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Abstract: Deep learning has achieved remarkable progress in medical image analysis, but its effec-
tiveness heavily relies on large-scale and well-annotated datasets. However, assembling a large-scale
dataset of annotated histopathological images is challenging due to their unique characteristics,
including various image sizes, multiple cancer types, and staining variations. Moreover, strict data
privacy in medicine severely restricts data sharing and poses significant challenges in acquiring
large-scale and well-annotated histopathological images. To tackle these constraints, Transfer Learn-
ing (TL) provides a promising solution by exploiting knowledge from another domain. This study
proposes the Uncertainty-guided asymmetric Consistency Domain Adaptation (UCDA), which does
not require accessing the source data and is composed of two essential components, e.g., Uncertainty-
guided Source-free Transfer Learning (USTL) and Asymmetric Consistency Learning (ACL). In detail,
USTL facilitates a secure mapping of the source domain model’s feature space onto the target domain,
eliminating the dependency on source domain data to protect data privacy. At the same time, the ACL
module measures the symmetry and asymmetry between the source and target domains, bridging
the information gap and preserving inter-domain differences among medical images. We compre-
hensively evaluate the effectiveness of UCDA on three widely recognized and publicly available
datasets, namely NCTCRC-HE-100K, PCam, and LC25000. Impressively, our proposed method
achieves remarkable performance on accuracy and F1-scores. Additionally, feature visualizations
effectively demonstrate the exceptional generalizability and discriminative power of the learned
representations. These compelling results underscore the significant potential of UCDA in driving
the advancement of deep learning techniques within the realm of histopathological image analysis.

Keywords: histopathological image classification; uncertainty-guided; asymmetric consistency;
domain adaptation; source data privacy

1. Introduction

Histopathology, as an indispensable component of cancer diagnosis, holds immense
significance in medical science [1,2]. This field leverages the microscopic examination of
tissue samples to identify and classify various forms of cancer, providing a detailed under-
standing of tumor biology that is critical for accurate diagnosis and treatment planning.
Currently, histopathological biopsy remains the primary method for diagnosing benign
and malignant tumors [3,4]. The evaluation of histopathology by highly skilled pathol-
ogists serves as the gold standard for cancer diagnosis [5]. However, this process often
involves repetitive examination and analysis of histopathological images by experienced
physicians, which is both demanding and prone to interobserver variations, leading to
reduced diagnostic accuracy. Therefore, highlighting the complexity and the critical role
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of histopathological analysis in cancer care underscores the urgent need for an effective
classification and screening approach to facilitate optimal treatment decisions.

The utilization of deep learning techniques in medical image analysis presents a
promising perspective to address this demand [6,7]. However, it is crucial to recognize that
deep learning models heavily rely on an extensive and accurately annotated dataset, a pre-
requisite that poses a significant challenge in the dynamic and complex field of histopatho-
logical image analysis. The annotation of histopathological image slices, confronted with
considerable morphological variability, demands the meticulous effort of expert clinicians,
thus contributing to the labor-intensive and costly nature of the task [8,9]. Consequently,
acquiring a substantial quantity of accurately labeled data can be a time-consuming and
challenging endeavor. In this context, transfer learning emerges as a strategic approach
to mitigate these challenges, offering a pathway to enhance the utilization of available
labeled data and leverage the vast reservoir of unlabeled histopathological images. This
integration into diverse strategies underscores the adaptability and potential of transfer
learning to revolutionize histopathological image analysis by optimizing data use and
improving diagnostic accuracy.

Transfer Learning (TL), by facilitating the effective knowledge transfer from labeled to
unlabeled data, stands at the forefront of innovating medical image classification tasks, par-
ticularly in histopathology where the scarcity of labeled data is a prominent issue. Recent
studies have explored various transfer learning approaches to leverage unlabeled data and
address the limitations of acquiring labeled target data [10–12]. For instance, Shi et al. [10]
proposed a semi-supervised deep transfer learning framework for benign-malignant pul-
monary nodule diagnosis by adopting a pre-trained classification network and leveraging
available dataset in the network semantic representation space; Feng et al. [11] designed a
contrastive domain adaptation with consistency match approach for saving labeled chest
X-ray in training pneumonia diagnosis models; Fang et al. [12] explored a discrepancy-
based unsupervised cross-domain fMRI adaptation framework for cross-site major de-
pressive disorder identification, by involving attention-guided graph convolution among
labeled source and unlabeled target samples. These examples illustrate the innovative
potential of transfer learning to bridge the gap between the available data and the analytical
capabilities required for precise histopathological diagnosis, highlighting its transformative
impact on the field.

These studies extract valuable knowledge from openly accessible source domain-
labeled data, thereby reducing the annotation cost in the target domain. This solution has
played a significant role in advancing cross-domain medical image analysis by leveraging
existing labeled data resources for knowledge transfer. However, in medical imaging,
obtaining labeled source domain data for transfer learning is often challenging due to
privacy concerns and data management regulations. Because of this hardship, efficiently
using available pre-trained models through source-free approaches like our UCDA is a de-
sirable alternative. Because medical image data largely originates from hospital databases,
there are limitations in openly sharing the datasets used, which can pose challenges for
certain high-performance methods. However, an alternative solution, known as source-free
domain adaptation, has emerged by capitalizing on the use of pre-trained models rather
than directly accessing the sensitive source data and the Uncertainty-guided Asymmetric
Consistency Domain Adaptation (UCDA) method that we propose further builds on this
framework, augmenting it with innovation that explicitly accounts for inconsistencies and
missed representations inherent in previous approaches.

Several prior studies have demonstrated the efficacy of source-free domain adaptation
(SFDA) in medical image processing [13–15]. Specifically, these investigations have pri-
marily focused on medical image segmentation and have yielded promising experimental
outcomes, demonstrating the potential of source-free domain adaptation in medical image
analysis. However, there is a dearth of research regarding the application of source-free
methods in medical image classification, predominantly due to the pronounced uncertain-
ties associated with disease representations in medical images when compared to natural
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image classification tasks. Moreover, existing methods fail to account for the issue of
weak model generalizability resulting from data inconsistency across devices and other
factors [16]. Additionally, it is necessary to address the problem of decreasing pseudo-label
quality caused by network uncertainty stemming from source models. To solve these obsta-
cles, this work enables knowledge transfer between domains while respecting data privacy
and confidentiality restrictions, ultimately circumventing the need for sharing the actual
datasets. Through source-free domain adaptation, we can leverage the learned representa-
tions and patterns encoded within pre-trained source models to effectively analyze target
domains without compromising data security or violating legal and ethical considerations.

In detail, our study presents Uncertainty-guided Asymmetric Consistency Domain
Adaptation (UCDA), a novel method enhancing medical image classification without
source data access. UCDA integrates Uncertainty-guided Source-free Transfer Learning
(USTL) and Asymmetric Consistency Learning (ACL). USTL ensures secure knowledge
transfer, preserving data privacy and effectively addressing network uncertainties, while
ACL extracts asymmetric features to align the source and target domain feature spaces
(Figure 1). This approach significantly improves classification accuracy and robustness,
demonstrating UCDA’s potential in advancing medical image analysis with remarkable
performance across diverse datasets.

Figure 1. The workflow of the proposed UCDA.

In summary, this study presents the following contributions:

(1) In our research, we present an innovative, source-free transfer learning methodol-
ogy referred to as Uncertainty-guided Asymmetric Consistency Domain Adaptation
(UCDA) designed for the classification of histopathological images. UCDA sets itself
apart from typical methods by eliminating the requirement for original source data,
therefore maintaining data confidentiality in clinical medical situations. The adapta-
tion of the domain is realized via the distillation of knowledge from a pre-existing
source model.

(2) To tackle the uncertainty issues prevalent in medical image classification, we unveil a
source-free knowledge distillation mechanism called Uncertainty-guided Source-free
Transfer Learning (USTL). This mechanism employs a strategy guided by uncertainty
to aid in the correlation of features between the source model and the target data,
thereby augmenting the efficiency of knowledge transfer.

(3) We formulate an Asymmetric Consistency Learning (ACL) procedure to evaluate the
symmetry and asymmetry across various domains. By instructing the model to con-
nect the domain disparity while keeping the inter-domain variances among medical
images, ACL permits feature acquisition from medical images at both symmetric and
asymmetric degrees.
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(4) To authenticate the efficacy of UCDA, we execute comprehensive experiments on
three public datasets. The findings from the experiments reinforce the efficiency of
our model in analyzing medical images, elucidating its potential applicability in tasks
relating to histopathological image classification.

2. Related Work

In this section, we begin by providing a comprehensive overview of recent advance-
ments in medical image classification utilizing supervised learning techniques. Subse-
quently, we explore the application of domain adaptation in medical image classification
through an analysis of recent studies in the field.

2.1. Medical Image Classification Based on Supervised Learning

In recent years, the field of deep learning has experienced significant advancements,
leading to remarkable medical applications for addressing classification problems. Within
the medical imaging domain, numerous outstanding studies have emerged, demonstrat-
ing the efficacy of supervised learning in developing high-performance models [17–19].
For instance, Xue et al. [17] introduced a cooperative training paradigm encompassing both
global and local representation learning for medical image classification. Placido et al. [18]
leveraged deep learning methods on clinical data obtained from the Danish National Patient
Registry (DNPR) comprising 6 million patients (including 24,000 pancreatic cancer cases),
as well as data from the United States Veterans Affairs (US-VA) involving 3 million patients
(including 3900 cases). Their findings exhibited improved capabilities in designing realistic
surveillance programs for high-risk patients. Furthermore, Jiang et al. [19] integrated deep
learning techniques into MRI analysis to predict survival outcomes in patients with rectal
cancer, utilizing segmented tumor volumes extracted from pre-treatment T2-weighted MRI
scans. These studies serve as compelling examples of the successful application of deep
learning and supervised learning approaches in various medical image classification tasks,
highlighting promising advancements and potential avenues for future research.

In supervised medical image classification, feature fusion has emerged as a pivotal
factor in enhancing the performance of medical image classification in recent years. Notably,
Rehman et al. [20] leveraged neural network principles, streamlined feature vectors, and a
variety of machine learning techniques to distinguish between mitotic and non-mitotic cells
in breast cancer histology images. Their approach assigns differential weights to various
features, thereby boosting the model’s efficiency. Similarly, Huo et al. [21] introduced a
novel three-branch hierarchical multi-scale feature fusion network architecture tailored for
medical image classification. This model underscores the significance of integrating both
global and local multi-scale features, affirming its critical role in the domain of medical
image classification.

It should be emphasized that supervised learning approaches are significantly depen-
dent on extensive labeled datasets, a dependency that necessitates resource-intensive and
costly efforts. This typically involves the manual annotation of data by domain experts.
In the realm of medical imaging, the acquisition of labeled datasets is further compli-
cated by privacy considerations, culminating in a scarcity of publicly available labeled
medical datasets.

2.2. Domain Adaptation in Medical Image Analysis

To address the issue of requiring a large amount of expertly annotated data for super-
vised learning models, domain adaptation can leverage knowledge from existing annotated
datasets to jointly train medical image classification models on target unlabeled samples.
This approach circumvents the need for extensive annotation efforts on target domain
medical image data. In recent years, numerous domain adaptation-based medical image
classification methods have been proposed, significantly advancing research progress in
this specialized field [22–24]. For instance, Zhang et al. [22] proposed a multi-modality
transfer learning network with a hybrid bilateral encoder for hypopharyngeal cancer seg-
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mentation. Their method effectively transfers prior experience from large computer vision
datasets to multi-modality medical imaging datasets. Wen et al. [23] integrated multi-level
progressive transfer learning to exploit knowledge acquired from rectum cancer (source
domain) to cervical cancer (target domain) for dose map prediction tasks. Wang et al. [24]
introduced a deep transferred semi-supervised domain adaptation model, achieving robust
histopathological whole slide image classification results even with limited labeled samples.
These studies highlight the successful application of domain adaptation techniques in
various medical imaging tasks, demonstrating their potential for improving classification
performance and expanding the scope of medical image analysis.

Taking into account the aforementioned statements, existing domain adaptation meth-
ods for medical image analysis typically require full access to the source data. However, due
to privacy requirements and strict data protection regulations, accessing the source domain
data is often infeasible. Conversely, source pre-trained models are publicly available to the
target model. Therefore, this paper focuses on investigating domain adaptation methods
that solely rely on accessing the pre-trained source models, specifically for training medical
image classification models in the target domain.

2.3. Uncertainty-Based Transfer Learning Technology

In the realm of transfer learning, the uncertainty inherent in feature representations
poses substantial challenges to the stability and robustness of general image classification
models. Recent advancements in uncertainty-aware transfer learning seek to navigate these
challenges by leveraging uncertainty to enhance model performance. Notably, Hu et al. [25]
explored the intricacies of transferability estimation within domain adaptation, introducing
a non-intrusive method for unbiased transferability estimation. This approach utilizes
uncertainty modeling within adversarial domain adaptation frameworks to refine the
optimization process. Similarly, Pei et al. [26] introduced an innovative uncertainty-induced
methodology for assessing transferability. This technique employs uncertainty as a means
to evaluate the channel-wise transferability of features from the source encoder in scenarios
where source data and target labels are unavailable.

Furthermore, the integration of uncertainty into transfer learning has seen promis-
ing applications within medical image analysis for clinical use cases. Shamsi et al. [27]
developed a deep uncertainty-aware transfer learning framework tailored for COVID-19
detection, employing convolutional neural networks (CNNs) to extract features from
chest X-ray and computed tomography images. This framework incorporates epistemic
uncertainty to identify regions of low confidence in the model’s predictions. Moreover,
Ebadi et al. [28] crafted a deep learning architecture for the sequential analysis of cancer
tumor progression using Cone Beam Computed Tomography (CBCT) images. This model
incorporates an attention mechanism and provides uncertainty estimates for segmentation
tasks, contributing to risk management in treatment planning and enhancing the model’s
calibration and reliability.

Drawing inspiration from these pioneering works, our study introduces an uncertainty-
guided source-free transfer learning approach. This model capitalizes on an uncertainty-
guided mechanism to enable effective feature mapping from the source model to target data,
thereby facilitating knowledge transfer in source-free domain adaptation tasks for medical
image classification. Compared to the aforementioned works, this approach underscores
the potential of integrating uncertainty into transfer learning frameworks to solve inter- and
intra-domain imbalances. It progressively approximates the feature space of the target and
source model’s distributions through various inter- and intra-domain alignment strategies,
improving adaptability and efficacy in domain adaptation scenarios.

3. Method

To release supervised learning from labeled medical images and protect data privacy,
this paper proposes a novel source-free domain adaptation framework for medical image
classification, namely Uncertainty-guided asymmetric Consistency Domain Adaptation
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(UCDA), to learn representative features from histopathological images by solving the
challenges caused by the uncertainties and inter-domain discrepancy.

The Uncertainty-guided Asymmetric Consistency Domain Adaptation (UCDA) frame-
work, illustrated in Figure 2, integrates two core modules: Uncertainty-guided Source-free
Transfer Learning (USTL) and Asymmetric Consistency Learning (ACL) for optimizing
histopathological image classification. USTL pioneers in facilitating secure knowledge
transfer from source domain models to the target domain without direct access to source
data, thereby maintaining utmost data privacy. This module quantifies and mitigates
network uncertainties, generating high-quality pseudo-labels through the identification of
shared characteristics between source and target domains. Subsequently, the ACL module
is instrumental in identifying and leveraging asymmetric features across samples, crucial
for effectively aligning the source model’s feature space with the target domain. This
process not only enhances classification accuracy and robustness but also navigates the
challenges posed by the absence of source data. Moreover, ACL’s focus on inter-domain
asymmetry fosters a comprehensive alignment of feature spaces, ensuring a refined and
secure adaptation process. Collectively, UCDA’s innovative approach underscores its
efficiency and the potential for advancing deep learning applications in medical image
analysis, demonstrating significant improvements in accuracy and model generalizability.

Figure 2. The proposed architecture of the uncertainty-guided asymmetric consistency domain
adaptation. Note that the red box displays the entire model training flowchart. The process begins
with the source domain where histopathological images undergo initial feature extraction through a
source model pre-trained from Ls (Step 1). To address the challenges posed by data privacy and the
unavailability of large-scale annotated datasets, the Uncertainty-guided Source-free Transfer Learn-
ing (USTL) component operates to map the feature space of the source model to the target domain
without requiring access to the source data, which can quantifies and mitigates network uncertainties,
generating high-quality pseudo-labels for target data (Step 2). Concurrently, the Asymmetric Consis-
tency Learning (ACL) component quantifies and utilizes the symmetries and asymmetries between
the source and target domains, facilitating the preservation of crucial inter-domain differences.

3.1. Preliminaries

For the cross-domain histopathological image classification task, we define the datasets
for the source and target domains as Xs =

{
xs

1, xs
2, . . . , xs

i , . . . , xs
Ns
}

and Xt = {xt
1, xt

2, . . . ,
xt

j , . . . , xt
Nt}, respectively. The corresponding labels for the source and target domains are
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defined as Ys =
{

ys
1, ys

2, . . . , ys
i , . . . , ys

Ns
}

and Yt =
{

yt
1, yt

2, . . . , yt
j, . . . , yt

Nt

}
, where Ns and

Nt represent the number of medical images. Notably, the labels in the target domain,
denoted as Yt, are treated as pseudo-labels. Assuming that the model for the UCDA
source domain is denoted as f (·), and the model for the target domain is denoted as
g(·). The training process involves initializing the network parameters of model g(·) with
the completed training of model f (·). During the training of the target domain model,
the network parameters of the source domain model are frozen to simulate a scenario
without access to the source domain data.

In the process of our source-free domain adaptation, two main steps are typically
involved. The first step entails training the source domain model, where the network
parameters are updated through cross-entropy. In the second step, the focus shifts to
maximizing the mutual information between the potential features and the classifier output.

First, the cross-entropy loss function for the pre-trained Source Classification (SC)
model is defined as

Lsc = min
Wsc

−
Ns

∑
i=1

ys
i log f (Wsc, xs

i ) (1)

where Wsc is the network parameters of source classification model f (·).
In the second step, the source data Xs is deactivated, and the network parameters

of the target domain model g(·) are initialized using the parameters WSC of f (·). Sub-
sequently, an information maximization loss Lim is employed to update the network
parameters of g(·).

Lim = −Ep(xt)

C

∑
c=1

ϕc
(

g
(
xt)) log ϕc

(
g
(
xt)) (2)

Ldiv = DKL

(
p̂∥C−11C

)
− log C (3)

where xt is a given target sample, p(xt) denotes the predicted probability vector of xt,
C represents the category number of medical images, and ϕc(x) = exp(xk)/ ∑k exp(xk)
refers to the possibility of c-th representation in the output of the target domain model.
Specifically, Lim is responsible for updating the pseudo-labels for the target domain, while
Ldiv is used to classify the model predictions into C classes.

In addition, due to the inherent differences in data and models between the source and
target domains, aligning the two domains in the absence of source domain data becomes
even more challenging. The fixed source domain model leads to overconfident predictions,
disregarding the discrepancies between domains and resulting in erroneous mappings of
target domain data. To address this, we propose incorporating the uncertainty of neural
network weights into the model predictions. This requires treating the model parameters W
in a Bayesian framework, where the posterior distribution of model parameters is obtained
by adjusting the data X, i.e., p(W | X) = p(W)p(X|W)

p(X)
∝ p(W)p(X | W). The prediction of

the network g(·) for an observation x is given by the predictive posterior distribution, i.e.,

p(yc | x, X) =
∫

W
ϕc(g(x))p(W | X)dW (4)

where yc is the probability belonging to c-th class. It is important to mention that the
posterior p(W | X) in Equation (4) generally lacks a direct analytical solution and there-
fore requires approximation. In order to facilitate this, we engage a local approximation
technique for the posterior. Specifically, we utilize the Laplace Approximation (LA) [29] for
dealing with the model’s uncertainty about weight parameters. Laplace Approximation
(LA), a simple yet effective method for approximate Bayesian inference, approximates
the posterior distribution of these parameters, thereby embodying the model’s uncer-
tainty over them and their impact on the predictions. LA estimates the actual posterior
through the implementation of a multivariate Gaussian distribution, which is centered
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around a locally optimal point, and utilizes a covariance matrix derived from the inverse
of the negative log posterior’s Hessian H. Meaning, p(W | X) ≈ N

(
W | WMAP, H−1)

where H := −∇2
W log p(W | X)

∣∣
WMAP

. Here, WMAP signifies the maximum a posteriori
probability (MAP) estimate of the parameters of the network.

However, this technique has its potential limitations. Laplace approximation de-
mands computing the inverse of the Hessian Matrix—used to comprehend the curvature
characteristics of the distribution—implying computational difficulties and enhancing the
associated computational cost when dealing with larger networks. Another significant
factor would be requiring determining a point around which the approximation is to be set
up; this is generally the mode (maximum) of the distribution, which can also be complex
to compute for larger configurations. Since some large networks have a huge number of
parameters, which makes calculating H very difficult, we also made another simplification
by applying a Bayesian treatment only to hypothesis function g(·), known as the last-layer
Laplace approximation.

p(yc | h, Xs) ≈
∫

w
ϕc(g(h))N

(
W | WMAP, H−1

)
dW (5)

In this part, h denotes the potential representation of the target domain model.
Although the last-layer LA significantly reduces the computational load for larger networks,
calculating the Hessian can present challenges when the class count is high. To stream-
line computations, we hypothesize that H can be Kronecker-factored as H := V ⊗ U.
The ensuing approximation is known as the Kronecker-factored Laplace approximation.

Subsequently, we utilize the estimates of uncertainty for target adaptation through the
implementation of Monte Carlo (MC) integration. The approximate predictive posterior
distributions are as follows:

p(yc | h, Xs) ≈ 1
M

M

∑
j=1

ϕc(g(h)) (6)

Here, M stands for the total count of MC steps. To foster predictions with low entropy,
we further scale the hypothesis outputs by a factor of 1/τ, where W < τ ≤ 1. Eventu-
ally, the definitive weight of each observation xt

j is calculated as wi = wxp(−e), with ‘e’
representing the entropy of the predictive mean.

3.2. Uncertainty-Guided Source-Free Transfer Learning

In a typical transfer learning training task, there exists a divergence in data distribution
and content between the source and target domain datasets, resulting in imbalances both
inter- and intra-domain. This lack of alignment is referred to as “unalignment”. However,
by adapting the source domain data, we can progressively approximate the feature space
of the target and source domain models through various inter- and intra-domain alignment
strategies. Nevertheless, this task becomes more challenging in the case of source-free
domain adaptation since the source data are inaccessible in this scenario.

In this paper, we directly leverage the pre-trained source model to transfer knowledge
to the target domain. However, a significant challenge arises when using the source
model to generate pseudo-labels for target data, as it may result in uncertain predictions.
To address this uncertainty issue, we propose an uncertainty-guided transfer learning
strategy, which can quantitatively estimate the uncertainty of the source domain model to
prevent reduced accuracy caused by overconfidence in the pseudo-labeling process.

First, we conduct a complete pre-training session by feeding the source domain data Xs

into model f (·). This simulation is performed to establish the source domain model, which
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will remain unchanged in subsequent tasks. During this training session, the parameters of
the source network are updated by minimizing the source loss Ls.

Ls = min
Ws

−
Ns

∑
i=1

ys
i log f (Ws, xs

i ) (7)

where Ws represents the source network parameters of f (·). Through the aforementioned
update approach, the network parameters are adjusted, enabling the source domain net-
work f (·) to effectively extract features and recognize patterns from the source domain
data. In other words, the source domain model gains the capability to capture specific
lesion characteristics from medical images within the source domain. This serves as a
crucial foundation for our subsequent unsupervised domain adaptation tasks, even in the
absence of source domain data.

To evaluate the uncertainty in the subsequent target domain training task, we employ
the Laplace approximation method to estimate the posterior distribution of the predicted
values. This approach is described in Equation (5) in the preliminary section.

p(yc | h, Xs) ≈
∫

w
ϕc(g(h))N

(
W | WMAP, H−1

)
dW (8)

With the completion of the aforementioned steps, we are prepared for the subsequent tasks.
Prior to commencing the training of the target model, we initialize g(·) using the frozen
network parameters of f (·). This initialization ensures that the target model starts with the
knowledge transferred from the source domain model.

yt
j = softmax

(
g
(

Wg, xt
j

))
(9)

where Wg denotes the parameters of the target network, and yt
j is the generated pseudo-

label for the target data.
As for the pseudo-labeling process in the target domain, we apply a filtering mecha-

nism by ranking the predicted probabilities. Specifically, for the first ten epochs, both the
probability predicted from source model ps

j = f (Ws, xt
j) and the one from target model

pt
j = g(Wt, xt

j) must exceed the probability threshold α in order to pass the screening
for pseudo-labels.

3.3. Asymmetric Consisteny Learning

Transfer learning between the source model and target data requires addressing
both inter-domain feature differences and intra-domain feature biases, which result in
an asymmetric feature mapping from the source to the target domain. Consequently,
the focus of this paper includes investigating asymmetric feature learning. To accomplish
this, we propose an Asymmetric Consistency Learning module that facilitates the successful
asymmetric mapping of the feature space from the source domain into the target domain.
This module enables more accurate knowledge transfer for medical image analysis.

Continuing from the previous section, we proceed with the basic network training
using the pseudo-labels generated and unlabeled data Xt obtained from the target dataset.
This training process is carried out to minimize the following loss Lt:

Lt = min
Wt

−
Nt

∑
i=1

yt
j log g

(
Wt, xt

j

)
(10)

where Wt represents the parameters of the target network.
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This training process extends over several epochs, allowing the target domain model
to rapidly acquire feature extraction capabilities. Essentially, this process can be viewed as
a form of fine-tuning, wherein the target domain model, initialized with parameters from
the source domain model, undergoes domain-specific alignment. This alignment enables
the target domain network to emphasize the lesion characteristics present in the target
domain data, leveraging the knowledge and representations acquired from the source
domain network.

Next, we introduce the Asymmetric Consistency Learning (ACL) mechanism to align
the target domain in an asymmetric manner from the source domain, without relying on
the assistance of source data. The asymmetric consistent similarity sac between xt

i and xt
j is

calculated by,
sac(xt

i , xt
j) = sim

(
f (xt

i ), g(xt
j)
)

(11)

where sim() represents the cosine similarity. By utilizing this approach, we obtain a
quantifiable measure of asymmetric dissimilarity between the feature spaces of the source
and target models. This forms the fundamental principle for establishing an asymmetric
consistency in our framework.

With the similarity computed as described above and utilizing the approximation
strategy mentioned in Equation (6) in the preliminary section, we derive the asymmetric
consistency loss Lac and uncertainty-guided adaptation loss Lua as follows.

Lac = − ∑
x∈Xt

sac(xt
a, x)− log ∑

xt
b∈∪(xt

a ,x)

esac(xt
a ,xt

b)

 (12)

Lua = −E
p
(

xt
j

) C

∑
c=1

wσc

(
g
(

xt
j

))
log σc

(
g
(

xt
j

))
(13)

where U(a, x) = {b ∈ U(a) : sac(a, b) ≤ sac(a, x)} is the set of samples in Xt and denotes
those examples that are farther away from a than x in Lac. xt

a denotes the anchor sample a,
which is randomly selected from the training batch, to formulate the set U(a, x). For Lua,
σc() denotes the output probability belonging to c-th class.

In this way, Lac enables inter-domain alignment between the target and source do-
mains, while Lua ensures a safer and more precise strategy for intra-domain alignment
within the target domain. As a result, the target domain network retains its understanding
of lesion features from the source domain data, while also learning lesion features specific
to the target domain. This dual learning process guarantees optimal model performance by
effectively harnessing knowledge from both domains.

To further optimize Lac, we devise a contrastive loss Lc and ensure sac(a, a) ≤ sac(a, x)
in the following way:

Lc =
1

2Nt

Nt

∑
n=1

yl2 + (1 − y)max(margin−l, 0)2 (14)

where y is the label indicating whether the two samples in Xt match or not. The variable l
denotes the Euclidean distance between two samples, and m signifies the distance threshold.

Finally, the overall loss function in target domain adaptation is shown below,

minL = λ1Lac + λ2Lua + λ3Lc (15)

where λ1, λ2, and λ3 are the balance parameters. As a conclusion, the network training
steps are summarized in Algorithm 1.
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Algorithm 1 The training steps of UCDA

1:Input: The pre-trained source model f (·) from Xs and Ys, the target data Xt =
{xt

1, xt
2, . . . , xt

j , . . . , xt
Nt}

2:initial: The pre-trained source model f (·), and the target model g(·).
Repeat:

Send the images xt
j ∈ Xt to g(·);

Generate the pseudo-labels Yt =
{

yt
1, yt

2, . . . , yt
j , . . . , yt

Nt

}
for this batch via Equation (9);

Update the parameters of the target model via Equation (15);
Calculate the similarity between asymmetric samples via Equation (11);
Update the parameters of g(·) via Equation (15);

Until Convergence;
Output The target model g(·).

4. Experiments
4.1. Database Description

To evaluate the effectiveness of our UCDA approach in source-free medical image
classification, we conducted experiments using three publicly available histopathological
image datasets: NCT-CRC-HE-100K [30], PCam [31], and LC25000 [32].

The NCT-CRC-HE-100K dataset [30] includes 100,000 unique image patches from
86 HE-stained human cancer tissue slides and normal tissue samples derived from the NCT
biobank (National Center for Tumor Diseases) and the UMM pathology archive (University
Medical Center Mannheim). The dataset is meticulously categorized into nine distinct
tissue classes by expert pathologists.

In contrast, the PCam dataset [31] has 327,680 color images (96 × 96 px) from histopatho-
logic scans of lymph node sections, each labeled for the manifestation of metastatic tissue.
Originating from the Camelyon16 Challenge [33], PCam provides a benchmark for machine
learning models, offering a dataset size larger than CIFAR10 but smaller than ImageNet,
hence trainable on a single GPU.

Finally, the LC25000 dataset [32] houses 25,000 histopathological images classified
into five different classes; for our specific objectives, we selected a subset of 15,000 images
related to lung pathology, including lung adenocarcinoma, lung squamous cell carcinoma,
and benign lung tissue.

4.2. Implementation Details

Parameter Settings: The experiments for UCDA were conducted on two Nvidia
GeForce 3090 GPUs using the PyTorch 1.8 framework. The ResNet50 architecture was
used as the backbone network, and all networks were initialized with pre-trained models
from ImageNet. The datasets were augmented with random flips, cropping, and rotations.
To evaluate the effectiveness of our UCDA method, we first performed basic training on
the source domain to simulate the scenario where no source domain data are available for
subsequent adaptation. Before inputting medical images into the network, preprocessing
was applied, and all images were scaled to dimensions of 512 × 512 pixels. During the
training of UCDA, we employed the Adam optimizer with a learning rate of 10−3 with
weight decay 10−4. The training process spanned a total of 100 epochs, with a batch size
set to 32. The classifier consisted of multiple linear layers, and the balancing coefficients
are set as λ1 = 0.3, λ2 = 0.2, and λ3 = 0.5, where the threshold parameter is m = 0.85.

Training Steps: In model training, UCDA first utilized the uncertainty of the source
domain model to select high-confidence samples from the network’s predictions, combining
them with the target domain model, and then the model was trained by optimizing the
loss function in the target domain. In order to demonstrate the capability of our UCDA in
medical image analysis, we incorporate labeled target images with varying ratios to fine
tune the network. This process aims to enhance the semi-supervised performance of the
source-free domain adaptation.
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Data Division: To perform transfer learning, we employ the NCT-CRC-HE-100K dataset
as the source domain for pre-training a medical image classification model. This pre-trained
model is then utilized for source-free domain adaptation on the other two histopathology
datasets. For each target domain, we start by replacing the prediction layer with the cor-
responding class number specific to that dataset, to create the UCDA model. Moreover,
sufficient validations are also conducted in the following discussion. Regarding the target
domains, we incorporated the PCam dataset and LC25000 datasets for lung cancer diagno-
sis. Specifically, the PCam dataset was utilized to detect the presence of metastatic tissue,
while 15,000 images from the LC25000 dataset were employed to identify lung pathology
related to lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue.
Taking NCT-CRC-HE-100K as the target domain, we utilize the PCam dataset as a source
to conduct the source-free domain adaptation, where the experimental setting is similar
to that previously mentioned.

Evaluation: The performance of the proposed UCDA method and the compared
methods is evaluated using accuracy and macro F1-score on the testing set. Additionally,
the Receiver Operating Characteristic (AUC) curve, t-Distributed Stochastic Neighbor Em-
bedding (t-SNE), and loss curves visualization are utilized to demonstrate the classification
capability of the UCDA model. Furthermore, ablation studies are conducted to assess the
effectiveness of the major components of UCDA.

4.3. Experimental Results

To thoroughly assess the effectiveness of our UCDA approach, we conducted val-
idation experiments on the PCam and LC25000 datasets using transfer learning from
the NCT-CRC-HE-100K pre-trained model. To establish a comprehensive comparison,
we also incorporated three state-of-the-art unsupervised methods, namely Rotation [34],
DeepCluster [35], and DARC [36], which employ fine-tuning on the labeled data.

As presented in Table 1, the experimental results report the performance of our UCDA
approach in various labeled data ratios. Given 1% labeled data, the UCDA method demon-
strates higher accuracy and F1 scores compared to Rotation, DeepCluster, and DARC.
The UCDA method achieves an accuracy of 86.83% (PCam) and 90.91% (LC25000), with cor-
responding F1 scores of 86.60% (PCam) and 90.89% (LC25000); At a 10% labeled data ratio,
the UCDA method continues to exhibit superior performance. It achieves an accuracy
of 88.65% (PCam) and 96.59% (LC25000), with F1 scores of 88.68% (PCam) and 96.52%
(LC25000). Compared to other methods, while the UCDA method’s accuracy on LC25000 is
slightly lower than DARC and DeepCluster, it still outperforms Rotation; At a 50% labeled
data ratio, the UCDA method achieves high accuracy and F1 scores on both PCam and
LC25000. Its accuracy reaches 89.78% (PCam) and 96.36% (LC25000), with corresponding
F1 scores of 89.63% (PCam) and 96.30% (LC25000). It is worth noting that although the
UCDA method’s accuracy on LC25000 is slightly lower than DARC, it remains superior
to them on PCam. As for the NCT-CRC-HE-100K dataset, our UCDA obtains significant
advantages compared to DeeCluster [35] and DARC [36], where it surpasses DARC with
2.03% accuracy and 2.09% F1-score on 1% labeled data. These results verify that the pro-
posed UCDA has obvious superiority compared to existing methods in the source-free
domain adaptation models.

To summarize, the UCDA method demonstrates high performance at different labeled
data ratios, providing better classification accuracy than other methods. These results
highlight the potential and effectiveness of the UCDA method in the field of medical image
analysis, offering strong support for further research and applications.
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Table 1. Comparing performance on PCam and LC25000 datasets with different labeled data ratios.

Labeled Data Methods
PCam LC25000 NCT-CRC-HE-100K

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

1%

Rotation [34] 80.81 80.68 88.27 88.25 88.27 88.01
DeepCluster [35] 84.52 84.36 87.26 87.32 91.94 91.85
DARC [36] 85.50 85.52 90.76 90.81 92.62 92.63
UCDA (Ours) 86.83 86.60 90.91 90.89 94.65 94.72

10%

Rotation [34] 83.95 83.64 93.65 93.45 94.59 94.46
DeepCluster [35] 87.56 87.50 97.76 97.66 97.57 97.65
DARC [36] 87.77 87.7 97.95 97.97 98.57 98.50
UCDA (Ours) 88.65 88.68 96.59 96.52 99.62 99.52

50%

Rotation [34] 86.03 86.12 97.61 97.66 97.85 97.89
DeepCluster [35] 89.19 89.22 99.59 99.54 98.47 98.45
DARC [36] 88.75 88.7 99.88 99.81 99.57 99.53
UCDA (Ours) 89.78 89.63 96.36 96.30 99.65 99.60

Note: The bold content is the highest result in comparison.

The ROC Performance of UCDA

To assess the effectiveness of the UCDA method in medical image classification, we
conducted ROC curve analysis on the PCam and LC25000 datasets with 1% labeled data.
The corresponding ROC curves are presented in Figure 3a,b. ROC curves are widely used
in signal detection theory for evaluating classification systems, providing valuable insights
into their performance.

ROC analysis enables us to make objective and unbiased decisions, irrespective of costs
or benefits. It allows us to visualize the trade-off between sensitivity (true positive rate)
and specificity (1—false positive rate) at different decision thresholds, thereby assessing
the discriminatory power of the UCDA method under various scenarios.

As depicted in Figure 3a,b, the ROC curves for the PCam and LC25000 datasets exhibit
AUC values of 0.936 and 0.963, respectively. These results indicate that the UCDA method
demonstrates excellent performance in medical image classification tasks on these datasets.
Moreover, the AUC values exceeding 0.9 further reinforce the superiority, robustness,
and generalization capability of the proposed UCDA method.

Figure 3. The ROC curves of our UCDA model on PCam and LC25000 datasets, where only 1% of the
data were labeled.

4.4. Visualization of the Learned Representations

In addition to evaluating UCDA’s performance using ROC curves, we conducted
further analysis of the datasets. This involved generating t-distributed Stochastic Neighbor
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Embedding (t-SNE) visualizations to explore the extracted features. t-SNE is a widely
used data visualization technique for dimensionality reduction, facilitating the intuitive
representation of high-dimensional data and revealing its distribution.

As illustrated in Figure 4, the t-SNE visualizations on PCam and LC25000 exhibit
distinct separation of features extracted by the UCDA network into distinctive classes. This
observation provides evidence that UCDA effectively captures discriminative information
from medical images, resulting in improved classification accuracy of the model. The vi-
sualizations serve as compelling evidence of UCDA’s efficacy in enhancing the model’s
performance for medical image classification tasks. They underscore UCDA’s ability to
accurately discriminate between different classes with a high level of precision.

Figure 4. (a,b) are the respective feature visualizations of the UCDA model on PCam and LC25000
datasets with 1% labeled data.

4.5. Performance with Different Backbone Networks

To further validate our UCDA method, we conducted extensive experiments to im-
plement UCDA using different backbone networks, namely ResNet18, ResNet34, and
ResNet50, giving 1% labeled target data on the PCam dataset. The results, as illustrated
in Figure 5, affirm that all variants of UCDA with diverse backbones achieve satisfactory
classification performance throughout model training.

Figure 5. Variation in accuracy obtained using different backbone networks on the Pcam dataset.
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In Figure 5, the performance of the UCDA model on different backbone networks is
analyzed based on the provided medical images. The results indicate that as the complexity
of the backbone network increases, the UCDA model achieves higher accuracy on both the
PCam and LC25000 datasets. Specifically, when using the ResNet18 backbone network,
the UCDA model achieves 81.4% accuracy on the PCam dataset and 82.3% accuracy on the
LC25000 dataset. By utilizing the more complex ResNet34 backbone network, the model’s
accuracy improves to 83.3% on PCam and 86.5% on LC25000. Furthermore, employing the
deeper ResNet50 backbone network yields even higher accuracy, with the model achieving
86.8% on PCam and 90.9% on LC25000.

These findings suggest that selecting an appropriate backbone network is crucial for
improving performance on medical image classification. Notably, the results highlight
the advantage of deeper network structures in capturing image features and enhancing
classification accuracy. While the choice of backbone network significantly influences the
model’s performance, it is important to consider other factors such as data preprocessing,
loss function selection, and training strategies. These additional factors should be carefully
optimized to further enhance the overall performance of the UCDA model.

4.6. Ablation Study
4.6.1. Effectiveness of the Uncertainty-Guided Adaptation Loss

To evaluate the efficacy of the proposed uncertainty loss (Lua), we conducted supple-
mentary experiments where we removed the uncertainty loss and retained only the asym-
metric consistency loss for evaluating model performance, referred to as CDA (Figure 6).
Specifically, using the PCam dataset with 1% labeled data, we compared the overall perfor-
mance of UCDA with and without the uncertainty loss.

Figure 6. Performance change in UCDA after removing uncertainty loss.

The outcomes presented in Figure 6 demonstrate that when incorporating the uncer-
tainty loss in the proposed approach, UCDA outperforms the model without the uncertainty
loss in terms of accuracy and F1-score, achieving improvements of 3.82% and 4.13%, re-
spectively. These findings validate the effectiveness and indispensability of the uncertainty
loss, indicating its ability to enhance the accuracy of pseudo-labels. Consequently, UCDA
becomes more cautious in differentiating between lesion features within medical images.
The inclusion of the uncertainty loss contributes value by refining model predictions and
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improving the quality of generated pseudo-labels, which collectively contribute to the
overall enhanced performance of UCDA.

4.6.2. Effectiveness of the Asymmetric Consistency Loss

Furthermore, in addition to the performance comparison with the uncertainty loss, we
also evaluated the impact of removing the asymmetric consistency loss (Lac) on UCDA’s
performance, as depicted in Figure 6 (UDA). For this purpose, we conducted additional
experiments on the PCam dataset where we excluded the asymmetric consistency loss and
analyzed the resultant changes in model performance.

As illustrated in Figure 6, when the asymmetric consistency loss is incorporated into
our method, UCDA exhibits superior performance compared to the model without the
asymmetric consistency loss. Specifically, UCDA achieves improvements of 2.35% in ac-
curacy and 2.86% in F1-score. These findings validate the effectiveness of the asymmetric
consistency loss in promoting domain alignment within UCDA. By leveraging the asym-
metric loss, UCDA accurately maps the feature space from the source domain to the target
domain, facilitating enhanced alignment between the two domains. Consequently, UCDA
demonstrates improved performance in lesion recognition, benefiting from the refined
domain alignment achieved through the asymmetric consistency loss.

4.6.3. Parameter Analysis

In our UCDA method, the balance parameter of the final loss function (Equation (15)),
denoted as λ1, λ2, and λ3, jointly decide the model’s sensitivity toward asymmetric consis-
tency loss Lac, uncertainty-guided adaptation loss Lua, and the contrast loss Lc. Setting the
balance parameters appropriately is essential as it assists in directing the learning toward
our selected objective. During our experiments, these hyperparameters have undergone
exhaustive tuning, which is shown in Figure 7.

Figure 7. The parameter analysis for asymmetric consistency loss Lac, uncertainty-guided adaptation
loss Lua, and the contrast loss Lc in Equation (15), which is conducted on PCam with 1% labeled data.

It is worth noting that although we have landed on effective configurations for λ1,
λ2, and λ3 with regard to the PCam dataset, these set values reached optimal accuracies
when λ1 = 0.3, λ2 = 0.2, and λ3 = 0.5. Theoretically, the ideal range and values for these
parameters will vary according to the distinct characteristics of different data and should
be ascertained each time via astute tuning tailored explicitly for specific tasks.
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5. Discussion and Conclusions

In this paper, we propose a novel approach called Uncertainty-guided Asymmetric
Consistency Domain Adaptation (UCDA) for medical image classification. The UCDA
approach leverages the Uncertainty-guided Source-free Transfer Learning (USTL) and
Asymmetric Consistency Learning (ACL) modules to enhance domain adaptation perfor-
mance. The major issue this paper solved is to release the necessity of accessing source data
in domain adaptation for medical image classification. The USTL module is introduced as
an uncertainty-guided domain adaptation method, enabling effective alignment between
the source and target domains. By quantifying the uncertainty of the source domain model,
the UA module ensures secure knowledge transfer from the source to the target domain,
preventing overconfidence in the network. Furthermore, the ACL module measures the
discrepancy between the feature spaces of the source and target models. It incorporates
inter-domain and intra-domain metric learning loss functions to improve the performance
of the target domain model. Experimental results demonstrate the superiority of the pro-
posed UCDA method compared to baseline methods, achieving better performance while
reducing annotation workload. Across three datasets, UCDA consistently outperforms
several baseline methods, revealing its potential for medical image classification tasks.

However, it is important to note that UCDA still requires a certain amount of labeled
medical images. One limitation of UCDA is that its performance might deteriorate when
facing new scenarios with significant distribution differences from previous domains.
Therefore, future research will focus on exploring transfer learning and unsupervised
learning techniques to further enhance medical image classification performance. By
addressing the limitations and continuously advancing the proposed approach, we aim
to contribute to the field of medical image analysis and provide valuable insights for
real-world applications.
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