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Abstract: The selection of group features is a critical aspect in reducing model complexity by choosing
the most essential group features, while eliminating the less significant ones. The existing group
feature selection methods select a set of important group features, without providing the relative
importance of all group features. Moreover, few methods consider the relative importance of group
features in the selection process. This study introduces a permutation-based group feature selection
approach specifically designed for high-dimensional multiclass datasets. Initially, the least absolute
shrinkage and selection operator (lasso) method was applied to eliminate irrelevant individual
features within each group feature. Subsequently, the relative importance of the group features was
computed using a random-forest-based permutation method. Accordingly, the process selected the
highly significant group features. The performance of the proposed method was evaluated using
machine learning algorithms and compared with the performance of other approaches, such as group
lasso. We used real-world, high-dimensional, multiclass microarray datasets to demonstrate its
effectiveness. The results highlighted the capability of the proposed method, which not only selected
significant group features but also provided the relative importance and ranking of all group features.
Furthermore, the proposed method outperformed the existing method in terms of accuracy and
F1 score.

Keywords: group feature; feature selection; permutation; multiclass classification

1. Introduction

Feature selection is an important task for the high-dimensional low-sample-size
(HDLSS) datasets that are prevalent across various domains, such as text recognition,
finance, and gene expression microarrays. HDLSS datasets are characterized by many
features relative to the limited number of available samples. For instance, in microarray
datasets, the number of features (representing genes) is often greater than thousands,
whereas the sample size remains small [1]. An HDLSS dataset requires a reduction in the
dimensions of the feature space. Reducing dimensionality not only decreases model com-
plexity but also improves model prediction accuracy [2]. In the context of HDLSS datasets,
a predominant challenge emerges: a significant number of features do not contribute to
the accurate prediction of the target variable. However, these features can be irrelevant
or redundant. Therefore, the principal objective of managing HDLSS datasets is to select
and rank features that offer substantial insight into the desired outcome, ensuring that the
model’s predictive capacity is optimized.

The analysis of microarray gene expression datasets has gained significant attention
in the fields of data mining and machine learning [3]. As scientists strive to identify key
features within HDLSS datasets, diverse feature selection methods have been proposed and
categorized into filter, wrapper, hybrid, and embedded methods. In microarray datasets
that include thousands of features, many features are correlated because they originate
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from the same source. Correlated features tend to form clusters that collectively affect
the outcomes [4], suggesting that selecting groups of correlated features is more effective
than selecting individual features. This approach is known as group feature selection and
recognizes the interdependence of each cluster.

Group feature selection methods aim to discard irrelevant and redundant group fea-
tures that cause a decrease in classification accuracy, while retaining only informative group
features, thereby enhancing the computational efficiency and classification performance [5].
Bakin [6] introduced the probing least absolute square modeling (PLASM) method for
group feature selection, extending the principles of the least absolute shrinkage and se-
lection operator (lasso) method [7] to the group level. Yuan and Lin [8] further advanced
Bakin’s PLASM method, pioneering the development of a group lasso for group feature se-
lection (GFS), which was a significant breakthrough in this domain. Meier et al. [9] extended
the group lasso method to logistic regression and applied it specifically to DNA sequence
data. Additionally, Simon et al. [10] proposed the sparse-group lasso method, introducing
sparsity considerations at both the within-group and group levels. Fang et al. [11] took
this a step further by developing an adaptive sparse-group lasso. Vincent and Hansen [12]
proposed a multinomial sparse-group lasso as an extension of the sparse-group lasso.
Group lasso and its extensions are very effective gene selection and classification methods
for microarray datasets. Many studies have applied the group least squares (GLS) method
for group feature selection. In the group lasso penalty, features are considered in a group
manner [5,13].

Despite these advancements, existing group feature selection methods have inherent
limitations, in that they fail to quantify the relative importance of the selected group
features. These methods can identify some feature groups as relevant but do not distinguish
those that are most relevant to a target variable. Zubair and Kim [14] proposed a group
feature (GF) ranking and selection approach that is applicable only to binary-class datasets.
Consequently, the existing methods cannot determine the relative importance of group
features for multiclass datasets. Thus, the existing methods cannot provide insight into
how selected groups contribute compared to others, thereby limiting the interpretability of
the model.

This study introduced a novel permutation-based methodology for the simultaneous
ranking and selection of group features, to address the existing limitations of multiclass
classification. To this end, we propose a new group feature importance metric that simulta-
neously permutes all features within a specific group. This process enables us to determine
the impact of the group feature on the model’s prediction performance and quantify its rel-
ative significance. We can rank and select certain imperative group features by employing
this metric. This permutation-based approach provides a reliable method for assessing the
significance of each group feature. In addition, the study ranked the group features based
on their permutation importance and selected the most crucial group features for further
analysis. Figure 1 illustrates the various steps involved in this methodology.

The remainder of this paper is organized as follows: The following section provides
an extensive literature review, encompassing both individual feature ranking and selection,
as well as group feature selection. Section 3 describes the methodology used in this study.
Section 4 presents a detailed discussion of the experimental results. Finally, the concluding
section presents a synthesis of the conclusions and discussion.
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2. Related Work

Related work was reviewed to gain an understanding of the existing methods related
to feature selection and ranking. The first section of this chapter explains ranking-based
feature selection methods. These methods consider only individual features for ranking
and selection, providing the ranking of features, but they do not deal with groups. In the
second section, details of group feature selection methods are provided, which select the
whole group instead of individual features, because a group of features has a common
effect on the target variable. However, most of these methods do not provide the ranking
or relative importance of group features.

2.1. Individual Feature Ranking and Selection

Feature ranking and selection are crucial areas in machine learning and data min-
ing [15]. Numerous techniques have been developed to address this problem. These
methodologies have been widely applied in various real-world domains, including microar-
ray gene analysis, text recognition, malware detection, image processing, image retrieval,
and information retrieval [16–20]. Feature ranking and selection methods can be classified
into two primary groups: subset methods and individual evaluation methods. Subset eval-
uation methods involve the selection of a subset of features for model construction using a
search strategy. Conversely, individual evaluation methods measure the relevance of each
feature to the target variable, assigning importance scores or ranks based on their correla-
tion with the target variable [21]. Furthermore, these methods fall under the categories of
filter, wrapper, hybrid, and embedded techniques [22–25].

The primary category, known as the filter method [22], examines features based on
their mathematical and statistical attributes during selection. Notably, this method operates
independently of classifiers in decision-making, leading to rapid processing. This makes
it effective for handling high-dimensional datasets. The second category, the wrapper
method [23], employs the selection of an optimal subset of individual features and sub-
sequently evaluates the subset’s goodness with the help of a classifier. This method is
renowned for its superior classification performance [4] compared to filter methods. How-



Appl. Sci. 2024, 14, 3156 4 of 16

ever, it is not recommended for use with high-dimensional datasets [3], due to intensive
computational demands.

The hybrid methods, which constitute the third category [24], combine the advantages
of both the filter and wrapper methods. A hybrid method creates a trade-off between
the computational efficiency of the filter method and the superior classification ability of
the wrapper method. Recognized for its robustness in feature selection and enhanced
classification performance, the hybrid method stands out as an intelligent compromise. The
final category, the embedded method [25], is a feature selection approach that combines
model training and feature selection simultaneously. The embedded method employs a
classifier to select the most relevant features as it trains [22].

Most feature ranking methods belong to the filter category. These methods deploy
diverse filtering strategies to evaluate how related the features are to the target variable.
Some notable strategies include the following: The chi-squared statistic (X2) is a commonly
used method [26] for feature ranking. This method evaluates the importance of an individ-
ual feature by computing chi-square statistics with respect to the class. Information gain
(IG) plays a crucial role in an array of techniques for ranking and selecting features [27].
This metric measures the efficacy of a feature in classifying datasets by computing the
decrease in dataset entropy, which represents a measure of uncertainty within a dataset,
after splitting the dataset based on the feature. Notably, IG does not have any problem
with features that have samples with large values. However, IG is biased toward features
that have a large number of different values [28]. A gain ratio is introduced to address
this bias. The gain ratio (GR) is a nonsymmetrical measure crucial for individual feature
evaluation [29]. This approach is frequently used to address the biases inherent in the
IG, which tend to exhibit a preference for features with a multitude of distinct possible
values. Relief, introduced by Kira and Rendell [30], is another important method for feature
ranking. It employs a distance metric to calculate the importance or ranking of features.
ReliefF is an extension of the original Relief algorithm that is adapted for noisy, incomplete
datasets or those with multiple classes [31]. Building on the original Relief and ReliefF,
a family of Relief-based algorithms (RBA), TuRf, VLSReliefF, I-Relief, EReliefF, spatially
uniform relief SURF, SURF*, MultiSURF, MultiSURF*, SWRF*, and statistical inference
relief (STIR) have been developed to refine feature selection [32–38].

In addition, many other methods are used for feature-ranking-based selection, such as
rank product, Fisher’s ratio, and Welch’s t-test [39–41]. All these techniques are designed
to rank individual features. They are not capable of conducting group feature ranking. In
all these feature ranking and selection methods, there is no universal best for all tasks [42].
Researchers can select any of these methods based on their specific problems.

2.2. Group Feature Selection Method

In the context of high-dimensional datasets, particularly within microarray gene
expression datasets, the emergence of group structures among features is prevalent and
attributed to various factors. Notably, genes that share membership in the same biological
pathway, or genetic markers originating from identical genes, can be conceptualized as
constituting a group [43]. Features belonging to the same membership group exhibit similar
characteristics. Consequently, a strong correlation is often observed between features within
the same group [44]. In such datasets, there is a preference for selecting entire features
within the same group rather than individual features. Thus, feature ranking and selection
in this scenario refer to group feature ranking and selection.

Numerous methodologies have been developed by researchers to address group
feature selection [13]. These methods are designed to select group features rather than
individual features. However, the existing group feature selection methods do not provide
information on the relative importance of group features, while various feature ranking-
based selection techniques for individual features exist [27]. Therefore, only a few methods
have demonstrated the ability to select group features based on their rankings.
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Zubair and Kim [14] developed a method for group feature ranking and selection
for high-dimensional datasets. In this method, the relief method was initially applied to
each feature group to eliminate irrelevant individual features. Subsequently, Fisher’s linear
discriminant analysis (FDA) was employed to reduce the dimensions of each group to a
singular dimension, thus capturing the essence of the group features. Finally, a random for-
est method was used to assess the relative importance of these features. The features were
ranked based on their relative importance, and those that surpassed a specified threshold
were selected. The experimentation phase involved real-world microarray gene expression
datasets characterized by a binary-class target variable. This method was specifically devel-
oped to rank and select group features in the context of binary-class datasets. Consequently,
group feature ranking and selection for multiclass datasets remain challenging.

In response to the challenges and limitations outlined above, this study extends the
framework proposed by Zubair and Kim [14] and introduces a novel permutation-based
feature ranking and selection method explicitly developed for multiclass datasets. This
study does not transform group features into a single dimension; instead, it selects the
entire group. By adopting this approach, the information is preserved in its original form.
Furthermore, this method addresses multiclass datasets rather than binary class datasets.

3. Method

In this section, we present a novel permutation-based method for group feature
ranking and selection. The method involves several key steps. First, the datasets that were
used for this study have high dimensionality. In each dataset, many features were correlated
or relevant to each other and had a common effect on the target variable. Therefore, the
relevant features formed groups or clusters. We used the “agglomerative hierarchical
clustering” technique to find these groups in the high-dimensional datasets. This method
helped us to find similar features, so that we could observe the patterns more clearly.
Despite splitting datasets into groups, the dimensionality within each group remained high.
Hence, we applied the lasso algorithm to eliminate irrelevant and redundant individual
features, ensuring that only the most informative features were retained for further analysis.

Next, we proposed a new method for calculating the permutation importance of each
feature group. We obtained an importance score for each group feature by permuting the
values of each group feature and measuring the resulting impact on model performance.
Based on these permutation importance scores, we ranked the group features in terms of
their significance and selected a subset of highly ranked group features for subsequent
analyses. Figure 2 provides a visual representation of the overall procedure, illustrating
the sequential steps involved in our permutation-based method for group feature ranking
and selection.
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The existing group feature selection methods do not provide the relative importance
of all group features. However, we are interested in ranking the group features according
to their importance. Therefore, we proposed a new permutation importance method to
determine the relative importance of all the group features. The permutation-based method
allowed us to assess the significance and relative importance of each group feature. A
few highly ranked group features were selected for further analysis after assessing the
relative importance of all the group features. This approach enhances the interpretability of
the results and improves the efficiency of data analysis, particularly for HDLSS datasets,
where exhaustive analysis may be computationally expensive. Permutation-based methods
are well known for their robustness and consistency [45]. We obtained a more reliable
estimate of the group feature importance by considering multiple permutations of the
group feature values, thereby reducing the influence of random fluctuations and improving
the ranking robustness.

3.1. Removing Irrelevant Individual Features

In high-dimensional data, many individual features may be irrelevant to the target
variable, making them unsuitable for computing the permutation importance of the feature
groups. To address this issue, we adopted the straightforward approach of removing indi-
vidual features that were deemed irrelevant before calculating the permutation importance
of the group features. Several existing approaches are available for identifying irrelevant
individual features. In this study, we proposed employing the lasso method to remove irrel-
evant individual features from the group features. Using the lasso method, we effectively
filtered out irrelevant individual features, ensuring that only the most informative features
were considered when computing the permutation importance of the group features. This
step significantly enhanced the relevance of the selected features to the target variable
and rankings, which ultimately improved the classification performance of our proposed
method in high-dimensional data analysis.

Tibshirani [7] introduced the original lasso method, which has proven to be an effective
technique for eliminating irrelevant individual features. This method has two primary
objectives: regularization and loss functions. For regularization, the lasso method adds
a penalty term that encourages some coefficients of the variables to be reduced to zero.
This regularization step aids in controlling the complexity of the model and prevents
overfitting. By shrinking some of the coefficients, we obtained a sparse feature space using
the lasso method.

Suppose there is a high-dimensional dataset with n instances and p individual features.
In addition, Y denotes a K dimensional response vector with K classes represented as
Y ={y1, y2, . . . , yn}, where yi denotes the class label vector for the i-th instance. The LASSO
method selects individual features by minimizing the following objective function [7]:

Q(β|XO, Y) = −
n

∑
i=1

yi log ŷi + λ
p

∑
j=1

∣∣β j
∣∣ (1)

where λ is a shrinkage parameter that controls the amount of penalty, and has great
importance in this method. If λ is sufficiently large in Equation (1), more variables are
forced to be exactly zero, which results in a greater dimension reduction. The coefficient
β j represents the feature weights for each class, and ŷi denotes the predicted probabilities
of the i-th instance. The first term in the objective function represents the multiclass
cross-entropy loss, which measures the dissimilarity between the true class labels and the
predicted probabilities for each class. The second term is the L1 regularization term, which
penalizes the absolute values of the coefficients for each class. This term promotes feature
selection by driving some of the coefficients to zero, resulting in dimension reduction
and the selection of relevant features. Based on this mechanism, the LASSO method can
select features with non-zero coefficients. These features were deemed significant and were
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retained for further analysis, whereas the coefficients of the irrelevant features decreased to
zero, effectively excluding them from the model.

3.2. A Novel Permutation-Based Group Feature Importance Measure

We aimed to compute the importance of features by considering groups of features
rather than individually. To achieve this, we proposed a new group feature importance
measure that extended the permutation importance of individual features. Conventional
methods typically compute the permutation importance of individual features by permut-
ing them separately. However, in the present study, we encountered multidimensional
groups consisting of multiple features. To handle this scenario appropriately, we propose
permuting all columns within a common group at the same time, while keeping all other
groups and target variables unchanged. This approach expands the importance of tradi-
tional feature permutation to a group feature level to capture the collaborative effect of
feature groups.

Suppose we obtain a new dataset including a feature matrix X that has d individual
features, which is much smaller than p, after removing irrelevant individual features based
on LASSO. As shown in Figure 3, the new feature matrix X includes L groups, denoted as
X = {X1, X2, . . . , XL}, where Xl is a n × pl matrix of features representing the l-th group
feature of the new dataset. Each of these group features has pl individual features, where
x11(l) is an individual value of the individual feature. Each group feature contains relevant
and informative individual features, because irrelevant features have been removed using
the LASSO method. Y = {y1, y2, . . . , yn} is the target variable. By permuting all the
features within a common group, while preserving the other groups and target variables
in their original forms (Figure 3), we accurately assessed the importance score of each
group feature in the context of the entire dataset. This enabled us to measure the impact
of each group on the prediction performance of the model and to determine the relative
significance of the group features in contributing to the overall predictive power of the
model. This score assesses the increase in the prediction error of the model when the values
of the group features are permuted.
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The proposed method permutes the values of individual features within a specific
group feature without altering the target variable. During this process, all other group
features and target variable are kept in their original form, allowing us to assess the impact
of that specific group on the prediction accuracy of the model. A significant decrease in
prediction accuracy indicates that the group is strongly aligned with the target variable.

The process of random-forest-based permutation importance of the group feature is
as follows: The group feature Xl is randomly permuted, and the association of this group
feature with the target variable Y is disrupted. When the permuted group feature Xl , along
with the nonpermuted group features, is used to predict the target variable for out-of-bag
observation, the prediction accuracy decreases considerably if the original Xl is aligned
with the target variable. Therefore, according to Breiman [46], the difference in prediction
accuracy before and after permuting Xl is averaged across all trees as a measure of the
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group feature importance. This concept is defined as follows: Consider a tree t within an
RF composed of ntree trees. Let β(t) represent the out-of-bag (OOB) sample for the tree t.
Before permuting any features, the predicted class of the i-th observation by the tree t is
denoted by ŷ(t)i . After permuting the values of a group feature Xl , the predicted class of the

same i-th observation is represented by ŷ(t)i,πl
. The group feature permutation importance

w(t) of Xl in tree t is then defined as follows:

w(t)(Xl) =
∑i∈β(t) I

(
yi = ŷ(t)i

)
∣∣β(t)

∣∣ −
∑i∈β(t) I

(
yi = ŷ(t)i,πl

)
∣∣β(t)

∣∣ (2)

By using Equation (2), the group feature permutation importance w of Xl over all trees
is then computed as

w(Xl) =
∑ntree

t=1 w(t)(Xl)

ntree
(3)

The importance score, described in Equation (3), quantifies the impact of the group
features on the model’s prediction performance. A higher importance score indicates that
the group feature contributes significantly to the model accuracy. In contrast, a lower
score suggests that the group feature has a lower impact on model performance. We
gained valuable insight into the relative importance of each group feature by calculating
the permutation importance, enabling us to rank and select the most influential group
features for further analysis and model refinement. The pseudocode for this process is
presented in Algorithm 1.

Algorithm 1: Pseudocode of permutation group importance based on random forest

Input: X matrix with d individual features, XL group features, and Y response variable
Output: vector W

1 procedure Split dataset X into training and testing datasets
2 Train the model on the training dataset and compute the baseline out-of-bag by using a

random forest classifier
3 Initialize all group feature score w[Xl] = [ ]
4 For l = 1 to L do
5 Compute the permutation importance of Xl in tree t

w(t)(Xl) =
∑i∈β(t)

I
(

yi=ŷ(t)i

)
|β(t)| −

∑i∈β(t)
I
(

yi=ŷ(t)i,πl

)
|β(t)|

6 Calculate the overall permutation importance of Xl

w(Xl) =
∑

ntree
t=1 w(t)(Xl)

ntree

7 end
8 return vector W of group features score
9 end procedure

3.3. Ranking and Selection of GF

Subsequently, by computing the permutation-based group feature importance scores
for all the groups, we ranked them according to their importance scores. The group with the
highest score was assigned the highest rank, which indicated the significance of the predic-
tive performance of the model. This ranking allowed us to discern the relative importance
of each group feature in contributing to the overall predictive power of the models.

Next, we calculated the average of all the importance scores obtained for the groups.
The average score served as the threshold for selecting the most influential group fea-
tures. Groups with importance scores above the average were retained. These selected
group features were considered more relevant and influential in driving the model’s
predictive accuracy.

By adopting this approach, we could efficiently identify and retain the most important
group features, while discarding those with lower importance. This helped streamline
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the model’s representation and enhanced its interpretability by focusing on the most
informative group features for further analysis and decision-making.

4. Results
4.1. Data Description

In this section, we present the performance of both the proposed method and an
existing approach, along with a comparative analysis. We focus on the permutation-based
group feature importance method introduced in Section 3, as well as the established group
lasso method. For this evaluation, three distinct datasets (https://jundongl.github.io/scikit-
feature/OLD/datasets_old.html (accessed on 15 February 2023)) were used: GLA-BRA-180,
CLL-SUB-111, and TOX-171. These datasets consisted of microarray gene expression data
sourced from the National Center for Biotechnology Information (NCBI). The datasets
contained genes as predictors and included multiclass response variables. Specifically, the
GLA-BRA-180 dataset comprised 49,151 features and 4 distinct classes, whereas CLL-SUB-
111 included 11,340 features and 3 classes. The TOX-171 dataset encompassed 5749 features
and 4 classes. Further insights into the characteristics of these datasets are presented in
Table 1.

Table 1. Data description.

Category Dataset No. of
Samples

No. of
Features

No. of
Classes

Microarray GLA-BRA-180 180 49151 4
Microarray CLL-SUB-111 111 11340 3
Microarray TOX-171 171 5749 4

The GLA-BRA-180 dataset encompasses the expression profiles of stem cell factors
important for exploring tumor angiogenesis. This dataset is useful for analyzing gliomas
of various grades. In total, 180 samples were categorized into distinct classes: 23 samples
belonged to the brain oligodendroglia class, 26 samples corresponded to glioblastomas,
81 samples represented astrocytomas, and 50 samples belonged to the non-tumor class. The
CLL-SUB-111 dataset, another gene expression dataset, comprises distinct clinically and
genetically delineated subgroups of B-cell chronic lymphocytic leukemia (B-CLL). Within
this dataset, the initial 11 samples were assigned to the first class, 49 to the second class,
and the remaining samples to the third class. This dataset facilitated the investigation of
nuanced characteristics within B-CLL subgroups. The TOX-171 dataset considers the effect
of influenza A on plasmacytoid dendritic cells (PDC). It leverages toxicology to assimilate
a diverse range of biological data, encompassing aspects such as expression and clinical
chemistry. This dataset was characterized by profiles generated across three distinct types
of toxicants. The underlying objective of this dataset involves discerning whether a given
sample exhibits toxicity, non-toxicity, or control.

4.2. Relative Importance and Selection of Groups

In this study, we used high-dimensional gene expression datasets. The number of
features in these datasets was as high as that of the samples. In each dataset, many features
were correlated or relevant to each other. Thus, the relevant features formed groups or
clusters. To address this issue, we employed the “agglomerative hierarchical clustering”
technique, which facilitated the identification of groups in these datasets.

After splitting these datasets into groups, they still had large dimensions and many
irrelevant features. The least absolute shrinkage and selection operator method was used
to remove irrelevant features from each group. After removing the irrelevant features
from each group, the remaining informative features were used for further analysis. Once
we had identified meaningful features in each group, we determined the most important
group features. For this purpose, we used the proposed technique called “permutation-
based group feature importance” with the help of a random forest. Using this method, we

https://jundongl.github.io/scikit-feature/OLD/datasets_old.html
https://jundongl.github.io/scikit-feature/OLD/datasets_old.html
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determined the relative importance and importance scores of all group features, as shown
in Figure 4.
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Thus, we determined the important group features. Figure 4 shows the relative
importance of all the group features, where L1, L2, . . ., L5 represent the group features.
With the help of the relative importance, these group features could be ranked based on
their importance. In Figure 4a, L1 had the largest importance, followed by L4, L2, L3, and
L5. In Figure 4b, L1 emerged as the most important group feature, followed by L3, L4, L2,
and L5. Similarly, in Figure 4c, L3 demonstrated the largest importance, followed by L5,
L1, L4, and L2. Existing methods for group feature selection, such as group lasso, cannot
provide the ranking and relative importance of each group. They simply select a few
group features and do not provide information regarding their importance. The proposed
method can select group features and provide additional information such as ranking and
relative importance.

To select group features based on the relative importance of the groups, we took
the average of all importance scores and selected those group features that were above
the average values. Table 2 shows the selected group features and the total number of
individual features in each group. Overall, our method combines selection, ranking, and
understanding of the relative importance of group features. This approach sets our research
apart from other works and helps us make better sense of complex data.

Table 2. The selected group features on different datasets.

Group
GLA-BRA-180 CLL-SUB-111 TOX-171

No. of
Features

Selected
Groups

No. of
Features

Selected
Groups

No. of
Features

Selected
Groups

L1 14116
√

4411
√

8605
L2 14044

√
2113 5156

L3 5089 1451
√

2774
√

L4 3494
√

1766 4941
L5 12412 1598 1768

√
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4.3. Comparison of the Classification Results

In this section, we conduct a comparison assessment between the proposed permutation-
based group feature ranking method and an existing method called the group lasso. Initially,
the original lasso method was employed to remove irrelevance features on an individual ba-
sis. We then examined the performance of group feature selection approaches by employing
the selected group features in classification tasks. The tasks were executed through machine
learning algorithms, aiming at identifying which one performed better in terms of the clas-
sification tasks. The comparison involved the utilization of machine learning techniques,
specifically three algorithms: logistic regression (LR), support vector machine (SVM),
and random forest (RF). Leave-one-out cross-validation was employed to evaluate the
performance of the methods, providing a robust measure of the classification performance.

Important performance metrics, accuracy, and F1 score (F1) were used to evaluate
the performance of the classification methods. To compute these performance metrics,
a confusion matrix was determined as outlined in Table 3. In Table 3, tp represents true
positive, tn denotes true negative, fp denotes false positive, and fn denotes false negative.
Accuracy helped us understand the number of correct predictions made by our method
compared to the total number of predictions. The formula for accuracy can be expressed
as follows:

accuracy =
tp + tn

tp + tn + f p + f n
(4)

The F1 score balances precision and recall as follows:

F1 = 2 × precision × recall
precision + recall

(5)

where precision and recall denote tp
tp+ f p and tp

tp+ f n , respectively. In the context of a multi-
class classification, we extended the confusion matrix by calculating an F1 score for each
class individually. These scores were then averaged to arrive at a macro-averaged F1
score. This macro-averaging technique ensured an equitable contribution from each class
to the final score. Consequently, this approach fairly evaluated the performance of the
classification model, regardless of class imbalance.

Table 3. An example of a confusion matrix.

Predicted Class

Positive Negative

A
ct

ua
l

cl
as

s Positive tp fn

Negative fp tn

The following three gene expression datasets were examined: GLA-BRA-180, CLL-
SUB-111, and TOX-171. The proposed and group lasso methods were applied to these
datasets, and each method selected group features separately. The selected group features
were used to train the machine learning algorithms and calculate their respective accuracies
and F1 scores on the testing dataset. Machine learning algorithms were also trained and
evaluated using the original datasets, without employing any feature selection technique
(No-FS). The results are summarized in Table 4. In comparison to No-FS, both feature
selection methods (group lasso and the proposed method) performed better. Notably,
using the CLL-SUB-111 dataset, the proposed method outperformed the group lasso
using LR, SVM, and RF. For the GLA-BRA-180 dataset, the performances of both methods
were almost the same for the SVM and RF classifiers in terms of accuracy. However, the
proposed method performed slightly better with LR. Finally, concerning the TOX-171
dataset, the proposed method demonstrated a slight advantage over LR and RF and nearly
the same performance as the SVM. This comparative analysis helped us see how well
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our approach stands up against an established method and which method works best on
which algorithms.

Table 4. Prediction accuracy and F1 score of the proposed method and group lasso.

Dataset Classifier
No-FS Group-Lasso Proposed Method

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

GLA-BRA-180
LR 0.74 0.68 0.81 0.79 0.83 0.82

SVM 0.73 0.67 0.88 0.83 0.89 0.89
RF 0.7 0.57 0.71 0.63 0.71 0.65

CLL-SUB-111
LR 0.82 0.83 0.87 0.91 0.95 0.97

SVM 0.85 0.88 0.9 0.93 0.97 0.98
RF 0.71 0.75 0.83 0.87 0.88 0.91

TOX-171
LR 0.86 0.85 0.87 0.88 0.9 0.89

SVM 0.9 0.89 0.97 0.97 0.98 0.98
RF 0.72 0.72 0.71 0.72 0.74 0.73

For group feature selection, both the proposed method and group lasso were effective,
which is why the results of these two methods in terms of accuracy and F1 score did not
show a significant difference. However, the significance of the proposed method compared
to group lasso lies in its ability to provide the relative importance of all group features.

The proposed method demonstrated superior performance in terms of accuracy and F1
score across all datasets. For instance, on the GLA-BRA-180 dataset, the proposed method
achieved the highest accuracy of 89%, surpassing the group lasso method, which achieved
an accuracy of 88%, and outperforming the No-FS approach, which achieved only 74%
accuracy. Additionally, the proposed method achieved an F1 score of 89%, while the group
lasso and No-FS methods achieved scores of 83% and 68%, respectively. This highlighted
the effectiveness of the proposed method, which outperformed the group lasso by 1% in
accuracy and by 15% compared to No-FS. Moreover, in terms of F1 score, the proposed
method outperformed the group lasso by 6% and No-FS by 21%.

Similarly, on the CLL-SUB-111 dataset, the proposed method achieved the highest
accuracy of 97%, while the group lasso and No-FS methods achieved 90% and 85%, respec-
tively. The F1 score of the proposed method was 98%, compared to 93% for group lasso
and 88% for No-FS. This demonstrated the superior performance of the proposed method
across the various classification metrics.

On the TOX-171 dataset, the proposed method achieved an accuracy of 98%, slightly
outperforming group lasso with 97% and No-FS with 90%. This further validated the
effectiveness of the proposed method in achieving superior performance compared to
existing methods across different datasets.

A key advantage of our method is its ability to provide not only the selection of group
features but also their ranking and the relative importance of these group features. This
rich information enables a more informed decision-making process for the group feature
selection. While group lasso focuses primarily on selecting groups of features, our method
goes beyond quantifying the importance of each feature group. Thus, we can identify the
groups that contribute most to the predictive power of the model.

Our method offers a significant advantage by not only selecting group features but
also by providing their ranking and delineating the relative importance of these groups.
This capability affords a nuanced understanding that aids in informed decision-making for
feature selection, whereas group lasso primarily selects feature groups without ranking
them. By utilizing the rankings and importance scores, we ascertain the comprehensive
contribution of each group feature, which facilitates the effective prioritization of the most
impactful ones. Furthermore, the proposed method is not limited to specific algorithms
and its insights can be applied to various classifiers. This flexibility allows it to be adapted
to different machine-learning tasks.
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In summary, the advantage of our method lies in its ability to offer a more detailed
understanding of group feature importance, facilitating better decision-making in feature
selection. This advantage, coupled with its ability to enhance model performance, makes it
a powerful tool for addressing high-dimensional and low-sample-size data challenges.

In this study, we focused on distinct sparsity levels at the group level and within
individual groups. In the future, we envision the simultaneous implementation of the
sparsity process at both group and intragroup levels, particularly targeting multiclass
high-dimensional and low-sample size (HDLSS) datasets. This study aimed to formulate a
novel method for selecting and ranking group features in the context of multiclass HDLSS
data. This method was subsequently compared to an established approach. This study
demonstrated that the proposed method exhibited superior performance compared with
the group lasso method.

5. Discussion and Conclusions

To the best of our knowledge, only a limited number of studies have introduced
methods for group feature ranking and selection, specifically for high-dimensional datasets.
Previous studies have not used permutation methods for this purpose. In this study,
a novel permutation-based approach was proposed that systematically computes the
relative importance scores for all group features and subsequently ranks them based on
their respective scores. The proposed method selects a subset comprising only the most
important group features. To assess the efficacy of the proposed group feature ranking
and selection method, rigorous evaluations were conducted using high-dimensional real-
world datasets.

The datasets analyzed in this study demonstrated a mix of high dimensionality and
a limited number of samples. With feature numbers extending to thousands and sample
sizes remaining in the range of a few hundred, a practical approach to dimensionality
reduction is imperative. This study emphasized the importance of a careful reduction
strategy. This highlights the fact that datasets with moderate sizes or dimensions do
not necessarily require drastic dimensionality reduction. For practitioners working with
datasets of different sizes, adjusting the parameters at the beginning allows for fine-tuning
the removal of irrelevant features according to specific needs. Notably, this study showed a
performance improvement when the dimensionality reduction was more aggressive in the
early stages.

The introduced methodology enhances the interpretability of group features, an as-
pect that existing methods weaken by not providing information regarding the relative
importance of selected groups. Unlike existing group feature selection methods, such as
the group lasso, which cannot describe the specific contributions or importance of selected
or rejected groups, our proposed method provides insights into both selected and rejected
groups. Moreover, the proposed method maintains a competitive classification perfor-
mance in the field of machine learning algorithms, positioning itself at an equal level with
existing methodologies.

This paper introduced a group feature selection method that employs a permutation-
based strategy specifically designed for datasets characterized by high dimensionality and
small sample sizes. Initial dimensionality reduction was accomplished by eliminating
irrelevant individual features within each group, followed by the computation of the
relative importance of all groups. Subsequently, groups with importance values exceeding
the average were selected. The data obtained from these groups were divided into training
and testing datasets. Machine learning algorithms were trained on the training data,
and model performance was evaluated using test data. Given the small sample size of
the datasets used in this study, leave-one-out cross-validation was employed to assess
the performance of the proposed method. The experimental results demonstrated that
the performance of the proposed method was comparable or superior to that of existing
methodologies in machine learning algorithms.
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The proposed method exhibited distinctive characteristics that are particularly note-
worthy in the context of high-dimensional datasets. Notably, the method undertook an
aggressive dimensionality reduction, yielding a higher classification accuracy than that of
the original datasets, despite the removal of a substantial number of features. A notable
aspect of the proposed method is its departure from existing permutation importance
methods, which are typically applied to compute the importance of individual features.
Existing methods tend to overestimate the importance of specific features in scenarios
characterized by feature correlations and group structures. To address this, the proposed
method employs permutations at the group level, offering a more accurate reflection of the
importance of group features within the context of correlated features and group structures.

Despite the utilization of datasets with a low sample size in this study, it is pertinent
to note that the proposed method is applicable to datasets characterized by more ample
sample sizes. Furthermore, the applicability of this method extends beyond microarray
gene expression datasets and encompasses a broader spectrum of datasets. This method
initiates the imposition of sparsity at the within-group level as the first step, followed
by a secondary sparsity operation at the group level. A prospective avenue for future
research involves the concurrent application of sparsity constraints at both group and
within-group levels.

Author Contributions: Modelling, I.M.Z. and B.K.; Validation, I.M.Z.; Writing—original draft, I.M.Z.;
Writing—review and editing, Y.-S.L.; Supervision, Y.-S.L. and B.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This reseach received no external funding.

Data Availability Statement: The data presented in this study are available at https://jundongl.
github.io/scikit-feature/OLD/datasets_old.html accessed on 15 February 2023.

Acknowledgments: Byunghoon Kim’s work is supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1F1A1063273). Also,
Yung-Seop Lee’s work is supported by the Dongguk University Research Fund of 2024 and the
National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)
(No. NRF-2021R1A2C1007095). The authors would like to thank the editor and reviewers for
their insightful and constructive comments, which greatly contributed to enhancing the quality of
this work.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cavalheiro, L.P.; Bernard, S.; Barddal, J.P.; Heutte, L. Random forest kernel for high-dimension low sample size classification. Stat.

Comput. 2024, 34, 9. [CrossRef]
2. Jiménez, F.; Sánchez, G.; Palma, J.; Miralles-Pechuán, L.; Botía, J.A. Multivariate feature ranking with high-dimensional data for

classification tasks. IEEE Access 2022, 10, 60421–60437. [CrossRef]
3. Bolón-Canedo, V.; Sánchez-Marono, N.; Alonso-Betanzos, A.; Benítez, J.M.; Herrera, F. A review of microarray datasets and

applied feature selection methods. Inf. Sci. 2014, 282, 111–135. [CrossRef]
4. Tang, F.; Adam, L.; Si, B. Group feature selection with multiclass support vector machine. Neurocomputing 2018, 317, 42–49.

[CrossRef]
5. Wang, Y.; Li, X.; Ruiz, R. Weighted general group lasso for gene selection in cancer classification. IEEE Trans. Cybern. 2018, 49,

2860–2873. [CrossRef] [PubMed]
6. Bakin, S. Adaptive Regression and Model Selection in Data Mining Problems; The Australian National University: Canberra, Australia, 1999.
7. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [CrossRef]
8. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 2006,

68, 49–67. [CrossRef]
9. Meier, L.; Van De Geer, S.; Bühlmann, P. The group lasso for logistic regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 2008, 70, 53–71.

[CrossRef]
10. Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. A sparse-group lasso. J. Comput. Graph. Stat. 2013, 22, 231–245. [CrossRef]
11. Fang, K.; Wang, X.; Zhang, S.; Zhu, J.; Ma, S. Bi-level variable selection via adaptive sparse group Lasso. J. Stat. Comput. Simul.

2015, 85, 2750–2760. [CrossRef]

https://jundongl.github.io/scikit-feature/OLD/datasets_old.html
https://jundongl.github.io/scikit-feature/OLD/datasets_old.html
https://doi.org/10.1007/s11222-023-10309-0
https://doi.org/10.1109/ACCESS.2022.3180773
https://doi.org/10.1016/j.ins.2014.05.042
https://doi.org/10.1016/j.neucom.2018.07.012
https://doi.org/10.1109/TCYB.2018.2829811
https://www.ncbi.nlm.nih.gov/pubmed/29993764
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2007.00627.x
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1080/00949655.2014.938241


Appl. Sci. 2024, 14, 3156 15 of 16

12. Vincent, M.; Hansen, N.R. Sparse group lasso and high dimensional multinomial classification. Comput. Stat. Data Anal. 2014, 71,
771–786. [CrossRef]

13. Zhang, H.; Wang, J.; Sun, Z.; Zurada, J.M.; Pal, N.R. Feature selection for neural networks using group lasso regularization. IEEE
Trans. Knowl. Data Eng. 2019, 32, 659–673. [CrossRef]

14. Zubair, I.M.; Kim, B. A Group Feature Ranking and Selection Method Based on Dimension Reduction Technique in High-
Dimensional Data. IEEE Access 2022, 10, 125136–125147. [CrossRef]

15. Theng, D.; Bhoyar, K.K. Feature selection techniques for machine learning: A survey of more than two decades of research. Knowl.
Inf. Syst. 2024, 66, 1575–1637. [CrossRef]

16. Egozi, O.; Gabrilovich, E.; Markovitch, S. Concept-Based Feature Generation and Selection for Information Retrieval. In
Proceedings of the AAAI, Chicago, IL, USA, 13–17 July 2008; pp. 1132–1137.

17. Chen, J.; Huang, H.; Tian, S.; Qu, Y. Feature selection for text classification with Naïve Bayes. Expert Syst. Appl. 2009, 36, 5432–5435.
[CrossRef]

18. Vajda, S.; Karargyris, A.; Jaeger, S.; Santosh, K.; Candemir, S.; Xue, Z.; Antani, S.; Thoma, G. Feature selection for automatic
tuberculosis screening in frontal chest radiographs. J. Med. Syst. 2018, 42, 146. [CrossRef] [PubMed]

19. Dy, J.G.; Brodley, C.E.; Kak, A.; Broderick, L.S.; Aisen, A.M. Unsupervised feature selection applied to content-based retrieval of
lung images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 373–378. [CrossRef]

20. Lazar, C.; Taminau, J.; Meganck, S.; Steenhoff, D.; Coletta, A.; Molter, C.; de Schaetzen, V.; Duque, R.; Bersini, H.; Nowe, A. A
survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinform.
2012, 9, 1106–1119. [CrossRef]

21. Haq, A.U.; Zhang, D.; Peng, H.; Rahman, S.U. Combining multiple feature-ranking techniques and clustering of variables for
feature selection. IEEE Access 2019, 7, 151482–151492. [CrossRef]

22. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
23. Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [CrossRef]
24. Hsu, H.-H.; Hsieh, C.-W.; Lu, M.-D. Hybrid feature selection by combining filters and wrappers. Expert Syst. Appl. 2011, 38,

8144–8150. [CrossRef]
25. Abeel, T.; Helleputte, T.; Van de Peer, Y.; Dupont, P.; Saeys, Y. Robust biomarker identification for cancer diagnosis with ensemble

feature selection methods. Bioinformatics 2010, 26, 392–398. [CrossRef] [PubMed]
26. Liu, H.; Setiono, R. Chi2: Feature selection and discretization of numeric attributes. In Proceedings of the 7th IEEE International

Conference on Tools with Artificial Intelligence, Herndon, VA, USA, 5–8 November 1995; pp. 388–391.
27. Chuang, L.-Y.; Ke, C.-H.; Chang, H.-W.; Yang, C.-H. A two-stage feature selection method for gene expression data. OMICS A J.

Integr. Biol. 2009, 13, 127–137. [CrossRef] [PubMed]
28. Göcs, L.; Johanyák, Z.C. Feature Selection with Weighted Ensemble Ranking for Improved Classification Performance on the

CSE-CIC-IDS2018 Dataset. Computers 2023, 12, 147. [CrossRef]
29. Cheng, Y.; Shi, Q. PCMIgr: A fast packet classification method based on information gain ratio. J. Supercomput. 2023, 79, 7414–7437.

[CrossRef]
30. Kira, K.; Rendell, L.A. A practical approach to feature selection. In Machine Learning Proceedings 1992; Elsevier: Amsterdam, The

Netherlands, 1992; pp. 249–256.
31. Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell.

1997, 7, 39–55. [CrossRef]
32. Eppstein, M.J.; Haake, P. Very large scale ReliefF for genome-wide association analysis. In Proceedings of the 2008 IEEE

Symposium on Computational Intelligence in Bioinformatics and Computational Biology, Sun Valley, ID, USA, 15–17 September
2008; pp. 112–119.

33. Greene, C.S.; Penrod, N.M.; Kiralis, J.; Moore, J.H. Spatially uniform relieff (SURF) for computationally-efficient filtering of
gene-gene interactions. BioData Min. 2009, 2, 5. [CrossRef] [PubMed]

34. Greene, C.S.; Himmelstein, D.S.; Kiralis, J.; Moore, J.H. The informative extremes: Using both nearest and farthest individuals
can improve relief algorithms in the domain of human genetics. In Proceedings of the European Conference on Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics, Istanbul, Turkey, 7–9 April 2010; pp. 182–193.

35. Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J.
Biomed. Inform. 2018, 85, 189–203. [CrossRef]

36. Granizo-Mackenzie, D.; Moore, J.H. Multiple threshold spatially uniform relieff for the genetic analysis of complex human
diseases. In Proceedings of the Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 11th European
Conference, EvoBIO 2013, Vienna, Austria, 3–5 April 2013; pp. 1–10.

37. Stokes, M.E.; Visweswaran, S. Application of a spatially-weighted Relief algorithm for ranking genetic predictors of disease.
BioData Min. 2012, 5, 20. [CrossRef]

38. Le, T.T.; Urbanowicz, R.J.; Moore, J.H.; McKinney, B.A. Statistical inference relief (STIR) feature selection. Bioinformatics 2019, 35,
1358–1365. [CrossRef] [PubMed]

39. Breitling, R.; Armengaud, P.; Amtmann, A.; Herzyk, P. Rank products: A simple, yet powerful, new method to detect differentially
regulated genes in replicated microarray experiments. FEBS Lett. 2004, 573, 83–92. [CrossRef]

https://doi.org/10.1016/j.csda.2013.06.004
https://doi.org/10.1109/TKDE.2019.2893266
https://doi.org/10.1109/ACCESS.2022.3225685
https://doi.org/10.1007/s10115-023-02010-5
https://doi.org/10.1016/j.eswa.2008.06.054
https://doi.org/10.1007/s10916-018-0991-9
https://www.ncbi.nlm.nih.gov/pubmed/29959539
https://doi.org/10.1109/TPAMI.2003.1182100
https://doi.org/10.1109/TCBB.2012.33
https://doi.org/10.1109/ACCESS.2019.2947701
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1016/j.eswa.2010.12.156
https://doi.org/10.1093/bioinformatics/btp630
https://www.ncbi.nlm.nih.gov/pubmed/19942583
https://doi.org/10.1089/omi.2008.0083
https://www.ncbi.nlm.nih.gov/pubmed/19182978
https://doi.org/10.3390/computers12080147
https://doi.org/10.1007/s11227-022-04951-0
https://doi.org/10.1023/A:1008280620621
https://doi.org/10.1186/1756-0381-2-5
https://www.ncbi.nlm.nih.gov/pubmed/19772641
https://doi.org/10.1016/j.jbi.2018.07.014
https://doi.org/10.1186/1756-0381-5-20
https://doi.org/10.1093/bioinformatics/bty788
https://www.ncbi.nlm.nih.gov/pubmed/30239600
https://doi.org/10.1016/j.febslet.2004.07.055


Appl. Sci. 2024, 14, 3156 16 of 16

40. Ye, J.; Xiong, T.; Madigan, D. Computational and Theoretical Analysis of Null Space and Orthogonal Linear Discriminant Analysis.
J. Mach. Learn. Res. 2006, 7, 1183–1204.

41. Dudoit, S.; Yang, Y.H.; Callow, M.J.; Speed, T.P. Statistical methods for identifying differentially expressed genes in replicated
cDNA microarray experiments. Stat. Sin. 2002, 12, 111–139.

42. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. A review of feature selection methods on synthetic data. Knowl. Inf.
Syst. 2013, 34, 483–519. [CrossRef]

43. Huang, J.; Breheny, P.; Ma, S. A selective review of group selection in high-dimensional models. Stat. Sci. A Rev. J. Inst. Math. Stat.
2012, 27, 481–499. [CrossRef] [PubMed]

44. Jiang, D.; Huang, J. Concave 1-norm group selection. Biostatistics 2015, 16, 252–267. [CrossRef] [PubMed]
45. Noguchi, K.; Konietschke, F.; Marmolejo-Ramos, F.; Pauly, M. Permutation tests are robust and powerful at 0.5% and 5%

significance levels. Behav. Res. Methods 2021, 53, 2712–2724. [CrossRef]
46. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10115-012-0487-8
https://doi.org/10.1214/12-STS392
https://www.ncbi.nlm.nih.gov/pubmed/24174707
https://doi.org/10.1093/biostatistics/kxu050
https://www.ncbi.nlm.nih.gov/pubmed/25417206
https://doi.org/10.3758/s13428-021-01595-5
https://doi.org/10.1023/A:1010933404324

	Introduction 
	Related Work 
	Individual Feature Ranking and Selection 
	Group Feature Selection Method 

	Method 
	Removing Irrelevant Individual Features 
	A Novel Permutation-Based Group Feature Importance Measure 
	Ranking and Selection of GF 

	Results 
	Data Description 
	Relative Importance and Selection of Groups 
	Comparison of the Classification Results 

	Discussion and Conclusions 
	References

