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Abstract: Survival analysis is widely used in fields such as medical research and reliability engi-
neering to analyze data where not all subjects experience the event of interest by the end of the
study. It requires dedicated methods capable of handling censored cases. This paper extends the
collection of techniques applicable to censored data by introducing a novel algorithm for interpretable
recommendations based on a set of survival action rules. Each action rule contains recommendations
for changing the values of attributes describing examples. As a result of applying the action rules,
an example is moved from a group characterized by a survival curve to another group with a sig-
nificantly different survival rate. In practice, an example can be covered by several induced rules.
To decide which attribute values should be changed, we propose a recommendation algorithm that
analyzes all actions suggested by the rules covering the example. The efficiency of the algorithm has
been evaluated on several benchmark datasets. We also present a qualitative analysis of the generated
recommendations through a case study. The results indicate that the proposed method produces
high-quality recommendations and leads to a significant change in the estimated survival time.

Keywords: recommendations; survival analysis; survival action rules

1. Introduction

Action rule induction is a machine learning technique that enables the creation of
action models. Based on the input feature vector, the action model generates recommenda-
tions for changes in attribute values. The objective is to change the assignment of a given
example, representing a particular group (referred to as the source group) so that it matches
examples from another group (referred to as the target group). Typically, this approach
does not take into account the specific actions required to change the values of a particular
attribute. In particular, action rules previously have only been defined for classification
data where each example belongs to one of several decision classes.

An important feature of rule-based action models is their interpretability. However,
the large number of rules in the model can naturally lead to comprehension problems.

Many algorithms have been proposed for action rule induction. In particular, Sikora et al. [1]
introduce a sequential covering action rule induction algorithm for classification problems
and a method for verifying the quality of the generated rules.

In [2], we presented an algorithm for the induction of action rules for censored data,
which is the first proposal for the induction of survival action rules. The algorithm can be
used, for example, in medical data and reliability analysis. The article [2] focuses solely
on knowledge discovery through the induction of a set of survival action rules without
addressing prediction. Prediction here involves making specific recommendations for
changing attribute values for a given example (e.g., a test example). The application of
these changes should result in the considered example being moved to an area of the
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attribute space where there are examples with a significantly different survival rate than
the considered example before the changes.

If each example were covered by only one rule, the procedure would be straightfor-
ward: simply make the changes recommended by the rule applicable to that particular
example. In practice, however, examples are covered by many rules, sometimes containing
conflicting recommendations. This scenario represents one of the main scientific problems
addressed in this paper. Consequently, there is a need to develop a method for resolving
conflicts between rules, similar to how conflicts are resolved in classification systems.

This article presents a proposal for an algorithm for generating recommendations
based on a set of survival action rules. The main contribution of this article is the proposal
of such an algorithm. Based on the induced survival rules, the algorithm builds a special
meta-table containing information about all elementary conditions (elementary actions)
that constitute the induced rules. In this meta-table, conflict resolution between rules
covering the example is solved by inducing a special meta-action survival rule. The meta-
action survival rule contains the actions that maximally differentiate the survival rates,
characterizing the example before and after the application of these actions.

The efficiency of the algorithm was evaluated on several benchmark datasets. In
addition, we present a qualitative analysis of the generated recommendations through a
case study.

The recommendation algorithm introduced in this study can be considered to be a spe-
cialized counterfactual explanation method tailored for survival data analysis. So far, only
one counterfactual explanation method dedicated to survival data has been proposed [3].
Furthermore, this method operates with datasets that exclusively contain numerical at-
tributes. It generates recommendations for a specific instance without generating a global
action model.

The recommendation algorithm presented in the article has several unique features:

• it is based on a global action model represented by survival action rules,
• recommendations for a specific instance are generated based on the fusion of informa-

tion contained in the action model,
• the method can be applied to datasets containing numerical as well as categorical attributes,
• the algorithm uses a computationally efficient hill climbing strategy to search recommendations.

The article also presents a proposal for verifying the quality of the recommendation
algorithm. The proposed verification method does not require observing an example
after the recommendations have been applied. An independent arbiter is used to verify
whether the application of the recommendations actually changes the value of the survival
rate estimated for the example. The arbiter is trained on a training dataset and has very
good predictive abilities for estimating the survival rate (in the article, we use gradient
boosting [4]).

For an unseen (e.g., test) example x, we denote by rec(x) the example whose attribute
values were changed according to the recommendation algorithm. If there is no statistical
difference between the survival rates for rec(x) estimated by the recommendation algorithm
and the arbiter model (using the log-rank test), we assume that the attribute value changes
suggested by the recommendation algorithm were successful.

The existing literature on counterfactual explanation and action rule induction has not
emphasis the evaluation of the recommendations produced by these techniques. Incorpo-
rating an external arbiter enables the validation of whether the modifications proposed by
recommendation algorithms effectively impact the estimated survival time or rate.

The article is organized as follows. The Section 2 contains a brief literature review
of survival analysis and action rule induction. Section 3 introduces survival action rule
induction and then explains the principles of defining a meta-table and the recommendation
induction algorithm. Section 4 presents both quantitative and qualitative experimental
results and discusses the implications of the findings obtained from these results. Section 5
concludes the article and includes suggestions for future work.
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2. Related Work

The approach presented in this article is based on survival analysis, action rules, and, to some
extent, a novel technique for interpreting machine learning models—counterfactual explanations.

Survival analysis is used to study processes in which the time that elapses before a
particular event occurs is of interest. It is based on statistical and machine learning methods.
Statistical methods use a univariate approach to assess the impact of a single factor on a
process [5,6]. Multivariate statistical methods, on the other hand, take into account more
than one factor and allow the strength of the impact of each factor to be determined [7].
Statistical methods can be further classified into non-parametric approaches, such as
Kaplan–Meier survival curves [8] or the log-rank test [9]; semi-parametric approaches,
such as the Cox regression model [10]; and parametric approaches, including proportional
hazard models [11].

Machine learning methods used in survival analysis include [12]: decision trees [13–15], sur-
vival rules [16,17], support vector machines [18,19], neural networks [20,21], and Bayesian
networks [22,23].

Ensemble methods have also been proposed for survival data analysis, such as ran-
dom forests [24,25] and gradient boosting [25,26]. Recently, several deep neural network
architectures have been proposed for analyzing survival data [27–30].

To date, only Badura et al. [2] have addressed the challenge of action rule mining for
survival analysis. In contrast, there are numerous methods for applying action rules to
classification problems. The concept of action rules for classification was first introduced by
Raś and Wieczorkowska in [31]. They proposed a rough set-based approach that generated
rules using reducts and then created action rules based on them. The rough set-based
method was also employed by Tsay and Raś in the DEAR system [32,33]. Generally, two
approaches are commonly used for action rule learning. The first approach involves
inducing classification rules first and then deriving action rules based on these rules.
This category includes the previously mentioned rough set-based methods. In the latter
approach, action rules are generated directly from data. The direct induction of action rules
is based on a priori-like algorithms [34–36], heuristic strategies [1,37,38], or evolutionary
strategies [39,40].

In most cases, the aforementioned approaches to action rule learning cannot efficiently
handle large datasets. To address this problem, some authors have proposed distributed,
partition-based methods. Bagavathi et al. [41] focus on vertical (i.e., by columns) data
splitting using information granules. Benedict and Raś [42] utilize vertical partitioning
based on attribute correlation. Tarnowska et al. [43] use both vertical and horizontal (i.e., by
rows) data partitions.

It is worth noting that decision trees [44–46] and decision tree ensembles [47,48] have
also been used for action and recommendation mining.

Works such as [49,50] focus on measuring the expected effects of interventions (actions)
suggested by decision rules.

A methodology similar to our approach is the counterfactual explanation. This is an
example-based explainability technique used to explain a particular outcome of a machine
learning model. The task of counterfactual explanations is to identify the necessary changes
that would change the model’s decision. Counterfactual explanations provide a post hoc
interpretation of a particular decision made by machine learning models.

Wachter et al. [51] defined the counterfactual explanation problem as an optimiza-
tion problem with two criteria. The loss function measures the following: the distance
between the model prediction for the counterfactual x′ and the desired outcome y′, as
well as the distance between the instance to be explained and its counterfactual outcome.
Dandl et al. [52] consider additional criteria, such as the number of features to be changed.
A comprehensive review of the literature on counterfactual explanation methods can be
found in [53,54]. Most counterfactual explanation methods are defined for classification
and regression problems, but some articles also present counterfactual explanation methods
for survival models [3,55,56].
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The main differences between counterfactual explanations and action rules lie in the
level of explanation and searching strategies.

Counterfactual explanations are generated separately for each example, making it
a local explanation method. These methods mainly use global optimization methods
(e.g., genetic algorithms). Rule-based methods generally use heuristic strategies (e.g., hill
climbing) and allow the generation of an interpretable action model for the entire dataset.

3. Methods

In survival models, when the data lacks complete information on the timing of an
event, we are dealing with so-called censored data [57]. There are three main types of
censoring [58]: right censoring occurs when the true event time exceeds the observation
period; left censoring happens when the event takes place before the observation begins
without a precise time; and interval censoring arises when the event is known to have
occurred within a specific period, but the exact moment remains unknown.

Right-censored data are most commonly used in survival analysis. There are several
reasons for right censoring: the observation period of the phenomenon only covers a certain
period of time, the object of observation is removed from the study, or the observation of
the object is interrupted for external reasons.

The main applications of survival analysis include estimating and interpreting the
survival function, comparing survival curves across different groups of observations, and
evaluating how conditional attributes affect survival time.

The survival function, together with the hazard function, is of particular interest in
the analysis of survival data. To estimate a survival function from observed survival times
without assuming an underlying probability distribution, the Kaplan–Meier estimator is
recommended [6]. For each time interval, the probability of survival is calculated as the
number of surviving subjects divided by the number of subjects at risk.

3.1. Basic Notions

Consider a set D(A, T, δ) of |D| examples. Each example is described with a set of
attributes A = {a1, a2, . . . , a|A|}, an observation time T, and a survival status δ.

A straightforward and understandable form of knowledge representation rules. In
general, rules take the form of an implication: IF φ THEN ψ, where φ is the premise of
the rule and ψ is the conclusion. In rule-based reasoning, the premise φ determines the
conditions that must be satisfied for the conclusion ψ to be true. The rule premise takes the
form of a conjunction of elementary conditions wi ≡ ai ⊙ vi, where vi is an element of the
domain of the attribute ai, and ⊙ is a relation (= for symbolic attributes or <,≤,>,≥,∈
for ordinal and numerical attributes). An example is considered to be covered by a rule if it
satisfies the conditions specified in the rule’s premise. The conclusion ψ of a rule varies
based on its type, including classification, association, regression, survival, or action rules.

In the case of survival rules, the conclusion is the estimator of a survival function (e.g.,
the Kaplan–Meier estimator). A survival rule, therefore, has the following form:

IF w1 ∧ w2 · · · ∧ wn THEN Ŝ. (1)

The survival function resulting from the conclusion of an action rule describes the
survival time of all examples covered by the rule. A survival action rule is a combination of
two action rules:

IF w1S → w1T ∧ w2S → w2T · · · ∧ wnS → wnT

THEN ŜS → ŜT .
(2)

An action rule’s premise is composed of a conjunction of elementary actions. Each
elementary action, denoted as wiS → wiT , signifies a modification in the attribute ai’s
value. This includes the elementary action’s premise, wS, outlining the initial value range
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of the attribute, and the elementary action’s conclusion, wT , detailing the desired target
value range.

The survival action rule can be decomposed into two survival rules (called source (3)
and target (4) rules):

IF w1S ∧ w2S · · · ∧ wnS THEN ŜS, (3)

IF w1T ∧ w2T · · · ∧ wnT THEN ŜT . (4)

Applying the actions contained in the premise of the survival action rule (2) results
in a change in the estimated survival time for the examples covered by the source and
target rules.

For an elementary action wiS → wiT, three cases can be distinguished: wiS ̸= wiT,
wiS = wiT, and the last case where the range of the target part is not specified (i.e., wiS → ANY).
The first case represents a real change in the value of the attribute ai, while the second
represents the preservation of the attribute value. It can be said that, in the second case,
the attribute value should not be changed, and in the third case, the attribute can take
any value.

Example 1. To illustrate the concept of survival action rules, let us consider the body mass index
(BMI), which measures the proportionality of body weight in relation to height and age. It is well
known that people classified as overweight or obese have a higher risk of premature death than those
with a normal BMI.

A normal BMI is between 18.5 and 24.9. A BMI between 25.0 and 29.9 is considered
overweight, while a BMI of 30.0 or higher is considered obese.

Now, let us define two groups of people characterized by BMI values as follows: BMI > 30
and BMI ∈ [19, 25].

These groups are characterized by two different survival curves, as shown in Figure 1. The
survival action rule (5) states that a reduction in BMI to the range [19,25] will increase the estimated
survival time, as shown by the curve S2.

IF BMI > 30→ BMI ∈ [19, 25]THEN S1 → S2. (5)

Figure 1. Synthetic data—Kaplan-Meier plots for two groups S1 and S2 used in the illustrative
example of survival action rules concept.

3.2. Survival Action Rule Induction

In this section, we provide a brief overview of our algorithm proposed in [2] for
generating an action rule set to be applied to the analysis of censored data (see Algorithm 1).
The rule set consists of survival action rules. The algorithm is essential for understanding
the subsequent content.
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Algorithm 1 An action rule set induction algorithm for censored data.

Require:
D(A, T, δ)—a dataset described by attributes A, observation time T, and survival status δ
P—a set of input parameters
As—a set of stable attributes from the set A

Ensure: R—a set of survival action rules
1: function INDUCTIONOFSURVIVALACTIONRULES(D, P)
2: R← empty set
3: Du ← D ▷ a set of examples that are not covered
4: while Du ̸= ∅ do
5: r ← SPECIALIZE(Du, P, As)
6: r ← PRUNE(Du, r, P)
7: if r ̸= ∅ then R.INSERT(r)
8: Dc ← COVEREDEXAMPLES(r, Du) ▷ this function returns examples from the set

D covered by rule r
9: Du ← Du \ Dc

10: end while
11: return R
12: end function

Algorithm 1 outlines the main loop that implements rule set induction. In each loop, a
new rule is formed through a two-step process: first, the rule is specialized (referenced in
line 5 of Algorithm 1), and then it is pruned (mentioned in line 6 of the same algorithm).
The loop run ends with the elimination of the examples that the newly formed rule covers
from the pool of examples yet to be covered (line 9). If the process of creating a rule yields
one with no conditions in its premise, such a rule is excluded from the final set of rules
(line 7), signaling that it is impossible to derive a new actionable rule. The process of rule
induction terminates when such an empty rule, which applies to all examples in the dataset
D, is formed.

When comparing the source and target survival curves, it is clear that their relative
positions are not constant. The log-rank measure [6] does not take into account the relative
position of these curves. It is a symmetric measure that only gives the maximum distance
between the curves. In contrast, the proposed algorithm can generate three types of rules:
improving (i.e., seeking actions that increase survival), worsening (i.e., seeking rules that
decrease survival), and arbitrary rules (i.e., allowing the simultaneous induction of both
types of rules). The type of rules generated is determined by the run mode—an algorithm‘s
parameter. During the induction of a new action rule, the area under the survival curve
and the survival probability (using the Kaplan–Meier estimator) are measured. For the
improving rule, both the area and the probability of the target rule should be higher,
whereas for the worsening rule, both parameters should be lower.

The most important phase in the induction of a survival action rule is the specialization
phase, illustrated in Algorithm 2.

The process of rule specialization involves adding successive actions into the rule’s
premise, which is initially empty (lines 10–13 of Algorithm 2). These actions derive from two
elementary conditions identified during the specialization. The first is the best elementary
condition to include in the rule’s source part (line 5), and the second is the best counter-
condition or the best elementary condition for the rule’s target part (line 9). Specialization
finishes when no further best elementary condition can be found for the rule’s source.

Identifying the best elementary condition (line 5) involves finding a condition that,
once added to the action rule’s source premise, yields the highest quality survival rule.
This is determined by maximizing the log-rank statistic’s value by comparing the example
subset covered by the action rule against those not covered. If multiple conditions equally
maximize the log-rank value, the condition expanding the uncovered example set the most
is selected.
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Algorithm 2 Specialization of the action rule in the survival analysis.

Require:
D—a dataset
Du—a collection of examples that are not yet covered
µ—the minimum number of examples that the new rule must cover
ρ— the maximum rule coverage
ξ—the maximum percentage of examples that can be covered by both the left and right rules
As—a set of stable attributes from the set A

Ensure: r—the action rule
1: function SPECIALIZE(D, Du, µ, ρ, τ, As)
2: φ, φS, φT ← ∅ ▷ the premise of the created action rule, a set of source elementary

conditions, and a set of target elementary conditions
3: Wignore ← ∅ ▷ a set of elementary conditions already checked
4: repeat
5: wbestS ← BESTELEMENTARYCONDITION(D, Du, φS, µ, ρ, Wignore)
6: Wignore ←Wignore ∪ {wbestS}
7: if wbestS = ∅ then Continue
8: a← ATTRIBUTE(wbestS )
9: wbestT ← COUNTER-CONDITION(D, φS ∧ wbestS , φR, wbestS , µ, τ, ξ, As)

10: action← BUILDACTION(wbestS , wbestT )
11: φ← φ ∧ action
12: φS ← φS ∧ wbestS
13: φT ← φT ∧ wbestT
14: until (wbestS = ∅)

15: ŜS ← KM for set COVEREDEXAMPLES(φS, D)
16: ŜT ← KM for set COVEREDEXAMPLES(φT , D)
17: return r ≡ IF φ THEN ŜS → ŜT
18: end function

Line 6 indicates that the best-identified elementary condition is added to the Wignore
set, which contains conditions already evaluated. This addition ensures that the condition
is not repeatedly selected in the loop if a counter-condition is not identified, thus preventing
its redundant inclusion in the rule’s premise.

The search for the best counter-condition (line 9) follows the principle that, upon
finding the best condition wiS for attribute ai, a counter-condition is sought. This counter-
condition, wiT for the same attribute, aims to maximize the log-rank test value between
subsets defined by the initial source premise with wiS and the target premise with wiT .

Once rule specialization is complete, the rule’s generalization phase begins. During
this phase, actions are systematically removed from the premise to assess whether the
log-rank measure’s value for the revised rule improves or remains unchanged. Pruning
finishes when no further actions can be removed or when any modification would diminish
the rule’s quality. This phase may also end if the rule covers all examples from the set.

Action removal is governed by two principles. An action is retained if its removal
would increase the proportion of examples covered by a single rule beyond the ρ parameter
value, preventing overly general rules. The second principle involves the maximum
shared example proportion between the source and target rules, which, if exceeding the ξ
parameter, prevents the action’s removal, ensuring significant differentiation between the
rule’s source and target example groups.

For missing values, a strategy of ignoring such values is employed. This approach
focuses on creating rules based only on available, observed values, excluding observations
with missing attribute values from rule coverage. This method is comparably effective to
more sophisticated methods for handling missing value [59] and avoids the complexities of
imputation techniques.

The obtained rule-based action model not only describes the dependencies occurring
in the analyzed dataset but can also be used for prediction. To estimate the expected
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survival time, we can apply the changes specified by a rule in the set whose source part
covers the example under consideration to a given example.

The problem in prediction arises when a given example for which we want to take an
action is covered by several rules. This leads to a conflict about which actions to apply. Our
proposed solution involves creating a meta-table based on the rules obtained. Then, within
this meta-table, an action rule that gives the final recommendation is induced. The rule
indicates which attribute values need to be changed and to what extent.

An action rule contains recommendations for changing attribute values describing
examples, with the aim of moving an example from a group defined by a particular survival
curve to another group that has a statistically significant survival rate after the action rules
have been applied. In practice, a single example may be covered by numerous introduced
rules. To make the final decision about which attribute values should be changed, we
propose a recommendation algorithm that analyzes all the actions suggested by all the
rules covering the example. Subsequently, an action rule is identified that specifies the final
recommendation and indicates which attribute should be changed, including the specific
attribute values and their range.

Illustrative Example

Below, the stages of the presented rule induction approach are outlined to elucidate
the functioning of this method. This explanation is confined to the specialization (growth)
phase, as indicated in line 5 of Algorithm 1.

Consider a synthetic dataset with two symbolic attributes a, b ∈ A. Attribute a can take
three values: Va = {v1, v2, v3}. Attribute b can also take three values: Wb = {w1, w2, w3}.
Survival curves corresponding to these attribute values are plotted in Figure 2, showing
the survival rates of different groups.

Figure 2. Synthetic data—Kaplan–Meier plots for two attributes a and b used in the illustrative
example of rule generation. Each subfigure presents two distinct curves. The red curve corresponds
to data points that have either attribute a (A–C) or b (D–F) set to a particular value. The blue curve
represents all other data points that don’t fit the criteria specified for the red curve (A–F).

The specialization of the survival action rule is given in line 5 of Algorithm 1. For
the synthetic data, this task is performed by the following steps, performed iteratively in
a loop:

1. The initial step involves searching for the best elementary condition to add to the
left side of the rule (line 5 in Algorithm 2). In the first iteration, the condition a = v1
achieves the highest score. This condition is considered the best because it has the
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largest log-rank test value when comparing the survival curve where a = v1 with the
curve where a ̸= v1 (panel A in Figure 2).

2. The identified elementary condition is then added to the set of previously tested
conditions (line 6 in Algorithm 2).

3. The best counter-condition is searched for (line 9 in Algorithm 2). In the first iteration,
condition a = v3 achieves the highest score. This condition is considered the best
because it has the largest log-rank test value when comparing the survival curve
where a = v1 with the curve where a = v3 (panels A and C in Figure 2).

4. An action IF (a = v1 → a = v3) THEN (KMa=v1 → KMa=v3), where KMa=vi denotes
the Kaplan–Meier estimate for examples that fulfill the condition a = vi, is created
from the condition and the counter-condition (line 10 in Algorithm 2). This action is
then added to the premise of the rule (line 11 in Algorithm 2).

The second loop iteration is performed as follows:

1. The initial step involves searching for the best elementary condition to add to the left
side of the rule (line 5 in Algorithm 2). In the second iteration, the condition b = w1
achieves the highest score. This condition is considered the best because it has the
largest log-rank test value when comparing the survival curve where a = v1 ∧ b = w1
with the curve where ¬(a = v1 ∧ b = w1) (panel B in Figure 3).

2. The identified elementary condition is then added to the set of conditions previously
considered (line 6 in Algorithm 2).

3. The best counter-condition is searched for (line 9 in Algorithm 2). In the second
iteration, the condition b = w2 achieves the highest score. This condition is considered
the best because it has the largest log-rank test value when comparing the survival
curve where (a = v1 ∧ b = w1) with the curve where (a = v3 ∧ b = w2) (panel B in
Figure 4).

4. An action IF (a = v1 → a = v3) THEN (KMa=v1 → KMa=v3) is created from the
condition and counter-condition (line 10 in Algorithm 2). This action is then added to
the premise of the rule (line 11 in Algorithm 2).

Figure 3. Syntheticdata—Kaplan–Meier plots for two attributes a and b used in the illustrative
example of rule generation. Each subfigure presents two distinct curves. The red curve corresponds
to data points that have attribute a set to the value v1 and b set to value w1 (A), w2 (B), or w3 (C). The
blue curve represents all other data points that don’t fit the criteria specified for the red curve (A–C).

The result of the specialization phase is a rule of the form

IF (a = v1 → a = v3) ∧ (b = w1 → b = w2)

THEN (KMa=v1∧b=w1)→ (KMa=v3∧b=w2)
(6)
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Figure 4. Syntheticdata—Kaplan–Meier plots for two attributes a and b used in the illustrative
example of rule generation. Each subfigure presents two distinct curves. The red curve corresponds
to data points that have attribute a set to the value v1 and b set to value w1 (A–D). The blue curve
corresponds to data points that have attribute a set to the value v3 and b set to value w1 (A), w2 (B),
w3 (C) or ANY (D) value.

3.3. Recommendation Induction

The newly discovered knowledge is expressed by an induced set of survival action
rules (RUL). These rules show that by changing certain attribute values, as described in the
rule’s premise, there is a consequential shift in the survival curve. This shift is observable as
the survival curve transitions from its original state, denoted by ŜS, to a new state, denoted
by ŜT .

However, an example x, especially a new (unseen) example, may be covered by
multiple survival action rules from RUL. In such a case, the challenge is to determine
which specific actions are necessary to significantly change the survival rate for x.

To address this issue, a unique type of rule is derived from a special dataset. This
dataset, known as the “meta-example set” or “meta-table”, is formulated based on the sur-
vival action rules already induced in RUL. In scenarios where multiple recommendations
are required, it is possible to extract several different rules from this dataset to meet these
specific requirements.

3.3.1. Meta-Table

Suppose there is a set D(A, T, δ) of |D| examples. Each example is characterized by a
set of attributes A = {a1, a2, . . . , a|A|}, an observation time T, and a survival status δ.

Suppose a set RUL of survival action rules is induced from a D(A, T, δ).
The meta-table mD is a set of meta-examples, where each meta-example is described

by a set of meta-attributes mA = {mai1 , mai2 , . . . , maim}, where m ≤ |A|.
If a ∈ A does not occur in any of the elementary actions in RUL, then the attribute ma

corresponding to a is not a member of the set mA.
If an attribute a ∈ A is of the symbolic type and occurs in at least one elementary

action in RUL, then ma := a.
If an attribute a ∈ A is of numeric type and occurs in at least one elementary action

in RUL, then the values for the corresponding meta-attribute ma are defined as follows.
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Let RULS denote a set of all the source rules (3) and RULT—a set of all the target rules.
Suppose that the sets WaS and WaT contain all elementary conditions from RULS and
RULT , respectively, and are built on the attribute a. The set Wa = WaS ∪WaT contains all
elementary conditions that are based on a. Each of these conditions is of the form a > v
or a ≤ v, where v is a particular value of a. To determine the value set for ma, all such
values v occurring in Wa are sorted. The values of the meta-attribute ma are then defined as
sequential identifiers representing each interval created by this sorting process.

Observation time T and survival status δ are not defined in the meta-table because
they are not needed for further consideration.

Example 2. Let us assume that two attributes a (symbolic) and b (numeric) are given.
Consider a set of tree survival action rules:

IF (a < 21.5→ a > 10) ∧ (b = 0→ b = 1)

THEN (Ŝ1S → Ŝ1T)
(7)

IF (a < −2.5→ a > 21.5) ∧ (b = 0→ b = 1)

THEN (Ŝ2S → Ŝ2T)
(8)

IF (a > 21.5→ a < 4.5) THEN (Ŝ3S → Ŝ3T) (9)

From these rules, we can construct the following sets of elementary conditions:

Wa = {a < −2.5, a < 4.5, a > 10, a > 21.5, a < 21.5} (10)

Wb = {b = 0, b = 1} (11)

In Wb, there are only two values of b, so the set of values of mb is {0, 1}. From Wa, we obtain
the following partition of the set of values of a:

(mina,−2.5], (−2.5, 4.5], (4.5, 10], (10, 21.5], (21.5, maxa), (12)

where mina and maxa are the minimum and maximum values of a. The partition is a sequence of
intervals and defines the set of values of ma, which consists of five values. Each value corresponds to
one of the intervals in the partition (12). For example, the interval (4.5, 10] is assigned to the value
3 within ma because it is the third element in a sequence of intervals.

A meta-table is defined as the Cartesian product of the value sets of ma and mb, as shown in
Table 1.

Let us consider an example a = 11 and b = 0. This example is covered by the meta-example
(4, 0).

Table 1. An exemplary meta-table. The table columns display examples from the metatable, along
with the values these examples have for the attributes ma and mb.

ma 1 1 2 2 3 3 4 4 5 5
mb 0 1 0 1 0 1 0 1 0 1

In general, if a meta-table has n attributes, each attribute mai (i ∈ 1, 2, .., n) has lai
values, then the meta-table has la1 · la2 · ... · lan examples.

3.3.2. Final Recommendation

The final recommendation is generated by applying a customized version of the
survival rule induction algorithm (Algorithm 1) to the meta-table. This ensures that the
method can be applied to any previously unseen example due to the structure of the meta-
table. The algorithm works on a single test example x associated with a survival curve ŜS.
There are two methods for constructing a KM curve to characterize test examples. The first



Appl. Sci. 2024, 14, 2939 12 of 24

method uses the meta-table, and the second method uses an arbiter model. The principle
of the method is illustrated in the Figure 5.

In the first case, the survival curve is constructed from training examples using a
meta-table. Each meta-example is covered by several examples from the initial (training)
set of examples D(A, T, δ), while each example from this set is covered by only a single
meta-example. To define ŜS, a meta-example mx is identified that covers the example x.
Finally, the Kaplan–Meier estimator (ŜS) is defined based on all training examples from D
that are covered by mx.

In some cases, the number of training examples covering mx may be small. This, in
turn, affects the confidence in the estimated curve ŜS. In such a case, the arbiter model
method is used to associate x with ŜS. The arbiter model is a survival data model trained on
the entire set of training examples D. In the article, an implementation of gradient boosting
with a regression tree-based learner [25] is used as the arbiter model. The trained arbiter
model generates the survival curve ŜS associated with the example x.

Figure 5. Diagram illustrating principle of the method.

Regardless of the method used, the survival curve ŜS is treated as the conclusion of a
hypothetical rule rS (3) covering the test example x.

The recommendation process involves suggesting specific changes to the attribute
values of example x. The aim of these changes is to align the test example with a meta-
example (or multiple meta-examples) that will move the test example from its current
Kaplan–Meier curve, denoted as ŜS, to a different target Kaplan–Meier curve, ŜT . The
algorithm aims to minimize the number of attribute changes required for this reassignment.
The range of values into which a test example is carried is determined by more than
one meta-example as long as the ranges of attribute values in these meta-examples are
adjacent and together produce a curve of better quality than any of them individually. The
process described above is equivalent to the induction of an rT (4) rule as described in
Algorithms 1 and 2. In the induction process, the algorithm searches for a rule rT built on a
set of meta-examples whose conclusion ŜT differs the most from the survival curve ŜS. To
determine the degree of difference, the two curves are compared using the Kolmogorov–
Smirnov test with two samples [60].

Example 3. Let us assume that the induction of recommendations is conducted in the meta-table
presented in the previous example and that a test example x = (10, 0) is given. The example x
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covers the meta-example (3, 0). The survival curve ŜS associated with x is determined based on
all examples from the training set that covers the meta-example (3, 0). Let us further assume that
the recommendation algorithm suggests only one action ma ≤ 2. This recommendation implies
that there is no need to change the value of the attribute mb (b). The value ma = 2 represents the
interval (−2.5, 4.5]. The recommendation is, therefore, to change the value of the attribute a from its
current value of 10 to a new value within the interval (mina, 4.5], since ma ≤ 2 in the meta-table
corresponds to a ≤ 4.5 in the training set.

4. Experiments and Results

The experiments were conducted on 19 datasets in a 10-fold stratified cross-validation
mode. The detailed characteristics of the datasets are presented in Table 2. The minimum
number of examples that the new rule must cover µ was set to 30%, and the maximum
percentage of examples that can be covered by both the source and target rules ξ was set to
10%. For simplicity and due to the large number of datasets, all attributes were treated as
flexible. An extensive case study was carried out for two scenarios. The first involves the
application of our method to a specific dataset. In this study, it was assumed that the values
of all attributes can be changed (i.e., no stable attributes—whose values cannot be changed—
were defined in the datasets). The second case study involves a comparative analysis
between the recommendations of our method and those of a counterfactual explanation
approach using a specific test example.

Table 2. Description of datasets employed in experimental research. Columns are as follows: the
dataset name and source, the number of examples (|D|), the number of conditional attributes (|A|),
the percentage of missing values (Miss), and the percentage of censored observations in the set (Cens).

Dataset |D| |A| Miss Cens

FD001 [61] 100 24 0.00 19.00
FD002 [61] 260 24 0.00 19.69
FD003 [61] 100 24 0.00 20.00
FD004 [61] 249 24 0.00 19.76
GBSG2 [62] 686 8 0.00 56.41
melanoma [63] 205 7 0.00 65.37
actg320 [64] 1151 11 0.00 91.66
bmt-ch [65] 187 35 1.24 54.55
follic [66] 541 4 0.00 35.67
hd [66] 865 6 0.00 50.75
lung [67] 1032 7 2.60 25.97
maintenance [68] 1000 3 0.00 19.00
mgus [69] 241 9 19.59 23.65
pbc [70] 418 17 14.54 61.48
std [71] 877 21 0.00 60.43
uis [64] 575 13 0.00 19.30
whas1 [64] 481 7 0.00 48.23
whas500 [64] 500 13 0.00 57.00
zinc [72] 431 55 57.17 81.21

The quality of the induced rules and recommendations was assessed comprehensively.
Table 3 presents the quantitative characteristics of the induced rule sets. The column
Pi (i ∈ {0.05, 0.01}) shows the percentage of statistically significant induced rules. A
rule is considered statistically significant if the difference between its source and target
Kaplan–Meier curves is statistically significant, indicating that the rule suggests changes
that could contribute to real changes in the survival of the examples covered by its premise.
The log-rank test was used for this comparison.

The analysis of Table 3 shows that the number of action rules generated is not large,
averaging about 8 rules. For most datasets, the number of BETTER rules generated is
greater than the number of WORSE rules, meaning that more rules define conditions that
lead to an increase in the average survival time. On average, the rules contain 3 actions,
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with 2 to 3 of these actions being different from ANY actions, suggesting specific changes
in attribute values. There is a notable variation in the coverage of source and target rules
across the datasets. For example, actg320 shows a significant difference in coverage between
source and target (22.48% vs. 39.29%), indicating a substantial extension of the applicability
of the rules from source to target.

For the two datasets, “std” and “lung”, the average number of “WORSE” type rules
exceeded the number of “BETTER” type rules. WORSE type rules give information about
what actions to pay attention to in order not to worsen survival time. Depending on the
needs, the algorithm can be parameterized to obtain only BETTER type rules, only WORSE
type rules, or rules of any type, as in the considered scenario.

Table 3. Rules statistics. The columns represent the average values of the following parameters: the
number of rules (nr); the number of actions in a rule (na); the number of ANY actions in a rule (nANY);
the percentage of rules with a p-value less than 0.05 (P0.05); the percentage of rules with a p-value
less than 0.01 (P0.01); the percentage of examples covered by the source rule (CovS); the percentage of
examples covered by the target rule (CovT); the number of BETTER rules (nBETTER); the number of
WORSE rules (nWORSE).

Dataset nr na nANY P0.05 P0.01 CovS CovT nBETTER nWORSE

FD001 2.0 2.45 0.15 100 100 34.72 36.44 1.0 1.0
FD002 6.8 3.05 0.39 91 86 24.43 26.13 3.6 3.1
FD003 2.0 4.00 1.30 100 100 35.06 41.50 1.0 1.0
FD004 6.5 3.49 0.79 100 100 28.48 29.94 3.4 3.1
GBSG2 13.8 3.31 0.47 100 100 27.41 33.16 11.5 2.3
melanoma 3.9 2.62 0.63 100 100 32.62 38.82 2.6 1.3
actg320 18.4 4.00 1.96 99 99 22.48 39.29 16.1 2.2
bmt-ch 4.7 2.50 0.60 100 100 30.63 40.34 2.9 1.8
follic 7.2 1.86 0.45 98 98 33.26 22.61 4.2 3.0
hd 10.1 1.22 0.21 87 81 22.10 40.01 8.0 2.1
lung 7.1 2.79 0.71 100 100 35.59 36.49 3.5 3.6
maintenance 20.8 2.56 0.03 98 91 22.27 12.10 12.7 8.1
mgus 4.1 3.27 0.91 100 100 31.00 21.63 2.8 1.3
pbc 6.8 2.73 0.49 100 100 29.88 45.10 5.7 1.1
std 15.1 4.18 2.10 100 100 23.72 28.36 7.4 7.7
uis 8.0 3.49 1.55 100 100 26.80 45.86 7.0 1.0
whas1 6.9 2.52 0.07 100 100 27.58 34.88 4.9 2.0
whas500 7.9 4.33 0.43 100 100 29.33 33.44 6.6 1.3
zinc 6.9 2.59 0.90 67 53 21.61 39.53 4.9 2.0

It is noteworthy that the vast majority of rules (more than 95% on average) are statis-
tically significant at both the 0.05 and 0.01 significance levels. The exception here is the
zinc set, where only half of the induced rules are significant at the 0.01 level and 67% at the
0.05 level.

Table 4 shows the predictive capacity of the recommendation algorithm. To measure
this feature, an arbiter model is used to test whether performing the actions suggested
by the recommendation algorithm for a given example causes a significant change in
the estimated survival time. The arbiter model chosen is the XGBoost algorithm, which
is suitable for the analysis of censored data. In the literature, the XGBoost algorithm
is reported to have high predictive performance in solving classification and regression
problems and in survival analysis [73]. The model in our study is based on gradient-boosted
Cox proportional hazard loss, with regression trees as base learners, and is available in the
scikit-survival Python package. The validation procedure is as follows:

1. The XGBoost model is trained on the training data.
2. For each test example x, the survival curve KMT is determined, which represents the

conclusion of the recommendation.
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3. The example x′ is passed to the trained XGBoost model with attribute values modified
according to the recommendation algorithm.

4. The XGBoost model assigns the survival curve KMx′ to the example x′.
5. The difference between the curves KMT and KMx′ is examined; if the curves are not

significantly different, then the rule action model is assumed to be working correctly.

The validation process presented above is called the consistency score (column Cs
in Table 4). The Cs0.05 column shows the average percentage of examples for which the
p-value is less than 0.05, testing the null hypothesis that the curve for the target part of the
recommendation is identical to the curve derived from the arbiter model for examples with
mutated attribute values.

Table 4. Predictive capabilities of the recommendation algorithm. Columns Cs represent the average
values of the consistency score at different significance levels.

Dataset Cs0.05 Cs0.01

FD001 80 66
FD002 97 95
FD003 93 86
FD004 98 95
GBSG2 100 100
melanoma 100 100
actg320 96 96
bmt-ch 100 100
follic 100 99
hd 100 100
lung 100 100
maintenance 92 84
mgus 99 99
pbc 100 100
std 100 100
uis 100 100
whas1 99 98
whas500 100 100
zinc 100 100

The log-rank test was found to be inappropriate for the comparison because it requires
raw survival data. Therefore, an alternative approach was taken using the two-sample
Kolmogorov–Smirnov test (two-sample K–S test) [74]. This method was chosen specifically
for cases where at least one of the survival curves being compared is derived from an
arbiter model using a single test example, resulting in the output of callable step functions.
These step functions, although not compatible with the analysis criteria of the log-rank test,
are effectively analyzed using the two-sample K–S test.

The two-sample K–S test evaluates the maximum distance between the cumulative
distribution functions (CDFs) of two samples. The test statistic Dn,m is defined as:

Dn,m = sup
x
|F1,n(x)− F2,m(x)|

where F1,n(x) and F2,m(x) are empirical distribution functions of the first and second
samples, with n and m observations, respectively, and supx represents the supremum of
the set of distances over all possible values of x. In the context of survival analysis, this
approach allows a non-parametric comparison of the empirical survival distributions.

The quantitative analysis of the determined rules (Table 3) has shown that most of
them are statistically significant. The recommendation algorithm is based on the set of
induced rules. The datasets used do not allow for verifying whether the value changes
suggested by the recommendation algorithm lead to an increase/decrease in survival time
for test examples. This verification would be possible if it were possible to “track the fate”
of a given test example over time. Therefore, an independent arbiter model was used to
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verify whether an alternative model for estimating survival time would be consistent with
the estimation made by the recommendation algorithm.

The results of this verification are presented in Table 4. As can be seen, there is a
high correspondence between the recommendation algorithm and the XGBoost algorithm
running on mutated test examples. It is important to note that the recommendation algo-
rithm and the XGBoost algorithm do not necessarily base their decisions on the same set of
attributes. For example, in an extreme case, the recommendation algorithm might suggest
changing the values of attributes a and b, while the XGBoost-based model uses a different
set of features. In such a case, there will be a discrepancy between the decisions of the
recommendation algorithm and the XGBoost algorithm. For the XGBoost algorithm, an ex-
ample before changing the attribute values—where only attributes a and b are modified—is
"identical" to the example after the change. This situation occurred in some examples from
the FD001, FD003, and maintenance datasets. These discrepancies do not necessarily imply
that one of these algorithms is wrong; they simply make decisions in different ways.

Table 5 presents the results, showing shows the average number of actions suggested
by the recommendation algorithm and the percentage of conditional attributes for which
actions were defined.

Table 5. Attribute statistics for the generated recommendations. The columns show the following
information: the average number of actions per recommendation (na) and the average percentage of
attributes that were mutated (pAttr).

Dataset na pAttr

FD001 2.69 14.62
FD002 2.36 21.92
FD003 2.92 21.54
FD004 2.40 26.92
GBSG2 1.76 46.00
melanoma 2.01 42.22
actg320 1.36 33.08
bmt-ch 2.36 16.76
follic 1.97 45.00
hd 1.70 38.75
lung 3.35 63.33
maintenance 1.02 46.00
mgus 2.21 35.45
pbc 1.68 19.47
std 3.22 49.57
uis 2.65 33.33
whas1 1.18 42.22
whas500 1.82 29.33
zinc 1.29 3.51

To conclude this part of the analysis, Table 5 presents information on the average
number of elementary actions required—the values in Table 5 represent the result illus-
trating the operation of the recommendation algorithm that merges information from all
the induced rules. As observed, the recommendation algorithm forces the execution of
an average of two elementary actions for each example. This means that the algorithm
suggests changes in the values of two attributes. The column pAttr shows the percentage of
all attributes that are involved in the elementary actions suggested by the recommendation
algorithm. On average, 33% of the attributes are involved. Specifically, for the std set,
half of the attributes are involved, and for the zinc set, just under 4% of the attributes are
involved. These statistics show that the induced action rules and the recommendation
algorithm based on them also lead to a significant reduction in the number of features
whose values need to be changed.
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4.1. Case Studies

The case study examined two scenarios. The first scenario focused on the application of
our method to the maintenance dataset. In the second scenario, a comparative analysis was
performed, contrasting the recommendations from our approach with those derived from a
counterfactual explanation method, using a selected test example from the same dataset.

4.1.1. Maintenance Dataset

The maintenance dataset is available as part of the popular Python package, Py-
Survival [68]. Its attributes are well defined, so the values are easy to understand. Most
of the conditional attributes in this dataset are of the flexible type, so they can be sub-
jected to actions. The maintenance dataset contains five conditional attributes and two
decision attributes:

• pressureInd
• moistureInd
• temperatureInd
• provider
• team
• time
• status

The pressure index (pressureInd) is used to quantify the flow of liquid through pipes,
as a sudden drop in pressure may indicate a leak. The moisture index (moistureInd) is a
measure of the relative humidity in the air. It is important to monitor this as excessive hu-
midity can lead to mold and equipment damage. The temperature index (temperatureInd)
of the machine is calculated using voltage devices called thermocouples, which convert
a change in voltage into a measure of temperature. It is recorded to prevent damage to
electrical circuits, fire, or even explosion. The team (team) and machine indicator (provider)
specify which team was using the machine and the name of the machine manufacturer.
These two attributes have been omitted to simplify the analysis. Survival time (time) indi-
cates the number of weeks the machine has been active. Survival status (status) specifies
whether the machine was broken or remained intact during the corresponding weeks
of activity.

This experiment was designed to see if the generated rules would show actions that
would generate recommendations to change the working conditions of the machine to
increase the length of the activity period.

It was assumed that the values of all attributes could be changed (i.e., no stable
attributes were defined in the dataset). The experiments were run in a 10-fold stratified
cross-validation mode. For the case study, the first fold was selected.

Table 6 provides a summary of the results from the experiment involving the induction
of survival action rules. Chosen metrics representing the quality of the rule sets across
different versions of the experiment are displayed. Rule induction was conducted in
ANY mode, where both types of rules—improving and worsening—can be formed. The
experiment produced a relatively large number of rules—23. Each rule had at least one
action, with the majority having three actions. The absence of differences between the
average number of conditions (c) and the average number of actions (a) suggests that no
supporting actions appeared in the rules. For every rule, the p-value resulting from the
log-rank test comparing the Kaplan–Meier curves of the left and right sides was below 0.05.
Only one rule had a p-value greater than 0.01.

To present the sample results of the experiment, the selected rules obtained are pre-
sented in Table 7. They give information on what to focus on when maintaining the
machine so that its active period does not decrease. The table shows only the premise part
of the rules.
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Table 6. Characteristics of the induced survival action rules.

Number of examples 900
Minimum number of examples covered by rule 30
Stable attributes None
Number of rules 23
Number of rules without any action in premise 0
Conditions count 63
Actions count 63
Average conditions per rule 2.74
Average actions per rule 2.74
Percent of examples covered by left and right rules 66.67
Percent of examples covered by left rule 94.78
Percent of examples covered by right rule 67.11

Table 7. Selected survival action rules for the maintenance dataset.

Id Premise

r1
(pressureInd, [103.79, 143.68)→ (-inf, 95.80))
∧ (temperatureInd, [45.46, 123.85)→ [86.05, 106.59))
∧ (moistureInd, [75.70, inf)→ [94.84, inf))

r2
(pressureInd, [103.79, 135.02)→ [75.67, 96.13))
∧ (temperatureInd, (-inf, 160.28)→ (-inf, 106.59))
∧ (moistureInd, [89.64, inf)→ ANY)

r3
(pressureInd, [101.14, inf)→ [36.36, 96.13))
∧ (temperatureInd, [71.62, 116.04)→ [86.05, 106.60))
∧ (moistureInd, [76.57, inf)→ [88.97, inf))

r4 (pressureInd, [100.32, inf)→ (-inf, 96.13))
∧ (temperatureInd, (-inf, 132.94)→ (-inf, 106.59))

For each rule presented in Table 7, the additional statistics were calculated (Table 8):

• number of conditions,
• number of actions,
• the percentage of all examples that the left part of the rule covers,
• the percentage of all examples that the right part of the rule covers,
• p-value of the log-rank test between the Kaplan–Meier curves of the left and right

sides of the rule,
• median survival time for examples covered by the left rule (time for probability = 0.5),
• median survival time for examples covered by the right rule,
• difference between the median survival times of the left side of the rule and the right

side of the rule.

An important measure is the p-value of the log-rank test between the Kaplan–Meier
curves of the left and right sides of the rule. The lower the value of this measure, the further
apart the two curves are.

Table 8. Characteristics of the selected action rules presented in Table 7. The columns indicate
the following: rule identifier (id), the count of conditions (#c), the count of actions (#a), and the
count of any actions (#aAny), the coverage percentage of examples by either the left or right rule
(%covL/%covR), p-value of the log-rank test comparing the Kaplan–Meier curves of the left and right
rules (p), and the median survival times for examples under the left or right rule (MTL/MTR), the
difference in median survival times between the left and right rules (MTdiff = MTL −MTR).

Id #c #a #aAny %covL %covR p MTL MTR MTdiff

r1 3 3 0 33.11 12.89 0.00 56.00 67.00 −11.00
r2 3 3 1 30.33 21.44 0.00 56.00 65.00 −9.00
r3 3 3 0 31.89 15.67 0.00 56.00 66.00 −10.00
r4 2 2 0 42.89 28.00 0.00 58.00 65.00 −7.00
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A meta-table was created based on all the generated rules, and recommendations were
generated for all test examples. Selected recommendations are shown in Table 9.

Table 9. Selected recommendations for examples from the maintenance dataset.

Id Recommendation

73 (temperatureInd, (79.57, 85.54]→ (45.46, 106.14])
∧ (moistureInd, (106.22, 110.00]→ (112.84, 114.75])

74 (temperatureInd, (86.82, 106.14]→ (85.54, 86.82])

75 (temperatureInd, (61.19, 68.84]→ (70.81, 160.28])
∧ (moistureInd, (94.84, 99.71]→ (94.21, 94.83])

76 (temperatureInd, (106.64, 108.03]→ (85.54, 86.82])

4.1.2. Comparative Study

The second case study involves a comparative analysis between the recommendations
of our method and those of a counterfactual explanation approach [3]. This comparison
encompasses a thorough evaluation using the maintenance dataset in cross-validation
mode. Additionally, an in-depth comparison is provided for a particular test example x
from the same dataset, as shown in Table 10.

Dataset

Both counterfactual and recommendation methods were applied to the entire mainte-
nance dataset. Each experiment was conducted using a 10-fold stratified cross-validation
approach. With a total of 1000 samples in the dataset, the training set consisted of 900
samples, and the test set consisted of 100 samples for each fold. Subsequent analyses were
performed on a combined total of 1000 test samples from all folds.

The recommendation algorithm was applied using the same parameters as in the
previous experiments, specifically setting the minimum number of examples covered by a
single rule to 30. The counterfactual explanation method was applied for both θ values of
−1 and 1, with the Random Survival Forest model selected for analysis. This resulted in
three sets of results: one from the recommendation algorithm, one from the counterfactual
explanations with θ = 1, and one from the counterfactual explanations with θ = 0.

For each test sample, a survival curve was constructed using the Random Survival
Forest method. Similarly, for each recommendation, a mutated sample was obtained, and
a survival curve was created using the same method. These curves were then compared
using the two-sample K–S test, which provided a pair of results: the p-value and the test
statistic. Small p-values indicate that the survival curve of the test sample is different from
the survival curve of the test sample mutated according to the recommendation, which
means that the change applied by the method is significant.

In this experimental setup, our goal was to obtain a p-value below the 0.05 significance
threshold. A test yielding such a result indicates a significant difference between the
survival curve of the original test sample and the curve of the modified test sample, based
on the recommendation. This indicates that the recommended change is substantial.

The results are presented in Figure 6. The histograms show a predominance of lower
p-values for all methods. Detailed results in the form of a share of recommendations that
achieved a p-value lower than 0.05 are presented in Table 11. Better results were achieved
for the counterfactual method, but the computation time was significantly longer, as shown
in Table 12.
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Figure 6. Distribution of p-values for the recommendation algorithm and counterfactual methods.
The left panel shows the p-value frequency for the recommendation algorithm, the middle panel
displays the distribution for the counterfactual method with the parameter θ set to 1, and the right
panel presents the distribution for counterfactual method with parameter θ set to −1. The x-axis
represents the p-value range from 0.0 to 1.0, and the y-axis shows the count of recommendations.

Table 10. Characteristics of the test example x.

PressureInd MoistureInd TemperatureInd Time Status

57.46 104.98 100.53 12 1

Table 11. Comparison of methods based on the significance of p-value. The column P0.05 represents
the percentage of recommendations with a p-value less than 0.05.

Method p-Value ≤ 0.05
recommendation algorithm 60.8
counterfactuals (θ = 1) 81.1
counterfactuals (θ = −1) 74.7

Table 12. Comparison of methods based on execution time.

Method Execution Time
recommendation algorithm 00:03:36
counterfactuals 03:16:07

Detailed Example

The example has been mutated based on the recommendation from Table 13, resulting
in its modified version—Table 14.

Table 13. Recommendation for the example x.

((temperatureInd, (86.82, 106.14)→ (temperatureInd, (85.54, 86.82))

Table 14. Example x after mutation—recommendation algorithm.

PressureInd MoistureInd TemperatureInd

57.46 104.98 86.25

For the example x, a counterexample was generated using the method described in [3,24].
The running parameters were maintained at default values, except for the parameter θ,
which determines whether the survival curve for the counterfactual should be improving or
worsening relative to that of the initial example. The parameter was set to 1, corresponding
to the improving scenario. A counterfactual generated for the example x is shown in
Table 15.

Table 15. Example x after mutation—a counterfactual explanation.

PressureInd MoistureInd TemperatureInd

70.11 103.78 98.84
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In the example being examined, the recommendation algorithm suggests changing
the value of only one attribute—moistureInd. The counterfactual explanations algorithm
forces the values of all three conditional attributes to change. In both cases, implementing
the suggested changes results in an increase in the estimated survival time, but the increase
is greater for the recommendation algorithm as shown in Figure 7.

Figure 7. Kaplan–Meier plots for three samples: the original test example x, the example x after
recommendation-based mutation, and a counterfactual for x.

5. Conclusions

The article presents a recommendation algorithm based on survival action rules. The
recommendation algorithm is based on previously induced survival action rules. The
motivation for the development of this algorithm arises from situations where decisions
about changing the values of a specific example are complicated by the fact that the example
is covered by numerous action rules. The recommendation algorithm, which relies on
the induction of action rules in a specially prepared meta-table, addresses this issue. The
meta-table represents a kind of discretization for continuous attributes, as defined by the
previously determined action rules.

The experiments conducted show that the algorithm is a useful tool for generating
recommendations. The presented algorithm is the first of its kind designed for censored
data. Survival action rules and the recommendation algorithm based on them offer a
slightly different solution than the counterfactual explanations (CF) methodology. To
our knowledge, there are at least two implementations of CF dedicated to censored data.
However, CF is a method that works locally to identify the minimal changes required for the
estimated survival time of a test example to differ from the currently estimated time. The
action rule induction algorithm generates a model of value changes for the entire training
dataset, and then the recommendation algorithm generates change recommendations for
new (or training) examples. The recommendation algorithm also looks for changes that
cause the most significant change in the estimated survival time.

The algorithm is available in the GitHub repository (https://github.com/adaa-polsl/
action-mining-based-on-sar, accessed on 26 March 2024) along with detailed results from
the conducted experiments.

Our further work will focus on the development of an algorithm for the induction
of exception rules [75] tailored to the task of action planning. Exception rules allow
the identification of specific actions within induced action rules (source rules) whose
application does not positively affect the reassignment of an example to the intended
target class. The identification of such rules is expected to result in an action model that
provides more precise recommendations. We also aim to integrate software that enables
the induction of action rules with the RuleKit package [76] we are developing, further
enhancing its capabilities.
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