings from the first and last layers of BERT. BERT-flow and BERT-whitening
focus on eliminating anisotropy in sentence vectors at the BERT output without changing
the encoder structure, whereas average GloVe embeddings and average first- and last-layer
BERT embeddings retain the original information of the pretrained BERT. These were all
reliable standards for evaluating the effectiveness of our model.

4.6. Main Results

In Table 4, we showcase the performance on the STS tasks. We replicated the results
of SimCSE and, through comparison, we found that PrdSimCSE-BERTbase substantially
outperformed SimCSE-BERTbase on STS13-STS16, STS-B, and SICK-R in terms of Spearman
correlation coefficient, notably by 2.01% on STS-B. On STS12, PrdSimCSE performed
consistently with SimCSE, producing an increase in the average Spearman correlation
coefficient from 76.25% to 77.33%. Compared with the unsupervised models, PrdSimCSE
outperformed CT-BERT by 5.28% and IS-BERT by 10.75% in terms of the average Spearman
correlation coefficient. For the RoBERTa model, PrdSimCSE-RoBERTabase also improved
upon SimCSE-RoBERTabase’s 76.57% to 77.10%, particularly outperforming SimCSE by
4.81% on SICK-R.

In Table 5, we present the results for transfer tasks. Compared with SimCSE-BERTbase,
PrdSimCSE-BERTbase performed better on five of the datasets. However, on the TREC
task, the accuracy of PrdSimCSE was 7.89% lower than that of SimCSE—a substantial
difference that requires further consideration. TREC is a widely used dataset in the field of
information retrieval, employed for evaluating the performance of information retrieval
systems. The Text REtrieval Conference (TREC) Question Classification dataset contains
5500 labeled questions in the training set and another 500 in the test set. The dataset has
6 coarse class labels and 50 fine class labels. During testing, each sentence is assigned a
label. We speculate that the reason for this discrepancy is because PrdSimCSE uses prefix
data augmentation, resulting in a large number of identical sentence prefixes in the training
corpus, which leads to considerable semantic bias when encoding sentences. This was
further discussed in the ablation experiments.
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Table 4. Sentence embedding performance on STS tasks (Spearman correlation, “all” setting). We
highlight the highest numbers among models with the same pretrained encoder. ♣: results from [6];
♡: results from [11]. ♢: results from ourselves; all other results are from [13].

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe embedding (avg.) ♣ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first–last avg.) 39.7 59.38 49.67 66.03 66.19 53.87 62.06 56.7
BERTbase-flow 58.4 67.1 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening 57.83 66.9 60.9 75.08 71.31 68.24 63.73 66.28
IS-BERTbase ♡ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERTbase 61.63 76.8 68.47 77.5 76.48 74.31 69.19 72.05
SimCSE-BERTbase 68.4 82.41 74.38 80.91 78.56 76.85 72.23 76.25
PrdSimCSE-BERTbase ♢ 68.21 83.56 75.44 81.71 79.79 78.86 73.75 77.33

RoBERTabase(first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabase-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
PrdSimCSE-RoBERTabase ♢ 69.29 83.52 75.02 81.13 78.84 78.52 73.37 77.10

Table 5. Transfer task results of different sentence embedding models (measured as accuracy).
♣: results from [6]; ♡: results from [13]. ♢: results from ourselves. We highlight the highest numbers
among models with the same pretrained encoder.

Model MR CR SUBJ MPQA SST-2 TREC MRPC Avg.

GloVe embedding(avg.) ♣ 77.25 78.3 91.17 87.85 80.18 83 72.87 81.52
BERT-[CLS]embedding ♣ 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
SimCSE-BERTbase ♡ 81.18 86.46 94.45 88.88 85.5 89.8 74.43 85.81
PrdSimCSE-BERTbase ♢ 81.32 87.32 94.67 88.11 86.81 80.91 76.23 85.01

In Table 6, we present the evaluation results of PrdSimCSE on the two Chinese trans-
fer task datasets. Because our model was trained on English corpora, direct evaluation
using Chinese datasets resulted in very poor performance. We used Google Translate to
translate all the data into English before conducting the evaluations. PrdSimCSE-BERTbase
outperformed SimCSE-BERTbase by 1.63% on the BQ dataset and by 2.17% on LCQMC.
PrdSimCSE-RoBERTabase exceeded SimCSE-RoBERTabase in performance by 0.85% on the
BQ dataset and by 1.37% on LCQMC.

Table 6. Sentence embedding performance on two Chinese datasets.

Model BQ LCQMC

SimCSE-Bertbase 45.38 56.46
PrdSimCSE-Bertbase 47.01 58.63

SimCSE-RoBERTabase 47.97 62.41
PrdSimCSE-RoBERTabase 48.82 63.78

5. Ablation Studies

The success of PrdSimCSE can be attributed to two factors: positive and negative
prefixes. Therefore, we conducted experiments from these two perspectives. Unless
otherwise specified, all models described in this section were trained based on Bertbase and
were compared on the STS-B development set.

5.1. Progress of Prefix Data Augmentation

We aimed to understand the extent of improvement PrdSimCSE could achieve over
SimCSE and, specifically, the contributions of positive and negative prefixes to PrdSimCSE.
As shown in Table 7, both positive and negative prefixes were found to be effective data
augmentation methods, and their combination led to further improvement in PrdSimCSE.
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Table 7. Improvement on STS-B development sets produced by PosPrd or NegPrd over SimCSE.
♡: results from [13].

Model STS-B

SimCSE ♡ 82.5
+PosPrd 83.4
+NegPrd 82.9
PrdSimCSE 83.5

Sentence embeddings play a pivotal role across a spectrum of downstream tasks
including text matching, sentiment analysis, and question answering systems. The ad-
vancements facilitated by Predix data augmentation in sentence embedding models hold
the promise of enhancing the efficacy of these specific downstream applications. Drawing
insights from the findings presented in Tables 4 and 5, when benchmarked against SimCS-
BERTbase, PrdSimCSE exhibited notable performance gains: a 2.01% enhancement in the
STS-B text matching task, a 1.31% improvement in sentiment analysis as observed in the
SST-2 task, and a 1.67% increase in accuracy for the question answering task BQ. Central
to these tasks is the precise vectorization of textual data, a cornerstone in contemporary
natural language processing (NLP) research. Retrieval methods relying on text embeddings
have garnered significant traction within the NLP community. Text embedding libraries,
by segmenting and organizing textual data followed by vectorization utilizing sentence
embedding models, serve as pivotal components. Notably, the efficacy of these libraries
hinges greatly upon the performance of the underlying sentence embedding models. With
robust storage and retrieval capabilities, text embedding libraries stand poised to drive
further innovation in NLP applications. The PrdSimCSE framework proposed herein is
poised to catalyze advancements in this domain, bolstering the widespread adoption and
utility of text embedding libraries.

5.2. Determining Positive Prefixes

The primary criterion for positive prefixes is that they should not distort the original
semantics of the sentence. Before specific experiments, we deployed a semantic similarity
calculation tool using the pipeline of the Transformers package. By adding prefixes to
several example sentences and calculating their similarity to the original sentences, we
selected sentence pairs with the highest semantic similarity to preliminarily determine
several positive prefixes. For the convenience of later discussion, the abbreviations and
meanings of these positive prefixes are explained here. one-[CLS], one-[MASK], one-um: a
single [CLS], a single [MASK], and a single ‘um’ as prefixes, respectively. level-[CLS], level-
[MASK], level-um: As sentence length increases, the number of prefix words also gradually
increases, as demonstrated in the Table 8 outlining the specific rules. Subsequently, we
used the corresponding positive prefixes for data augmentation in sentence embedding
learning. The experimental results are shown in Table 9, where the positive prefix “level-um”
achieved the best results. Additionally, using “level-[CLS]” as a positive prefix also yielded
accurate results, whereas “one-[MASK]” performed poorly. Other prompting sentences led
to a decrease in performance.

Table 8. Relationship between sentence length and number of words added as prefix

Sentence Length Number of Words Added as Prefix

<8 0
[8, 16) 1

[16, 24) 2
[24, 32) 3
≥32 4
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Table 9. Results of different types of PosPrd on STS-B. ♡: results from [13].

Type of PosPrd STS-B

SimCSE ♡ 82.5
one-[CLS] 81
one-[MASK] 81.8
one-um 81.5
level-[CLS] 82.8
level-[MASK] 80.6
level-um 83.4

5.3. Determining Negative Prefixes

Similar to the method of positive prefixes, we also experimented with various negative
prefixes. Simply covering the original sentence by adding long prefixes loses the meaning
of prefix data augmentation. However, short prefixes cannot reverse the semantics of
the entire sentence. Based on this, we identified several appropriately sized semantic
reversal cues. For the convenience of later discussion, the abbreviations and meanings
of these negative prefixes are explained here. one-reversal: Using ‘reversal’ as a prefix.
prefix1: “Sentence contradicts in time, place, people, number, emotion, type”. prefix2:
“Contradictory in time, location, individuals, quantity, emotion, and category within the
sentence”. prefix3: “The expression in terms of time, location, persons, number, emotion,
and type in the following sentence is contradictory”. Prefix3 did not override the original
sentences, but reversed the meaning of the sentences as much as possible. Table 10 lists the
performance of the negative prefixes in semantic similarity tasks.

Table 10. Results of different types of NegPrd on STS-B. ♡: results from [13].

Type of NegPrd STS-B

SimCSE ♡ 82.5
one-reversal 80.4
prefix1 81.3
prefix2 81.1
prefix3 82.9

5.4. Semantic Bias Caused by Prefix Data Augmentation

To further explore the semantic bias introduced by prefix data augmentation and
verify the impact of sentence length on the encoding results, we conducted experiments
on the SICK-R test set [36]. Based on whether the length of the shorter sentence in a
sentence pair was less than eight, we divided the SICK-R test set into two groups and
evaluated them separately, comparing the Spearman correlation coefficients. As shown
in Table 11, both PrdSimCSE and SimCSE performed much worse on sentences with
lengths > 8 than on those with lengths ≤ 8. However, upon further analysis of the original
SICKR test set results, PrdSimCSE exhibited larger fluctuations, especially in sentences with
lengths ≤ 8, where the fluctuation in PrdSimCSE was notably wider than that of SimCSE.
This indirectly confirmed our speculation that models trained with Prd tend to produce
semantic deviations when encoding sentences.

In English transfer tasks, we observed that PrdSimCSE significantly underperformed
SimCSE on the TREC dataset [43], a discrepancy related to this specific error. PrdSimCSE
produced a larger error for sentences shorter than eight words. The TREC test set contains
500 sentences, with an average length of 10 words per sentence. Each sentence is associated
with one coarse class label and one fine class label, with the label being a single word. We
attempted to remove sentences from TREC that were shorter than eight and six words,
respectively, and then re-evaluated PrdSimCSE; the results are shown in Table 12. After
removing the shorter sentences, PrdSimCSE’s performance improved by 6.23%, indirectly
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confirming our hypothesis. Due to PrdSimCSE’s use of repetitive, meaningless prefixes
during training, the encoder reduces its attention to the tokens at the beginning of sentences,
thus weakening its understanding of short texts compared with SimCSE.

Table 11. Performance on sentence embeddings for SICK-R with different sentence lengths.

Model Dataset Spearman

SimCSE
Original 72.23

>8 70.22 (−2.01)
≤8 73.69 (+1.46)

PrdSimCSE
Original 73.75

>8 71.68 (−2.07)
≤8 75.59 (+1.84)

Table 12. Performance on sentence embeddings in TREC dataset with different sentence lengths.

Dataset Original Remove Length < 6 Remove Length < 8

PrdSimCSE 80.91 84.86 87.14

6. Semantic Similarity Event and Prefix Data Augmentation
6.1. Semantic Similarity Event

We assume that all sentences A can be mapped to the vector space Rn; thus, any
sentence pair (A1, A2) can be mapped to the vector space R2n, with the resulting vector
denoted as x. Then, we define the sample space Ω({Ω = sim(x)|x ∈ R2n}), where sim(x)
represents the vector similarity of the sentence pair (A1, A2). The event space F is the set
of combinations of any events (e.g., sim(x) > 0.6); P is the probability function mapping
events to [0, 1]. We define a probability space (Ω,F ,P) based on the similarity of sentence
vectors. As such, we can define the occurrence of semantically similar event E in the sample
space as

E = {sim(x) > τ} (3)

where τ ∈ [0, 1] is a threshold parameter. Therefore, the probability of the occurrence of a
semantically similar event is represented as

P(E) (4)

In practice, determining whether two sentences are similar is based on specific con-
textual information. Therefore, only conditional semantic similarity events exist based on
different contextual information, and their probability is

P(E|C) (5)

where C is an event implying contextual information (e.g., C = sim(x) > 0.5,
E = sim(x) > 0.8). In this paper, P(E|C) represents our trained PrdSimCSE model. For any
given pair of sentences, based on the training corpus, P(E|C) can provide their semantic
similarity score, thereby determining whether the pair belongs to a semantic similarity
event. According to Bayes’ theorem, the estimation of the probability of a semantic similar-
ity event can be considered as

P̂(E) =
P(C)P(E|C)

P(C|E) (6)

The alignment of the sentence vector space using positive samples strongly impacts
contrastive learning. This is because the selection of positive samples is directly related to
the quality of sentence pairs in the semantic similarity set. Additionally, Prd can expand



Appl. Sci. 2024, 14, 2880 12 of 15

contextual information; namely, the precision of semantic similarity event probability
estimation is improved by adding higher-quality negative samples.

6.2. Advantages of Positive Prefixes

The term “positive prefix” refers to a positive data augmentation method that uses
meaningless modal particles as prefixes. This approach changes the position of tokens
within the sentence without altering the original sentence’s semantics. In contrast, dropout
merely deactivates some positions in the sentence embedding. Hence, our PrdSimCSE
does not incur errors due to positional information. From the perspective of semantic
similarity events, semantic events derived through dropout only contain sentence pairs of
the same length, which fails to provide an accurate estimation of semantic similarity event
probabilities. The proposed PosPrd, by expanding the sentence pairs within semantic simi-
larity events, increased the precision of estimating unconditional semantic similarity event
probabilities. We adjusted the proportion of sentences with added prefixes in the training
set, as shown in Table 13, to verify our hypothesis. By gradually increasing this proportion,
the training results progressively improved. As illustrated in Figure 3, gradually increasing
the proportion of sentences with added prefixes—equivalent to expanding the yellow
area—resulted in a smaller probability estimation error for semantic similarity events.

Table 13. The performance of sentence embeddings with gradually increasing proportions of posi-
tive prefixes.

Model STS-B

SimCSE 82.5
+20% 82.3
+40% 82.6
+60% 83.1
+80% 82.9

PrdSimCSE 83.5

Figure 3. The difference between PosPrd and dropout in constructing positive samples, as well as the
relationship between the two and the inclusion of semantically similar events.

6.3. Role of Negative Prefixes

“Negative prefix” refers to a negative data augmentation technique that uses semantic
inversion prompts as prefixes. The goal of the negative prefix is to change the original
sentence’s meaning as much as possible, shifting the meaning to a semantically different
category. When training the model using corpora, we were essentially estimating the
probability of semantic similarity events using conditional semantic similarity events. Dur-
ing training, negative samples were considered the contextual information of conditional
semantic similarity events; hence, we assumed that anchor and positive samples were
similar. In Table 14, we attempted to replace sentences with negative prefixes with empty
characters, finding that reducing the replacement proportion also improved the results.
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This confirms that by adding negative prefixes, which enrich contextual information, the
estimation of conditional semantic similarity probability becomes more accurate.

Table 14. The performance of sentence embeddings as the proportion of negative prefixes replaced
with empty characters becomes smaller.

Model STS-B

100% 75.2
80% 78.6
60% 79.3
40% 81.4
20% 81.9

PrdSimCSE 83.5

7. Conclusions

We developed a novel text augmentation method, prefix data augmentation. By
using modal words as prefixes to construct positive samples, we avoided the positional
information error that arises when SimCSE constructs positive samples. Constructing
negative samples by employing specific semantic inversion prompts as prefixes effectively
distinguishes negative samples. Based on these methods, we developed an unsupervised
sentence embedding contrastive learning model enhanced using prefix data augmentation.
The results of the experiments showed that compared with SimCSE, PrdSimCSE achieved
comprehensive performance improvements on semantic similarity task sets, achieving a
2.01% increase on STS-B and a 1.08% increase on average.

We conducted a search on the form of prefixes. For positive prefixes, we found that
as sentence length increases, adding more semantic word prefixes improves the model’s
performance. For negative prefixes, we discovered that semantic inversion cue sentences
are suitable choices, where the shorter the cue sentence, the larger the performance loss of
the model. Additionally, we found that in some transfer tasks, PrdSimCSE’s understanding
of short texts is not as strong as that of SimCSE. Through multiple ablation experiments, we
observed that although PrdSimCSE avoids the semantic biases caused by positive samples
of the same length, it loses some ability to comprehend short text. In summary, PrdSimCSE
produced improvements compared with SimCSE on 16 tasks, also proving the feasibility
and effectiveness of prefix data augmentation.

PrdSimCSE not only addresses the bias issues experienced with previous approaches
but also provides a new approach to constructing negative samples for contrastive learning.
We think that the method presented in this paper offers valuable references for researchers
in the NLP field.
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