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Abstract: Detecting the factors affecting drivers’ safe driving and taking early warning measures can
effectively reduce the probability of automobile safety accidents and improve vehicle driving safety.
Considering the two factors of driver fatigue and distraction state, their influences on driver behavior
are elaborated from both experimental data and an accident library analysis. Starting from three
modes and six types, intelligent detection methods for driver fatigue and distraction detection from
the past five years are reviewed in detail. Considering its wide range of applications, the research on
machine vision detection based on facial features in the past five years is analyzed, and the methods
are carefully classified and compared according to their innovation points. Further, three safety
warning and response schemes are proposed in light of the development of autonomous driving and
intelligent cockpit technology. Finally, the paper summarizes the current state of research in the field,
presents five conclusions, and discusses future trends.

Keywords: fatigue driving; distracted driving; machine vision; multimodal detection; safety warning
and response

1. Introduction

The rapid development and widespread application of automobiles have greatly
facilitated people’s transportation and travel. According to data from the National Bureau
of Statistics of China, by the end of 2022, the number of vehicles in China had reached
319 million [1]. However, with the rapid increase in the number of automobiles, traffic
accidents have become increasingly prominent, with nearly 1.35 million people globally
dying or becoming disabled due to traffic accidents each year [2–4]. It is estimated that, by
2030, road traffic injuries will become the seventh leading cause of death worldwide [5].
Therefore, the safety of automobile driving should be given full attention.

To reduce the probability of automobile accidents, improving vehicle driving safety
has become a common goal in both the automotive industry and academia. Vehicle driving
safety is easily influenced by multiple factors, among which, the driver’s condition is an
important factor [6–8]. The driver’s condition is affected by various aspects, including the
driver’s physiology, psychology, and emotions [9,10]. Fatigue and distraction are the two
most significant adverse manifestations of the driver’s condition [11]. Studies have shown
that the presence of fatigue and distraction in drivers is one of the main causes of traffic
fatalities, accounting for about 36% [12].

With the rapid development of technologies such as machine vision [13], deep learn-
ing [14], and the analysis and detection of human physiological electrical signals [15], using
various intelligent sensors to detect drivers’ fatigue and distraction states has become
a current research hotspot [16]. Machine vision [13] emulates the human visual system
to recognize, track, and classify objects, serving as a vital perceptual tool in driving the
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development of automotive intelligence. Deep learning [14], a subset of machine learning
composed of multiple neural network layers, utilizes large datasets to autonomously learn
features and patterns, providing a robust framework for understanding and interpreting
drivers’ behaviors and states. Physiological electrical signals, important manifestations of
the body’s internal electrical activity, primarily include brain waves, heart signals, muscle
activity, and eye movements, which can indirectly reflect a person’s fatigue or distrac-
tion state [15]. By integrating intelligent sensors (such as visual and physiological signal
sensors) with deep learning and other technologies, Intelligent Detection Methods have
been formed.

Over the past five years, the confluence of cognitive science, vehicular technology, and
artificial intelligence has catalyzed unprecedented advancements in the comprehension
and mitigation of driver fatigue and distraction. Despite these remarkable technologi-
cal strides, traffic incidents stemming from impaired driving states continue to pose a
significant public safety challenge, highlighting the critical need for more sophisticated
detection methods. This comprehensive review undertakes a meticulous exploration of the
cutting-edge intelligent detection techniques developed in the past five years, categorizing
and conducting a comparative analysis based on signal modalities and types of feature
extraction. This endeavor aims to bridge the prevailing gaps in both academic discourse
and practical implementations within this domain.

2. The Impact of Fatigue and Distraction on Driving Behavior

The phenomenon of driver fatigue and distraction has become one of the most con-
cerning issues in the field of traffic safety [17,18]. Fatigue driving usually stems from
long hours of driving or lack of sleep, leading to physical and mental exhaustion, slow
reactions, decreased judgment, and problems such as inattention, increased reaction time,
judgment errors, and confusion [19,20]. On the other hand, distracted driving occurs
during the driving process when the driver’s attention is diverted from the task of driving
due to external distractions or internal thoughts. Activities such as using a mobile phone,
conversing with passengers, or adjusting the stereo can diminish a driver’s alertness to
the traffic environment and reduce their ability to respond to sudden situations, thereby
increasing the risk of traffic accidents [21,22]. Figure 1 illustrates the main causes and
behavior patterns leading to driver fatigue and distraction.
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Regarding the effects of fatigued driving and distracted driving on driver behavior,
scholars have mainly investigated these through two approaches: accident database analy-
sis and experimental research. In terms of accident database analysis, Bioulac et al. [23]
analyzed driving data from 70,000 drivers, which included a significant amount of accident
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data. They discovered that the collision risk under fatigued driving is twice that under
normal driving conditions. However, the limitation of this study is its failure to explore
in depth the specific impact of different levels of fatigue on collision risk. Furthermore,
Sheila et al. [24] revealed through statistical analysis of 685 traffic accidents that the prob-
ability of collisions significantly increases for novice drivers when they are distracted,
particularly while using mobile phones. This study highlighted the differential impact of
distraction types on accident risk, but required broader data to validate the generality of
its conclusions.

In experimental research, the convenience and safety of simulators have led to a broad
focus on studying the impacts of fatigue and distraction on driving. Öztürk et al. [25] used
the n-back test task on a simulator platform to examine the effects of varying cognitive
loads on driving behavior and detection response tasks. Bassani et al. [26] conducted
experiments based on a simulator to compare the differences in speed control and lateral
vehicle control capabilities between distracted and non-distracted drivers. However, it
has been noted that the actual impact of driver fatigue on reaction capabilities in real
driving situations is more significant than what is represented in simulator data [27].
Additionally, the reactions of drivers to visual distractions and interface interactions in real
road environments show significant differences from those in simulated environments [28].
Thus, when assessing impacts and quantifying research, as well as devising safety warning
and response plans, reliance should not only be on simulated data; real vehicle experiments
should also be conducted. Hu et al. [29] assessed the fatigue level of drivers using the
Karolinska Sleepiness Scale (KSS) before real vehicle testing. Their analysis found that
reaction time is positively correlated with level of fatigue, highlighting the actual impact of
fatigued driving on safety. However, this study relied on subjective assessments, which
may have introduced bias. Ma et al. [30] analyzed real vehicle driving test data to study
the impact of distracted driving on driving capabilities, finding that driver distraction
reduces the driver’s vehicle control capabilities and that this impact varies with the type of
distraction, yet they did not fully explore the quantitative assessment of distraction level.

In summary, fatigue and distraction phenomena severely affect driving behavior,
increasing the risk of traffic accidents. Current research mainly explores these impacts
through accident database analysis and experimental studies. However, existing research
falls short of deeply investigating the specific effects of different fatigue levels and dis-
traction types on collision risk and driving capabilities. Particularly, the actual impacts of
fatigue and distraction on driving behavior in real driving situations have not been fully
assessed, and methods based on subjective assessment might introduce bias. Therefore,
researching real-time, high-accuracy, and robust online detection methods for driver fatigue
and distraction states is of significant importance. Such research could provide objective
and accurate assessments of driver states and support the design of effective traffic safety
warning and response schemes.

3. Intelligent Detection Methods for Driver Fatigue and Distraction

With the rapid development of deep learning technologies and the enhancement of
computing hardware power, breakthroughs have been achieved in intelligent detection
techniques for driver fatigue and distraction. Based on the types of features extracted, these
technologies can be divided into intelligent detection methods based on facial features,
head posture, behavioral actions, physiological signals, and vehicle data, as shown in
Figure 2. Among these, the first three methods require the use of cameras, infrared cameras,
and other visual sensors to collect drivers’ image information for further recognition of
their states [31], which can be collectively referred to as image-information-based intelligent
detection methods. Furthermore, some researchers have conducted studies on multimodal
fusion algorithms that integrate image information, physiological signals, and vehicle data,
thereby improving the detection’s accuracy and robustness.
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3.1. Intelligent Detection Methods Based on Driver’s Facial Features

Intelligent detection methods based on drivers’ facial features primarily collect facial
information through cameras installed inside vehicles. After image processing, machine
learning or deep learning methods are used to identify the facial region and extract feature
points, followed by model training. This process enables the detection of driver fatigue or
distraction states. These methods are widely recognized and applied due to their real-time
performance, low cost, and non-invasive nature.

The basic workflow of intelligent detection methods based on facial features is as
follows, as illustrated in Figure 3. First, the Eye Aspect Ratio (EAR) and the Mouth
Aspect Ratio (MAR) are calculated. Then, based on the EAR value, eye fatigue assessment
indicators are computed, such as the percentage of eyelid closure over the pupil over time
(PERCLOS) [32], blink frequency, and the duration of continuous eye closure. Based on the
MAR value, yawning can be determined by calculating the yawn frequency and duration.
Finally, by integrating these assessment indicators into a model, a comprehensive judgment
is made on whether the driver is in a state of fatigue or distraction.

Currently, Driver State Monitoring (DSM) systems widely applied in actual vehicles
often use traditional machine learning libraries such as dlib to extract features of the eyes
and mouth, calculating fatigue and distraction state assessment indicators using fixed
thresholds. This method is widely adopted due to its simplicity and low sensor require-
ments. However, its recognition accuracy and detection effectiveness need improvement,
and it overlooks individual differences among drivers.

To address the challenge of low accuracy in face recognition and feature point extrac-
tion, the academic community has proposed various improvement schemes. Zhu Feng
et al. [33] enhanced face detection accuracy significantly by integrating an improved YOLO
v3 method with the Kalman filter algorithm for face detection and using the boosting
tree algorithm to extract facial feature points, effectively solving the problem of missed
detections caused by glasses and hats. Although this method has made progress in ac-
curacy, its complexity and computational cost are higher. Wang et al. [34] pointed out
the correlation between drivers’ eye position and ethnicity, greatly improving position-
ing accuracy through a skin color recognition model and a bidirectional integral pro-
jection method, but their accuracy may be limited to specific groups. Yang et al. [35]
combined 3D Convolutional Neural Networks (3D-CNN) and Bidirectional Long Short-
Term Memory networks (Bi-LSTM) to propose the 3D-LTS network, which effectively
recognizes subtle facial movements, improving the accuracy of mouth feature point extrac-
tion and yawn detection, as shown in Figure 4. Although this method performs excellently
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in dynamic feature recognition, it still faces challenges in real-time performance and
resource consumption.

Appl. Sci. 2024, 14, 3016 5 of 20 
 

(Bi-LSTM) to propose the 3D-LTS network, which effectively recognizes subtle facial 
movements, improving the accuracy of mouth feature point extraction and yawn detec-
tion, as shown in Figure 4. Although this method performs excellently in dynamic feature 
recognition, it still faces challenges in real-time performance and resource consumption. 

 
Figure 3. General flowchart of intelligent detection method based on facial features. 

 
Figure 4. Extracting keyframes for subtle facial changes. (© (2020) IEEE. Reprinted, with permis-
sion, from [35]). 

To address the shortcomings of traditional methods that do not consider individual 
differences among drivers, some studies have optimized detection approaches. Li et al. 
[36] improved detection effectiveness by constructing a driver identity information data-
base and extracting facial features as a reference for assessing the driver’s state. This per-
sonalized method has obvious advantages, but its application range may be limited by the 
size of the offline library. You et al. [37] used a Deep Cascaded Convolutional Neural Net-
work (DCCNN) to detect facial features and established an SVM model based on facial 
features, replacing traditional uniform threshold methods and adding personalized ele-
ments to fatigue and distraction detection. Although this increases the personalization of 
detection, the model’s general applicability and accuracy still need further verification, as 
shown in Figure 5. Han et al. [38] used the ShuffleNet V2K16 neural network for driver 
facial recognition, reducing the impact of the detection environment, and by comparing 
the current frame’s EAR and MAR values with the maximum EAR value and minimum 
MAR value of the previous 100 frames, they minimized the impact of individual differ-
ences, greatly improving experimental accuracy. 

Figure 3. General flowchart of intelligent detection method based on facial features.

Appl. Sci. 2024, 14, 3016 5 of 20 
 

(Bi-LSTM) to propose the 3D-LTS network, which effectively recognizes subtle facial 
movements, improving the accuracy of mouth feature point extraction and yawn detec-
tion, as shown in Figure 4. Although this method performs excellently in dynamic feature 
recognition, it still faces challenges in real-time performance and resource consumption. 

 
Figure 3. General flowchart of intelligent detection method based on facial features. 

 
Figure 4. Extracting keyframes for subtle facial changes. (© (2020) IEEE. Reprinted, with permis-
sion, from [35]). 

To address the shortcomings of traditional methods that do not consider individual 
differences among drivers, some studies have optimized detection approaches. Li et al. 
[36] improved detection effectiveness by constructing a driver identity information data-
base and extracting facial features as a reference for assessing the driver’s state. This per-
sonalized method has obvious advantages, but its application range may be limited by the 
size of the offline library. You et al. [37] used a Deep Cascaded Convolutional Neural Net-
work (DCCNN) to detect facial features and established an SVM model based on facial 
features, replacing traditional uniform threshold methods and adding personalized ele-
ments to fatigue and distraction detection. Although this increases the personalization of 
detection, the model’s general applicability and accuracy still need further verification, as 
shown in Figure 5. Han et al. [38] used the ShuffleNet V2K16 neural network for driver 
facial recognition, reducing the impact of the detection environment, and by comparing 
the current frame’s EAR and MAR values with the maximum EAR value and minimum 
MAR value of the previous 100 frames, they minimized the impact of individual differ-
ences, greatly improving experimental accuracy. 

Figure 4. Extracting keyframes for subtle facial changes. (© (2020) IEEE. Reprinted, with permission,
from [35]).

To address the shortcomings of traditional methods that do not consider individual
differences among drivers, some studies have optimized detection approaches. Li et al. [36]
improved detection effectiveness by constructing a driver identity information database and
extracting facial features as a reference for assessing the driver’s state. This personalized
method has obvious advantages, but its application range may be limited by the size of
the offline library. You et al. [37] used a Deep Cascaded Convolutional Neural Network
(DCCNN) to detect facial features and established an SVM model based on facial features,
replacing traditional uniform threshold methods and adding personalized elements to
fatigue and distraction detection. Although this increases the personalization of detection,
the model’s general applicability and accuracy still need further verification, as shown
in Figure 5. Han et al. [38] used the ShuffleNet V2K16 neural network for driver facial
recognition, reducing the impact of the detection environment, and by comparing the
current frame’s EAR and MAR values with the maximum EAR value and minimum MAR
value of the previous 100 frames, they minimized the impact of individual differences,
greatly improving experimental accuracy.
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Some researchers have utilized cutting-edge deep learning networks, significantly
enhancing detection precision. Liu et al. [39] introduced a dual-stream neural network into
the Multi-Task cascaded Convolutional Neural Network (MTCNN), combining the static
and dynamic features of drivers to improve detection performance, achieving an accuracy
rate of 97.06%. Moreover, by using Gamma correction, they enhanced the accuracy of
nighttime detection, effectively overcoming the challenges of detection in night conditions.
Ahmed et al. [40] incorporated two InceptionV3 modules into the MTCNN network to
extract the features of eye and mouth sub-samples, significantly improving the detection
precision of local features. Although this method performs well in local feature recognition,
its efficiency in processing large-scale data remains a consideration.

In addressing delays caused by complex algorithms, Kim et al. [41] developed a
lightweight driver state monitoring system that realized end-to-end detection, significantly
improving detection efficiency. This method simplified the detection process, but may have
sacrificed some recognition precision. He et al. [42] used near-infrared cameras instead of
traditional RGB and infrared cameras and established an integrated deep learning network
model, which ensured the algorithm’s accuracy while reducing the hardware computational
requirements, offering a way to achieve efficient detection in resource-limited situations.
Guo et al. [43] addressed the issue that most detection methods cannot detect distracted
behaviors not included in the training set well by using a semi-supervised approach with a
dual-stream backbone network design, ensuring the model’s lightweight structure while
enhancing its generalization capability.

Table 1 presents a comparative analysis of recent studies on new detection methods
based on facial features. Overall, such methods, under experimental conditions, boast
a high accuracy and convenience, becoming the primary choice for developing driver
state monitoring systems [44]. However, the actual application of these methods still faces
several challenges, mainly as follows:
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Table 1. Analysis and comparison of intelligent detection methods based on facial features from the last five years.

Author Year Methodological Innovations Extraction of
Features

Machine Learning
Models Dataset Accuracy Improvement over

Traditional Methods

Zhang
et al. [33] 2022

Solving the problem of missed
detection due to occlusion or

misjudgment.

PERCLOS value,
maximum eye

closure time, number
of yawns

Improves the
yolov3+Kalman filter

algorithm

Self-built real-vehicle
dataset 92.50%

Solves the problem of
the low accuracy of

recognizing face parts
in traditional methods.

Wang
et al. [34] 2019

Proposing a bidirectional integral
projection method to realize the

precise localization of the human eye.
Blink frequency KNN algorithm Self-constructed

simulator dataset 87.82%

Yang
et al. [35] 2021

Recognizing yawning behavior based
on subtle facial movements for

improved accuracy.
Subtle facial changes 3D-LTS combining 3D

convolution + Bi-LSTM YawDD dataset 92.10%

Li
et al. [36] 2020

Offline construction of driver identity
database to analyze driving status

from driver features.
Facial features Improved yolov3-tiny +

improved dlib library DSD dataset 95.10%

Consideration of driver
characteristics and

their variability.

You
et al. [37] 2019

Analyzing changes in binocular
aspect ratio using neural

network training.
Eye aspect ratio

Deep cascaded
convolutional

neural network

FDDB dataset +
self-built simulator

dataset
94.80%

Han
et al. [38] 2023

Weakening environmental effects and
individual differences, improving dlib

method to enhance the accuracy of
facial feature point extraction.

64 feature points,
EAR, MAR

ShuffleNet V2K16 neural
network

Self-constructed
real-vehicle dataset 98.8%

Liu
et al. [39] 2019

Introducing dual-stream neural
network to combine static and
dynamic image information for

fatigue detection; utilizing gamma
correction method to improve
nighttime detection accuracy.

Static and dynamic
image fusion
information

Multi-task cascaded
convolutional neural

network
NTHU-DDD dataset 97.06%

Research on
high-performance deep

learning models to
improve detection

accuracy.
Ahmed

et al. [40] 2022

Proposing a deep learning integration
model and introducing the

InceptionV3 module for feature
extraction of eye and
mouth subsamples.

Eye and mouth
images

Multi-task cascaded
convolutional neural

network
NTHU-DDD dataset 97.10%
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Table 1. Cont.

Author Year Methodological Innovations Extraction of
Features

Machine Learning
Models Dataset Accuracy Improvement over

Traditional Methods

Kim
et al. [41] 2019

Reducing arithmetic requirements,
realizing end-to-end detection, and

improving detection efficiency.
Raw images Multi-task lightweight

neural network
Self-built

simulator dataset

Face orientation: 96.40%
Eyes closed: 77.56%
Mouth open: 93.93%

Research on
lightweight models to
promote technology

application.

He
et al. [42] 2019

Building and integrating multiple
lightweight deep learning models to

recognize fatigue and risky
driving behaviors.

Part recognition with
extended

range images
SSD-MobileNet model

300 W +
self-constructed

validation dataset
95.10%

Guo
et al. [43] 2024

Adaptive detection of distracting
behaviors not included in the training
set to ensure lightweight and enhance

generalization capability.

Full depth images Visual Transformer
model

Self-built real-vehicle
dataset MAS 98.98%
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1. The actual precision of facial feature extraction is easily affected by the environment.
Facial appearance may vary significantly under different lighting conditions, angle
changes, and facial expressions, making it difficult to maintain stability and accuracy
in facial feature extraction. Additionally, face occlusions, wearing glasses, and makeup
can also affect the effectiveness of facial feature extraction.

2. In detection methods based on facial features, most use facial feature parameters
such as EAR and MAR, etc., to judge fatigue or distraction states. However, the
setting of thresholds often relies on subjective experience, lacking objectivity and
unified standards.

3. Detection methods based on facial features are greatly affected by individual driver
differences. While people may display facial states similar to fatigue or distraction,
such as yawning, blinking, or looking down, in everyday life, it does not necessarily
mean they are truly in a state of fatigue or distraction. Therefore, judging whether a
driver is fatigued or distracted based solely on facial features presents potential risks
of misjudgment or omission.

3.2. Intelligent Detection Methods Based on Driver’s Head Posture

Detection methods based on a driver’s head posture work by calculating the relative
positions of various feature points in a three-dimensional space to obtain head posture
angles, thereby detecting whether the driver is engaged in distracted behaviors, such as
diverting their gaze from the driving task. Detecting the driver’s head posture can also help
to identify behaviors such as looking down at a phone or nodding off due to drowsiness.

Since head rotation is a continuous process, models that consider the relationship
between frames often achieve better detection results than methods that rely solely on
real-time detection using single frames. Zhao et al. [45] optimized the fully connected
layers of a residual error network with a composite loss function and expanded the training
dataset through transfer learning. This approach accurately and continuously monitors
a driver’s distracted state in real driving environments but lacks an in-depth analysis
of adaptability to environmental changes and real-time requirements. Ansari et al. [46]
argued that a driver’s psychological fatigue and sleepiness are reflected in changes in
head posture. They introduced an improved linear unit layer into a bidirectional Long
Short-Term Memory (LSTM) network structure to effectively process a 3D time series of
head angular acceleration data, allowing for the effective recognition of complex head
movement states. However, this method requires extensive training data to accurately
identify different driver states, and data labeling is challenging.

Detection methods based on driver head posture share similarities with those based on
facial features, as they can be conducted using only camera sensors, making them low-cost
and easy to integrate. However, the accuracy of their detection is easily affected by head
occlusions and the diversity of postures.

3.3. Intelligent Detection Methods Based on Driver’s Behavioral Actions

During the driving process, the actions and behaviors of drivers can significantly
reflect their attention states. Behaviors such as making phone calls, texting, smoking, or
reaching for items can lead to driver distraction. Accordingly, monitoring these behaviors
can effectively determine whether a driver is distracted. Xing et al. [47] utilized a deep
convolutional neural network (CNN) to design a system capable of recognizing a variety
of driving behaviors, including normal driving, looking at rearview mirrors in various
directions, using the car radio, texting, and making phone calls.

However, given the small differences between normal and distracted driving behaviors
and the high similarity of some actions, relying solely on a CNN might lead to recognition
errors. Therefore, Ma et al. [48] introduced a bilinear fusion network and attention mecha-
nism, proposing a convolutional neural network specifically designed for driving behavior
recognition, BACNN, which showed a good performance on the State Farm dataset. To
further improve recognition accuracy and real-time performance, Zhang et al. [49] devel-
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oped a specialized intertwined deep convolutional neural network, InterCNN. Fasanmade
et al. [50] established an expert knowledge rule system and a discrete dynamic Bayesian
classification model to predict the level of distraction in video frame sequences, providing
a quantitative assessment of driver behavior.

In addition to using cameras to recognize driver actions and behaviors through visual
images, some researchers have used wearable devices to collect signals reflecting driver
behavior. However, large wearable devices are not portable and are costly, making them
suitable only for experimental data collection and difficult to use for real-time detection.
Thus, researching and developing portable wearable devices for the real-time monitoring of
driver states is a trend. Xie et al. [51] proposed a method to identify driver distraction using
a wristband equipped with an Inertial Measurement Unit (IMU), i.e., collecting acceleration
data from the driver’s right wristband’s IMU and building a Convolutional Long Short-
Term Memory (ConvLSTM) deep neural network model for training. The results showed
that ConvLSTM achieved a better detection accuracy than CNN and LSTM models. Wagner
et al. [52] specifically targeted dangerous behaviors such as using phones, eating, and
smoking by drivers. They proposed a deep-learning-based classification detection method
by capturing images with left and right infrared cameras.

In summary, these methods offer high real-time capabilities. Once they detect dan-
gerous driving behaviors that could distract drivers, immediate warnings can be issued
without the need for cumulative time to continuously observe changes in driver character-
istics. Although these technologies have shown efficiency in the real-time monitoring of
driver states and can promptly identify and warn of potential distractions, they still face
challenges such as scene limitations and individual behavior differences. Future research
needs to continue exploring more accurate and personalized recognition methods to adapt
to the diversity and complexity of driver behaviors. Additionally, developing more conve-
nient, lower-cost tactile motion sensing systems for broader applications is an important
research direction.

3.4. Intelligent Detection Methods Based on Driver’s Physiological Characteristics

Studies indicate that significant changes in physiological characteristics occur when a
driver is fatigued or distracted [53]. Monitoring a driver’s physiological signals through
physiological instrument devices can analyze their attention level, emotional state, and
degree of physical fatigue. Common physiological signals include the Electroencephalo-
gram (EEG), Electrocardiogram (ECG), Heart Rate (HR), Electrooculogram (EOG), and
Electromyogram (EMG).

Bundele et al. [54] monitored drivers’ skin conductivity and blood oxygen saturation
using wearable devices, designing a multilayer perceptron model for training to classify
and detect drivers’ psychological fatigue and drowsiness states. Chaudhuri et al. [55], based
on EEG signals from drivers’ scalps, used electrophysiological source imaging and EEG
source localization techniques for signal processing and feature extraction, and established
a Support Vector Machine (SVM) classifier to detect whether drivers were in a state of
extreme fatigue. Li et al. [56] employed convolutional neural networks and gated recurrent
units to map the relationship between drivers’ distraction states and EEG signals in the
time domain, verifying the effectiveness of their method through simulation experiments.
Fu et al. [57] developed a non-contact vehicle-mounted driver fatigue detection system to
collect drivers’ biceps femoris electromyographic signals and ECG signals. Chen et al. [58]
decomposed EEG signals into wavelet sub-bands to extract nonlinear features beyond the
original signal and integrated them with eyelid movement information, using an Extreme
Learning Machine (ELM) for state classification.

The use of full-head EEG monitoring devices often leads to issues such as compu-
tational and storage resource wastage and low real-time performance. In light of this,
Fan et al. [59] optimized EEG instruments by monitoring the frontal EEG signals of
drivers to extract features like the energy, entropy, and frontal EEG asymmetry ratio
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of EEG signals, proposing a time-series-based ensemble learning method for fatigue and
distraction detection.

Overall, intelligent detection methods based on drivers’ physiological characteristics
can accurately assess drivers’ states by monitoring changes in their physiological states.
However, most of these methods use invasive sensors, which may cause discomfort to
drivers and have disadvantages such as poor convenience, high cost, and detection accuracy
being easily affected by the environment, hindering their application.

3.5. Intelligent Detection Methods Based on Vehicle Travel Data

When drivers are fatigued or distracted, their driving skills and reaction times are
compromised, leading to deviations in heading angle and difficulties in maintaining the
correct direction of travel on the road. Furthermore, the emergence of fatigue and distraction
can reduce a driver’s steering capability, potentially resulting in insufficient steering actions
that affect their driving behavior. In severe cases, this may even lead to significant lane
departures. Therefore, analyzing vehicle driving data can indirectly assess a driver’s fatigue
and distraction levels.

Yang et al. [60] assessed the state and behavior of drivers based on vehicle GPS
data and the Gaussian Mixture Model (GMM). Wang et al. [61] utilized a Bidirectional
Long Short-Term Memory network (Bi-LSTM) with an attention mechanism to propose a
method for indirectly detecting drivers using mobile phones based on vehicle performance
parameters, achieving an accuracy rate of up to 91.2%. Sun et al. [62] also employed a
Bi-LSTM network to process data on vehicle steering wheel angles, steering wheel angular
velocity, vehicle yaw rate, lateral acceleration, and longitudinal acceleration. They used
a wavelet packet analysis to extract characteristic frequency bands, thereby indirectly
identifying driver fatigue and distraction.

Intelligent detection methods based on vehicle driving data generally involve data
collection through a vehicle’s original onboard sensors, offering advantages in convenience
and cost. However, this approach has difficulty in directly reflecting changes in drivers’
physiological and psychological states, especially under simple driving conditions, where
vehicle driving data show minimal variations, making it challenging to reflect a driver’s
state accurately.

3.6. Intelligent Detection Methods Based on Multimodal Fusion Feature

Driver fatigue or distraction is influenced by various physiological and psycholog-
ical factors and exhibits individual differences, presenting diverse manifestations and
behaviors. Therefore, it is challenging to make a comprehensive judgment based solely
on single-modality signal features. Consequently, many scholars have integrated features
such as driver image information, physiological signals, and vehicle data to study detec-
tion methods based on multimodal feature fusion, aiming to improve the accuracy and
robustness of the detection and explore the potential connections between features and
driver fatigue and distraction.

Wang et al. [63] integrated physiological signals collected by biometric instruments,
such as heart rate and brain waves, with facial features and head postures extracted by
cameras and trained with an RBF neural network, to achieve deployment and application
at a lower cost. Du and others [64] addressed the issue of distracted driving caused
by drivers conversing with others, by introducing the analysis and detection of voice
signals. They proposed a dataset comprising three modalities: driver facial features, voice
recognition, and vehicle signals, applied to the training of a multi-layer fusion model,
achieving better detection results than single-modality models. Abbas and others [65]
developed a multimodal detection system that integrates physiological and facial features
for training a Deep Residual Neural Network (DRNN) model. They classified the driver
states into five categories: normal, fatigued, visually distracted, cognitively distracted, and
drowsy. The hardware setup is shown in Figure 6.
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Detection methods based on multimodal feature fusion, by integrating various modal
characteristics, can establish a more comprehensive assessment system. This approach
compensates for the shortcomings of single-modality methods, collectively enhancing the
accuracy and stability of detection and enabling more flexible and refined state monitoring.
However, the requirement for a greater variety and number of sensors leads to increased
hardware and software costs, and the processing and fusion algorithms for data from
different sensors become more complex. Overall, multimodal fusion represents a research
trend in the detection of driver fatigue and distraction states.

4. Safety Warning and Response Strategies Based on Fatigue and Distraction Detection
4.1. Warning Prompts Based on the Driving Cockpit

With the rapid development of intelligent cockpits, new forms of human–machine
interaction (HMI) are continually emerging, providing new warning formats for detect-
ing driver fatigue and distraction [66]. Upon the preliminary detection of driver fatigue
or distraction, the design of in-cabin HMI can provide sensory stimuli to the driver in
visual, auditory, and tactile forms as warning prompts. Generally, warning prompts are
categorized into normal and urgent. For lower levels of fatigue or distraction, normal
warnings are employed using standard visual or auditory signals [67]. When the level of
fatigue or distraction is high and persists, urgent warnings should be issued by expand-
ing the range of visual cues, changing the color of visual alerts, increasing the decibel
level of auditory signals, or altering the words used in voice prompts [68,69]. Contact
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reminders such as vibrations in the seat and steering wheel [70] can also be utilized to en-
hance sensory stimulation for the driver, thereby facilitating the timely recovery of vehicle
control capabilities.

4.2. Safety Response Based on Advanced Driver Assistance Systems

When drivers exhibit signs of fatigue or distraction, beyond issuing early warnings,
safety responses can also be implemented through Advanced Driver Assistance Systems
(ADAS). If it is detected that a driver is unable to control the vehicle promptly due to
fatigue or distraction, an ADAS can automatically engage emergency braking or perform
other evasive maneuvers to prevent potential collisions or accidents, thereby affording
the driver more reaction time [71]. For instance, an Automatic Emergency Braking (AEB)
system can autonomously apply the brakes to significantly reduce the risk of an accident if
a collision is predicted and the driver has not responded in time. The Lane Keeping Assist
System (LKAS) plays a vital role in preventing potential deviation accidents caused by
driver fatigue or distraction by automatically adjusting the steering to help the vehicle stay
in its current lane. Adaptive Cruise Control (ACC) reduces the risk of collisions caused
by excessive speed or following too closely by automatically adjusting the vehicle’s speed
to maintain a safe distance. The integration of these ADAS features not only enhances
driving safety, but also effectively reduces the accident risk associated with driver fatigue
or distraction, creating a safer driving environment for both drivers and passengers.

4.3. Multi-Level Response Mechanism Combining Autonomous Driving Technology

As the process of automobile intelligence and connectivity accelerates, integrating
autonomous driving technology to establish a multi-level safety response mechanism offers
a new solution for reducing the driving risks associated with driver fatigue or distraction.
Within this framework, the system first attempts to alert the driver’s attention through
warning prompts and provides preliminary safety interventions using Advanced Driver
Assistance Systems (ADAS) in emergency situations, playing a crucial role when the
driver’s response capabilities are insufficient to avoid potential risks.

If primary measures fail to effectively reduce the accident risk, or if the driver fails to
respond in time, the Autonomous Driving System (ADS) is prepared to take over vehicle
control. During this process, ADS uses its advanced perception and decision-making
capabilities to automatically navigate the vehicle to a safe area or take the most appropriate
actions to ensure the safety of both the occupants and surrounding traffic participants.
Currently, despite the rapid progress in autonomous driving technology, including capa-
bilities demonstrated in experimental and limited commercial deployments, there are still
challenges to achieving full automation takeover, such as perception complexity, decision-
making reliability, and legal and ethical issues [72,73].

Furthermore, it is critical to acknowledge that these intelligent vehicles are susceptible
to potential cybersecurity threats from malicious actors. Such vulnerabilities necessitate
the incorporation of cybersecurity measures within the autonomous driving framework
to safeguard against cyberattacks that could compromise vehicle safety and functionality.
Petit et al. [74] highlighted the importance of considering cybersecurity implications in
cooperative automated vehicle systems, stressing the need for enhanced redundancy.
Parkinson et al. [75] emphasized that, with increased connectivity and automation, vehicles
face heightened risks of cybersecurity attacks, calling for a focus on addressing these risks
in the autonomous vehicle sector.

In the context of cyberattacks during the vehicle handover process, the challenge of
distinguishing between abnormal driving behaviors caused by driver issues, such as fatigue
or distraction, and those induced by cyberattacks is significant. Addressing this challenge,
several scholars have conducted in-depth studies aimed at clearly identifying the effects
of cyberattacks on autonomous driving control systems. For instance, Petrillo et al. [76]
explored secure adaptive control for autonomous vehicles under cyberattacks, while Guo
et al. [77] focused on cyber-physical system-based path-tracking control, underscoring
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the necessity for sophisticated detection and mitigation strategies. These investigations
reveal the complexities of maintaining autonomous vehicle safety in the face of cyber
threats, emphasizing the covert nature of these threats and the critical need for advanced
techniques in attack detection and response. Additionally, Sheehan et al. [78] proposed a
proactive approach to cyber risk classification for CAVs, utilizing a Bayesian Network model
predicated on known software vulnerabilities, representing a methodological advancement
in effectively predicting and mitigating cyber risks.

Building on the understanding of cyberattacks’ impact on autonomous driving per-
ception and control systems, numerous scholars have investigated real-time detection
methods aimed at mitigating the effects of such attacks. Van Wyk et al. [79] enhanced
sensor anomaly detection and identification capabilities significantly by combining Kalman
filtering with multi-layered deep learning methods. Wang et al. [80] developed a com-
prehensive framework for detecting and isolating cyberattacks on autonomous driving
systems, offering effective strategies to ensure that vehicle localization and navigation
remain unaffected by cyber disturbances. Furthermore, Li et al. [81] introduced an anomaly
detection model based on Generative Adversarial Networks (GANs), capable of detect-
ing trajectory anomalies and sensor data injections in a timely manner using short-term
data sequences.

Future research endeavors should not be limited to enhancing the sensory capabilities
of autonomous driving systems and refining their decision-making algorithms; there
is a pressing need to fortify cybersecurity defenses to safeguard against and diminish
the ramifications of cyberattacks. Moreover, an intensified focus on distinguishing the
origins of anomalies in autonomous vehicles is essential, a domain presently marked by
scant research. Through the fusion of interdisciplinary collaboration and technological
innovation, autonomous driving technology is poised to fundamentally revolutionize
driving safety, promising a substantial reduction in traffic incidents attributed to driver
fatigue and distraction.

5. Conclusions and Outlook

This paper comprehensively analyzes the current technological research progress
on intelligent detection methods for driver fatigue and distraction. These methods are
categorized into those based on image information, physiological characteristics, vehicle
driving data, and multimodal feature fusion. Not only have these methods improved the
accuracy and real-time capabilities of detection, but they have also provided technical
support for a safer driving environment. Through the analysis and summary of vari-
ous intelligent detection methods and research on safety response plans, the following
conclusions are drawn:

1. Detection methods based on image information, especially those relying on machine
learning and deep learning technologies, have significantly improved the accuracy of
facial feature recognition, particularly in the analysis of face detection, eye, and mouth
movements. However, these methods are highly sensitive to environmental conditions
such as lighting and obstruction of the driver’s head, while also neglecting individual
differences among drivers, somewhat limiting their widespread application potential.

2. Detection methods based on the physiological characteristics of drivers, by ana-
lyzing physiological signals like electroencephalograms (EEG), electrocardiograms
(ECG), and heart rate (HR), provide more direct indicators for assessing the attention
level and fatigue state of the driver. These methods can avoid external environmen-
tal interference to a certain extent and provide relatively stable detection results.
Nonetheless, physiological signal detection often requires the use of invasive sensors,
which may cause discomfort to the driver and have limited applicability in actual
driving environments.

3. Intelligent detection methods based on vehicle driving data assess the driver’s level
of attention distraction indirectly by analyzing the correlation between driving be-
havior and the vehicle operation status. These methods are easy to implement and
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cost-effective, but their detection accuracy is influenced by the complexity of the
driving environment and the difficulty in directly reflecting changes in the driver’s
physiological and psychological state.

4. To enhance the robustness, stability, and overall performance of detection systems,
detection methods based on multimodal feature fusion have emerged, integrating
features from image information, physiological signals, and vehicle data to improve
the comprehensiveness and accuracy of detection. Although this approach effectively
utilizes the advantages of different data sources and enhances the robustness of the
detection system, it also introduces higher implementation costs, technical complexity,
and computational demands.

5. In terms of safety warning research, current systems primarily rely on in-cabin human–
machine interaction designs, issuing warnings to drivers through visual, auditory,
and tactile means. These solutions can enhance driver alertness to some extent and
reduce accidents caused by fatigue or distraction. However, the effectiveness of
these systems is often limited by the driver’s subjective acceptance and real-time
response capability. Moreover, safety response measures, such as the intervention
of Advanced Driver Assistance Systems (ADAS) and the application of autonomous
driving technology, can reduce risks to some extent, but their capability to handle
complex traffic environments and the collaboration between drivers and systems
require further research.

Looking forward to the future development of intelligent detection technology for
driver fatigue and distraction, several technical dimensions can be envisioned:

1. Future research should focus on the adaptability of algorithms in complex environ-
ments, such as stability under different lighting conditions and changes in the driver’s
posture, developing lightweight and efficient neural network models to ensure the
rapidity of data processing and high accuracy of detection results.

2. The innovation of non-invasive sensors and related algorithms could be advanced by
collecting physiological signals through non-contact or minimally invasive methods,
reducing driver discomfort, and expanding application scenarios.

3. The application of machine learning and artificial intelligence technologies in ana-
lyzing the relationship between driving behavior and vehicle performance could be
strengthened, precisely predicting driver states through detailed data collection and
analysis.

4. Data fusion technologies and model integration strategies could be optimized, explor-
ing effective feature fusion algorithms to enhance the complementarity and accuracy
of analysis between different data sources.

5. Future safety warning schemes should pay more attention to personalization and
intelligence, providing customized warning signals based on the driver’s behavior
patterns and physiological state to enhance the effectiveness of warnings.

6. Research should be conducted on the seamless switching mechanism between ad-
vanced driver assistance systems and autonomous driving technology, improving
the safety and flexibility of the system, exploring the data fusion of in-vehicle and
external environment perception systems to provide comprehensive decision support
for ADAS and autonomous driving technology.

Overall, this comprehensive review critically evaluates the latest advancements in
deep-learning-based intelligent detection technologies for driver fatigue and distraction
over the past five years. It sheds light on their theoretical foundations, methodological
innovations, and existing shortcomings. By synthesizing the research within this period,
our analysis not only highlights the progress made in improving detection accuracy and
real-time response capabilities, but also points out the persisting challenges and gaps,
setting the stage for future research. Key contributions from our analysis include:

1. An integrated framework that categorizes the intelligent detection methods based on
deep learning developed over the past five years and proposes a comprehensive safety
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warning and response scheme. This scheme features varied warning and response
mechanisms tailored to the different levels of vehicle automation.

2. A critical evaluation of the limitations inherent in the current methodologies and the
potential for leveraging emerging technologies such as AI and machine learning to
address these challenges.

3. The identification of areas that could significantly benefit from further research, in-
cluding non-invasive sensing techniques, the integration of multimodal data, and the
development of adaptive, personalized detection systems.

Looking forward, we advocate for a concerted effort towards interdisciplinary re-
search that bridges cognitive science, vehicular engineering, and computer science. Such
collaborative endeavors could unlock new pathways for understanding driver behavior
and developing more sophisticated, context-aware technologies capable of mitigating the
risks associated with driver fatigue and distraction. Furthermore, our review underscores
the necessity for the rigorous validation of detection technologies in real-world settings,
ensuring their efficacy and reliability across diverse driving conditions and populations.

In conclusion, this review not only consolidates current knowledge in the domain
of driver fatigue and distraction detection, but also acts as a catalyst for future research.
By highlighting the academic and practical value of recent advancements, we lay the
groundwork for the next generation of detection technologies that promise enhanced road
safety and driver well-being. As the field continues to evolve, it is imperative that future
research endeavors are guided by the dual principles of innovation and inclusivity, ensuring
that technological progress translates into tangible safety benefits for all road users.
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