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Abstract: Unemployment, a significant economic and social challenge, triggers repercussions that
affect individual workers and companies, generating a national economic impact. Forecasting the
unemployment rate becomes essential for policymakers, allowing them to make short-term estimates,
assess economic health, and make informed monetary policy decisions. This paper proposes the
innovative GA-LSTM method, which fuses an LSTM neural network with a genetic algorithm to
address challenges in unemployment prediction. Effective parameter determination in recurrent
neural networks is crucial and a well-known challenge. The research uses the LSTM neural network
to overcome complexities and nonlinearities in unemployment predictions, complementing it with a
genetic algorithm to optimize the parameters. The central objective is to evaluate recurrent neural
network models by comparing them with GA-LSTM to identify the most appropriate model for
predicting unemployment in Ecuador using monthly data collected by various organizations. The
results demonstrate that the hybrid GA-LSTM model outperforms traditional approaches, such as
BiLSTM and GRU, on various performance metrics. This finding suggests that the combination of the
predictive power of LSTM with the optimization capacity of the genetic algorithm offers a robust and
effective solution to address the complexity of predicting unemployment in Ecuador.

Keywords: prediction; unemployment rate; Ecuador; recurrent neural network; genetic algorithms;
GA-LSTM

1. Introduction

The unemployment rate is a crucial indicator for evaluating economic activity; it
is closely linked to a country’s economic cycle and well-being. Its high variability can
trigger significant impacts in emerging nations, and a high unemployment rate can cause
contraction, recession, or depression in emerging economies [1]. Despite the complexity
associated with predicting the unemployment rate, this key indicator must be considered,
as its values allow for assessing a nation’s economic health and generate considerable
interest in various sectors, including governments, businesses, and researchers.

The unemployment rate prediction emerges as a fundamental tool with multiple
strategic applications. This economic indicator is used by various actors in society, including
political leaders who use it as a measure that contributes to decision-making and the design
of policies aimed at the national economic planning of a country; human resource managers
for the development of appropriate policies related to human resources; financial analysts
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for the prediction of the economic trend of a target market; foreign investors seeking to
invest in a country that provides political, social, and economic stability; as well as the
general public, interested in knowing the health of a particular economy.

The need to predict the unemployment rate arises from the importance of this indicator
in the economic, political, and social spheres. Economically, unemployment trends can indi-
cate changes in labor demand, financial stability, and consumption; politically, these figures
can influence the approval or rejection of government policies and the public’s confidence in
institutions; and in the social sphere, unemployment can generate tensions and challenges
in community cohesion, affecting the quality of life and general well-being. Understanding
and anticipating unemployment trends is essential to implementing effective measures
to mitigate their adverse effects, such as developing job training programs, promoting
employment opportunities, and protecting workers’ rights. In this sense, the complexity
inherent to this prediction process, especially in non-stationary and nonlinear economic
environments, requires advanced and flexible intelligent approaches [2]. In recent years,
various approaches to predicting the unemployment rate have been explored, including
statistical models, econometrics, intelligent computational models, and hybrid prediction
models; however, in Ecuador, where there is a limited data set in terms of availability and
temporal coverage compared to other countries, this presents a significant challenge for
adapting the unemployment prediction models to this specific context.

Although significant progress has been made through the correct implementation
of predictive models of the unemployment rate, there are gaps in the existing prediction
models, such as the ability to accurately capture and anticipate the effects of events even
when the data may not fully reflect the reality of the labor market [3]. In order to solve the
gap presented, we need to take some actions, such as: (i) selecting the optimal architecture
of intelligent models to improve prediction accuracy and managing inherent uncertainty
in data (vague and incomplete data); (ii) developing computationally efficient methods to
ensure that complex models can handle large sets of reasonable data and execution times
for the exploration of new modeling techniques that improve the margin of precision [4];
(iii) and the prediction models should be able to capture the complex dynamics of the labor
market and adapt to structural changes in this environment [5].

To effectively adapt models to these specific conditions in the local context [6], this
study focuses on developing an unemployment rate prediction model designed specifically
for Ecuador. A hybrid approach is proposed that combines recurrent neural networks
(RNN), specifically the long short-term memory (LSTM) network approach, with genetic
algorithms (GA). This combination allows the complexities of sequential and nonlinear
data to be captured, efficiently optimizing model parameters.

Specific research questions guiding this study include: What is the predictive perfor-
mance of the genetic algorithm with long short-term memory (GA-LSTM), bidirectional
LSTM (BiLSTM), and gated recurrent units (GRU) approaches for predicting the unemploy-
ment rate in Ecuador? How do the LSTM network parameters determined by the genetic
algorithm influence the accuracy of the predictions?

The document is organized as follows: Section 1 describes the introduction; Section 2
relates works; Section 3 describes the methodology and data used to predict the unemploy-
ment rate in Ecuador; and Sections 4 and 5 show the experimental results and discussion.
Section 6 concludes and describes the practical implications of the study.

2. Related Works

This section will review related works on models applied to unemployment rate
prediction. Macroeconomic data is obtained from various sources, such as government
databases, economic firms, banks, and social networks; the latter is used in novel methods
for nowcasting economic forecasts and more timely forecasting of economic indicators.
For example, Bokanyi. E. et al. [6] demonstrated how unemployment and employment
statistics are reflected in daily Twitter activity. Ryu P. [7] used social media data to pre-
dict unemployment in South Korea, combining sentiment analysis and grammar tagging
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with ARIMA, ARIMAX, and ARX models. Furthermore, Vicente M. et al., Pavlicek J.,
and Kristoufek L. [8,9] showed how the Google Trends index improves unemployment
forecasts in Spain and the Visegrad Group, respectively. D’Amuri F. and Marcucci J. [10]
found that the Google index (GI) improves quarterly unemployment predictions in the
US. Xu W. et al. [11] developed a data mining framework using neural networks (NN) and
support vector regressions (SVR) to forecast US unemployment, outperforming traditional
forecasting approaches. Other studies have highlighted the potential of search engine
queries to predict economic indicators [12–14].

Over time, several models have been developed to predict the unemployment rate,
including traditional statistical and econometric models, intelligent computational models,
and hybrid models.

Davidescu A. et al. [3] determined the best model to forecast the Romanian unemploy-
ment rate. The monthly unemployment rate was used from January 2000 to December
2020. These data were obtained from Eurostat, specifically from the European Union
Labor Force Survey (EU-LFS). Several models were considered for forecasting, includ-
ing seasonal autoregressive integrated moving average (SARIMA), self-exciting threshold
autoregressive (SETAR), Holt–Winters, ETS (error, trend, seasonal), and neural network au-
toregression (NNAR). The experimental configuration for the Holt–Winters multiplicative
model was smoothing parameters: Alpha (level) = 0.6928, Beta (trend) = 0.0001, Gamma
(seasonal) = 0.0001, AIC = 630.187, AICc = 633.278, and BIC = 687.566. For the NNAR
model, the configuration NNAR(1,1,k)12 was used, where k varies from 1 to 14, and for the
SARIMA model, the configuration SARIMA(0, 1, 6)(1, 0, 1)12 was used. According to the
root mean squared error (RMSE) and mean absolute error (MAE) values, the NNAR model
showed better forecast performance. However, based on the mean absolute percentage
error (MAPE) metric, the SARIMA model demonstrated higher forecast accuracy. Fur-
thermore, the Diebold-Mariano test revealed differences in forecast performance between
SARIMA and NNAR, concluding that the NNAR model is the best for modeling and
forecasting the unemployment rate.

On the other hand, Vosseler A. and Weber E. [15] focused on forecasting the unem-
ployment rate in Germany using the data set of unadjusted monthly unemployment rates
of the 16 federal states of Germany, as well as the aggregate series for West and East
Germany, during the sample period from January 1991 to February 2013. The Bayesian
model averaging with periodic autoregressive (BMA-PAR) was proposed, together with
seasonal autoregressive moving average (SARMA), seasonal MEANS (PMEANS), and
Bayesian PAR (BPAR). In the experimental configuration, five simulation experiments were
carried out to generate trajectories and evaluate different model specifications for stochastic
processes such as PAR(1), SAR(1), and SARMA(1, 0) × (1, 1), among others, with specific
parameters for each simulation design, and the BMA-PAR model was compared with the
BPAR(1) and SARMA(0, 11) × (1, 0)12 models. PAR models were found to have advantages
in cases of periodic unit roots. Furthermore, the results support using a model combination
(BMA-PAR) to improve predictive accuracy compared to a single model (BPAR).

Wozniak M. [16] addressed the problem of determining the best model for forecasting
the unemployment rate in Greater Poland. As a data set, monthly panel data were used
for 35 LAU1s of Greater Poland over 123 months (January 2005 to March 2015), with an
evaluation period of 13 months (April 2015 to April 2016). Notably, a monthly frequency of
time series was used instead of the quarterly or annual frequency commonly used. The
vector autoregressive (VAR), spatial VAR (VARS), neural network (NN), and neural network
seasonal (NNS) models were used, and, as proposed, the spatial vector autoregressions
(SpVAR) and spatial neural network (SpNN) models were used. Spatial models were
compared with their non-spatial and seasonal equivalents, highlighting that including a
spatial component in the models significantly improves the accuracy of the forecasts. The
overall performance of SpVAR was 30% better than that of spatial artificial neural networks
(SpANN).
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Katris C. [5] determined the best models to forecast the unemployment rate in several
countries from different regions (Mediterranean, Baltic, Balkan, Nordic, and Benelux) for
different forecast horizons. Monthly data on seasonally adjusted unemployment rates
were used for 22 countries in the regions above. The period covered was from January
2000 to December 2014, considering predictions of one step, three steps, and twelve steps
forward for the following 12 months until December 2017. The fractional autoregressive in-
tegrated moving average (FARIMA), FARIMA with generalized autoregressive conditional
heteroskedasticity (FARIMA/GARCH), artificial neural network (ANN) models, support
vector machines (SVMs), and multivariate adaptive regression splines (MARS) were pro-
posed. The models were configured as follows: (a) in the autoregressive moving average
(ARMA) and FARIMA model, the order of the model (p, q) was first determined using the
Bayesian information criterion (BIC) to select the best combination, then the parameters
were estimated for the FARIMA model; (b) in the FARIMA/GARCH model, a procedure
similar to the FARIMA model was followed, but the model fit and a GARCH(1, 1) model
were considered to capture the conditional variance of the errors; (c) In the ANN model, the
resampling rate (k = 1), the number of input variables (1–4 lagged variables), the number of
nodes in the hidden layer (1–10 nodes), the training epochs (500 periods), and the sigmoid
activation function were determined; (d) in the SVM model, a high-dimensional repre-
sentation of the input space and the model with the lowest RMSE were used; and (e) in
the MARS model, a recursive partitioning procedure was used to build the model using
two stages: the forward and backward step. It was found that there is no single globally
accepted model and that both forecast horizon and geographic location must be considered
to select an appropriate approach. FARIMA models were the preferable option for one-step-
ahead forecasts; while neural network approaches achieved comparable results for more
extended periods (h = 12), neural network approaches achieved comparable results with
FARIMA-based models. It was observed that for a three-step forecast horizon (h = 3), the
Holt–Winters model was more suitable, and it is suggested that the selection of the most
suitable forecast approaches for different forecast horizons needs further investigation.

Ramli N. et al. [17] focused on forecasting Malaysia’s unemployment rate. To make
the forecast, Malaysia’s unemployment rate is used from 1982 to 2013. The use of fuzzy
time series (FTS) is proposed with a natural partitioning approach considering introducing
a fuzzy time series model using data in the form of trapezoidal fuzzy numbers and a
natural partitioning length approach, using two types of fuzzy relations: first and second
order, and that the proposed model can produce predicted values under different degrees
of confidence. The study shows that the type of fuzzy relationship affects the forecast
performance and that the proposed method can provide several forecast intervals with
different degrees of confidence.

Olmedo E. [18] determined the best model to forecast the Spanish unemployment rate.
Several models are proposed: barycentric, VAR, and, as proposed, linear regression and
neural networks using the seasonally adjusted monthly unemployment rates provided by
EUROSTAT for 11 European countries, including Spain, covering the period from January
1987 to October 2011. In the experimental setup, the proposed reconstruction function and
neural network are adjusted, calculating the normalized mean square error (NMSE) for
embedding dimensions from 2 to 10 and a different number of neighbors (1 to 150) in the
first case and 2 to 10 nodes in the second. The parameters are selected individually in the
training phase for each country. The study concludes that the linear regression predictor
can improve linear techniques for forecasting in certain countries, especially in long-term
forecasting. Furthermore, it is observed that the results provided by the VAR model and
the barycentric predictor worsen as the time horizon increases. At the same time, linear
regression and neural networks show better results, especially in long-term forecasts.

Chakraborty. T. et al. [2] determined the best model to forecast unemployment in
several countries, including Canada, Germany, Japan, the Netherlands, New Zealand, Swe-
den, and Switzerland. Several models were used for prediction, including autoregressive
integrated moving average (ARIMA), ANN, autoregressive neural network (ARNN), SVM,
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ARIMA with support vector machine (ARIMA-SVM), ARIMA with artificial neural network
(ARIMA-ANN), and ARIMA with autoregressive neural network (ARIMA-ARNN), with
monthly and quarterly data of seasonally adjusted unemployment rates for the mentioned
countries, obtained from open access data repositories such as FRED Economic Data sets
and the OECD data repository. The ARIMA model is fitted to the data, and the ARNN
model is then trained on the ARIMA residuals to capture the residual nonlinearities for
each country. Then, the ARIMA forecast results and the residual ARNN forecasts are
summed to obtain the final forecast values. The results are compared with other models,
and performance metrics such as RMSE, MAE, and MAPE are used to evaluate the accuracy
of the predictions. The results indicate that the proposed hybrid ARIMA-ARNN model
combines the ability of ARIMA models to capture linearity with the ability of ARNN mod-
els to capture nonlinearities in the ARIMA residuals, resulting in better forecast accuracy in
comparison with other individual and hybrid models.

Deng W. et al. [4] determined the best model to forecast the US unemployment
rate. The study proposes a combined multi-granularity model based on fuzzy trend
forecasting, automatic clustering, and particle swarm optimization (PSO) techniques, using
the monthly civil unemployment rate from 1 January 1948 to 1 December 2013, as a data
source, which includes the unemployment rate, the average duration of unemployment,
and the employment-to-population ratio. In the experimental setup, three experiments
are performed using different data sets and comparison methods. Automatic clustering
algorithms generate different interval lengths, and then fuzzy time series techniques and
granular computing theory are applied to forecast fuzzy trends. The results indicate that the
proposed model significantly improves the forecasting accuracy of the civil unemployment
rate in the USA.

Likewise, Mohammed F. and Mousa M. [19] determined the best model to forecast the
US unemployment rate. The proposed hybrid model is a stochastic linear autoregressive
moving average with an exogenous variable and GARCHX (ARMAX-GARCHX) using
the bivariate time series data set, including US unemployment and exchange rates. The
monthly data spans from January 2000 to December 2017 for the training set, and the
last twelve observations from January to December 2018 are used as a test set to obtain
the out-of-sample forecast and for validation. In the experimental setup, generalized
autoregressive conditional heteroskedasticity (GARCH) and generalized autoregressive
conditional heteroscedasticity with exogenous variable (GARCHX) models are applied to
capture heteroscedasticity and nonlinearity in the conditional variance of ARMAX. Appro-
priate GARCH and GARCHX models are selected based on minimum Akaike information
criterion (AIC), BIC, and HQ (Hannan and Quinn) criteria. The stochastic linear autore-
gressive moving average with exogenous variable with GARCH (ARMAX-GARCH) and
ARMAX-GARCHX hybrid models are compared with individual models and evaluated
using error measures such as MAE, MAPE, and RMSE. In the research, the hybrid model
ARMAX-GARCHX is perceived to be more effective than other rival single and twin hybrid
models for the data under study.

Shi L. et al. [20] determined the best model to forecast the unemployment rate in
selected Asian countries. In the study, the ARIMA-ARNN hybrid model is proposed against
the reference models ARIMA, ANN, SVM, and hybrid combinations such as ARIMA-ANN
and ARIMA-SVM. Unemployment data from seven developing Asian countries—Iran, Sri
Lanka, Bangladesh, Pakistan, Indonesia, China, and India—is used and comes from the
FRED financial index database. In the experimental setup, the ARIMA model is fitted for
each selected country using criteria such as AIC and log-likelihood to select the best model.
Subsequently, the ARIMA residuals are modeled using ARNN, which allows the residual
nonlinearities present in the data to be captured. The “predict” package of the R-Studio
environment is used to fit the ARIMA model, and graphical analysis techniques, such as
autocorrelation function (ACF) and partial autocorrelation function (PACF) plots, are used
to determine the optimal parameters of the ARIMA model. Once the best ARIMA model for
each country has been selected, the results of the ARIMA and ARNN models are combined



Appl. Sci. 2024, 14, 3174 6 of 28

to generate accurate forecasts of the unemployment rate. Furthermore, performance metrics
such as MAE, MAPE, and RMSE are used to evaluate the quality of the models. The results
show that the hybrid ARIMA-ARNN model outperformed competitors for developing
economies in Asia.

Yurtsever M. [21] investigated the unemployment rate forecast in the United States,
the United Kingdom, France, and Italy. To do this, he proposed a hybrid LSTM-GRU model,
which combines the long short-term memory (LSTM) with gated recurrent unit (GRU)
methodologies, two algorithms widely used in deep learning for time series forecasts that
used a data set of the monthly unemployment rate from January 1983 to May 2022 for the
four countries mentioned, obtained from the OECD website. The data was divided into
training and test sets at a ratio of 70% and 30%, respectively. The data were normalized
between 0 and 1 using the min-max scaler. The model architecture consists of an LSTM
layer with 128 hidden neurons, a GRU layer with 64 hidden neurons, and a dense layer with
one output neuron. The LSTM-GRU hybrid model better predicted the unemployment rate
for the United States, the United Kingdom, and France, except Italy, where the GRU model
alone performed better. The results indicated that the hybrid model was more effective in
most cases.

Finally, Ahmad. M. et al. [22] determined the best model to forecast the unemployment
rate in selected European countries, specifically France, Spain, Belgium, Turkey, Italy, and
Germany. Monthly unemployment rate data from the FRED economic data set, available
online, were used. Classic models such as ARIMA and machine learning models such as
ANN and SVM were considered. Furthermore, hybrid approaches such as ARIMA-ARNN,
ARIMA-ANN, and ARIMA-SVM were proposed. The data were divided into training
and test sets, and several hybrid models and approaches were applied to forecast the
unemployment rate in the six countries. Criteria such as the AIC (Akaike Information
Criterion) were used to select the best ARIMA models for each country. The hybrid models
combined the linear predictions of ARIMA with the nonlinear predictions of neural network
models, or SVM. The results of all models were compared using performance metrics such
as RMSE, MAE, and MAPE. The ARIMA-ARNN hybrid model performed well in France,
Belgium, Turkey, and Germany, while the ARIMA-SVM hybrid model was outstanding in
Spain and Italy. These results indicate that the choice of the best model may vary depending
on the country and the specific characteristics of the unemployment data. The Table 1
summarizes the aforementioned.

Unlike previous studies, a neural network model and genetic algorithm have been
developed to predict the unemployment rate in Ecuador using macroeconomic indicators.
The GA-LSTM prediction method combines an LSTM network with GA. The appropriate
network parameters are initially designed for the LSTM network to solve the prediction
problem. Then, we use the GA heuristic search method to select the size of the optimal
time windows and architectural factors of the LSTM network. The data are preprocessed
and normalized before prediction. In this context, we evaluate whether the predictions of
the monthly unemployment rate of Ecuador can be improved using the hybrid GA-LSTM
system compared to recurrent networks of the BiLSTM and GRU types.
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Table 1. Summary of studies applied to unemployment rate prediction.

No. Authors Investigation Work Design of the Proposed Model Metrics + Performance Parameters

1 Davidescu A. et al. [3]

Comparative Analysis of
Different Univariate
Forecasting Methods in
Modeling and Predicting the
Romanian Unemployment Rate
for the Period 2021–2022

SARIMA, SETAR,
Holt–Winters, ETS, and NNAR
(a proposal is not defined).

In-sample forecasting performance of models
Holt–Winters Multiplicative
Romania: RMSE: 0.2771, MAE: 0.2086, MAPE: 3.0368
Out-of-sample forecasting performance of models
NNAR
Romania: RMSE: 0.5979, MAE: 0.5508
SARIMA
MAPE: 13.37031

2 Vosseler A. and Weber E. [15]
Forecasting seasonal time series
data: a Bayesian
model-averaging approach

BMA-PAR (proposed), SARMA,
PMEANS, and BPAR.

Evaluation of 12 months ahead forecasts
East Germany: PMSE: -, MAPE: -
Brandenburg: PMSE: -, MAPE: -
BMA-PAR
West Germany: PMSE: 0.1995, MAPE: 0.0229
BPAR
Baden-Wuerttemberg: PMSE: 0.1370, MAPE: 0.0248
BMA-PAR
Bavaria: PMSE: 0.3035, MAPE: 0.0648
SARMA (1, 1) × (1, 0)12
Berlin: PMSE: 0.3652, MAPE: 0.0239
BMA-PAR
Bremen: PMSE: 0.2833, MAPE: 0.0149
BMA-PAR
Hamburg: PMSE: 0.0965, MAPE: 0.0088
PMEANS
Hesse: PMSE: 0.2217, MAPE: 0.0330
BMA-PAR
Lower Saxony: PMSE: 0.2826, MAPE: 0.0312
SARMA (1, 1) × (1, 0)12
Mecklenburg-Weslem Pom.: PMSE: 0.1408, MAPE: 0.0077
BMA-PAR
North Rhine-Westphalia: PMSE: 0.3141, MAPE: 0.0337
BMA-PAR
Rhineland-Palatinate: PMSE: 0.1034, MAPE: 0.0139
PMEANS
Saarland: PMSE: 0.5794, MAPE: 0.0683
PMEANS
Saxony: PMSE: 0.2822, MAPE:-
SARMA (1, 0) × (2, 0)12
Saxony-Anhalt: PMSE: 0.2162, MAPE: 0.0159
SARMA (2, 0) × (1, 0)12
Schleswig-Holstein: PMSE: 0.1165, MAPE: 0.0132
BMA-PAR
Thuringia: PMSE: 0.4691, MAPE: 0.0456
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Table 1. Cont.

No. Authors Investigation Work Design of the Proposed Model Metrics + Performance Parameters

3 Wozniak M. [16]
Forecasting the unemployment
rate over districts with the use
of distinct methods

VAR, VARS, SpVAR (proposed),
SpNN (proposed), NN, and
NNS.

SpVAR-SUR
Greater Poland: MAE: 0.011, MSE: 0.0002, RMSE: 0.010
SpNN2
Greater Poland: MAE: 0.015, MSE: 0.0003, RMSE: 0.015
SpNN1
Greater Poland: MSE: 0.0003

4 Katris C. [5]
Prediction of Unemployment
Rates with Time Series and
Machine Learning Techniques

FARIMA, FARIMA/GARCH,
ANN, SVM, and MARS
(a proposal is not defined).

FARIMA
Belgium: RMSE: 0.1351, MAE: 0.1091
Bulgaria: RMSE: 0.1122, MAE: 0.0820
Greece: RMSE: 0.2915, MAE: 0.2358
Spain: RMSE: 0.1020, MAE: 0.0854
France: RMSE: 0.0848, MAE: 0.0696
Croatia: RMSE:0.1124, MAE: 0.0894
Italy: RMSE: 0.1755, MAE: 0.1404
Cyprus: RMSE: 0.2261, MAE: 0.1622
Luxemburg: RMSE: 0.0735, MAE: 0.0601
Malta: RMSE: 0.1281, MAE: 0.1060
Netherlands: RMSE: 0.0885, MAE: 0.0749
Slovenia: RMSE: 0.1129, MAE: 0.0934
Finland: RMSE: 0.0614
Norway: RMSE: 0.1172, MAE: 0.0935
Turkey: RMSE: 0.1698, MAE: 0.1297
ANN
Estonia: RMSE: 0.3828, MAE: 0.3128
SVR
Denmark: RMSE: 0.1262, MAE: 0.0951
Sweden: RMSE: 0.2386, MAE: 0.1873
Iceland: MAE: 0.0511
MARS
Latvia: RMSE: 0.1689, MAE: 0.1376
Lithuania: RMSE: 0.2212, MAE: 0.1683
Romania: RMSE: 0.2201, MAE: 0.1691
Finland: MAE: 0.0492
Iceland: RMSE: 0.0626
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Table 1. Cont.

No. Authors Investigation Work Design of the Proposed Model Metrics + Performance Parameters

5 Ramli N. et al. [17]

Fuzzy Time Series Forecasting
Model with Natural
Partitioning Length Approach
for Predicting the
Unemployment Rate under
Different Degrees of
Confidence

FTS with a natural partitioning
approach.

Fuzzy Time series
Malaysia:
RMSE: 0.4470 (FTS using first order FLR),
RMSE: 0.3603 (FTS using second order FLR)

6 Olmedo E. [18]

Forecasting Spanish
Unemployment Using Near
Neighbor and Neural Net
Techniques

barycentric, linear regression
(proposed), neural net
(proposed), and VAR.

Linear regression
Belgium: MSE: 0.0075 (Q1), 0.0151 (Q2), 0.0096 (Q3), 0.0092 (Q4)
Denmark: MSE: 0.0457 (Q1), 0.0181 (Q2), 0.0081 (Q3), 0.0368 (Q4)
France: MSE: 0.0041 (Q1), 0.0097 (Q2), 0.0087 (Q3), 0.0012 (Q4)
Ireland: MSE: 0.0157 (Q1), 0.0369 (Q2), 0.0260 (Q3), 0.1203 (Q4)
Italy: MSE: 0.0492 (Q1), 0.0579 (Q2), 0.0474 (Q3)
Luxembourg: MSE: 0.0092 (Q1), 0.0073 (Q2), 0.0079 (Q3), 0.0066 (Q4)
Netherlands: MSE: 0.0124 (Q1), 0.0032 (Q2)
Portugal: MSE: 0.0067 (Q1), 0.0064 (Q2), 0.0352 (Q3), 0.0404 (Q4)
Spain: MSE: 0.0035 (Q1), 0.0182 (Q2), 0.0599 (Q3), 0.2253 (Q4)
Sweden: MSE: 0.1042 (Q1), 0.0351 (Q2), 0.0364 (Q3), 0.1380 (Q4)
United Kingdom: MSE: 0.0044 (Q2), 0.0071 (Q3), 0.0023 (Q4)
Neural net
Italy: 0.0483 (Q4)
Netherlands: MSE: 0.0087 (Q3), 0.0025 (Q4)
VAR
United Kingdom: MSE: 0.0062 (Q1)

7 Chakraborty T. et al. [2]
Unemployment Rate
Forecasting: A Hybrid
Approach

ARIMA, ANN, ARNN, SVM,
ARIMA-SVM, ARIMA-ANN,
and ARIMA-ARNN
(proposed).

ARIMA-ARNN
Canada: (1 year ahead forecast): RMSE: 0.106, MAE: 0.098, MAPE: 0.838
Canada: (3 years ahead forecast): RMSE: 0.627, MAE: 0.601, MAPE: 8.017
Germany: (1 year ahead forecast): RMSE: 0.077, MAE: 0.071, MAPE: 1.068
Germany: (3 years ahead forecast): RMSE: 0.300, MAE: 0.291, MAPE: 4.156
Japan: (1 year ahead forecast): RMSE: 0.191, MAE: 0.172, MAPE: 4.987
Japan: (3 years ahead forecast): RMSE: 0.370, MAE: 0.321, MAPE: 9.317
Netherlands: (1 year ahead forecast): RMSE: 0.140, MAE: 0.114, MAPE: 1.192
Netherlands: (3 years ahead forecast): RMSE: 0.300, MAE: 0.264, MAPE: 5.529
New Zealand: (1 year ahead forecast): RMSE: 0.998, MAE: 0.944, MAPE: 11.272
New Zealand: (3 years ahead forecast): RMSE: 1.318, MAE: 1.239, MAPE: 22.992
Sweden: (1 year ahead forecast): RMSE: 0.189, MAE: 0.151, MAPE: 2.024
Sweden: (3 years ahead forecast): RMSE: 0.363, MAE: 0.298, MAPE: 4.231
Switzerland: (1 year ahead forecast): RMSE: 0.026, MAE: 0.022, MAPE: 1.038
Switzerland: (3 years ahead forecast): RMSE: 0.427, MAE: 0.301, MAPE: 8.917
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Table 1. Cont.

No. Authors Investigation Work Design of the Proposed Model Metrics + Performance Parameters

8 Deng W. et al. [4]

A multi-granularity combined
prediction model based on
fuzzy trend forecasting and
particle swarm techniques

Multi-granularity combined
model based on fuzzy trend
forecasting, automatic
clustering, and PSO techniques.

Multi-granularity model
USA: RMSE: 0.14

9 Mohammed F. A. and
Mousa M. A. [19]

Applying hybrid time series
models for modeling bivariate
time series data with different
distributions for forecasting the
unemployment rate in the USA

ARMAX, GARCH, GARCHX,
ARMAX-GARCH, and
ARMAX-GARCHX (proposed).

ARMAX-GARCHX
EE. UU.: MSE: 0.0444, MAE: 0.1564, MAPE: 4.006%

10 Shi L., Khan Y. A. and
Tian M. W. [20]

COVID-19 pandemic and
unemployment rate prediction
for developing countries in
Asia: A hybrid approach

ARIMA, ANN, SVM, ARNN,
ARIMA-ARNN (proposed),
ARIMA-ANN, and
ARIMA-SVM.

ARIMA-ARNN
Sri Lanka: (1 year ahead forecast): MAE: 0.257, MAPE: 3.251, RMSE: 0.298
Sri Lanka: (5 years ahead forecast): MAE: 1.197, MAPE: 1.234, RMSE: 4.529
Iran: (1 year ahead forecast): MAE: 0.215, MAPE: 2.193, RMSE: 0.234
Iran: (5 years ahead forecast): MAE: 1.601, MAPE: 8.017, RMSE: 1.727
China: (1 year ahead forecast): MAE: 1.324, MAPE: 3.197, RMSE: 1.335
China: (5 years ahead forecast): MAE: 0.321, MAPE: 3.544, RMSE: 1.291
Pakistan: (1 year ahead forecast): MAE: 0.197, MAPE: 2.568, RMSE: 2.182
Pakistan: (5 years ahead forecast): MAE: 1.297, MAPE: 5.243, RMSE: 2.306
Bangladesh: (1 year ahead forecast): MAE: 2.167, MAPE: 3.017, RMSE: 1.218
Bangladesh: (5 years ahead forecast): MAE: 1.206, MAPE: 1.255, RMSE: 4.668
India: (1 year ahead forecast): MAE: 2.086, MAPE: 3.551, RMSE: 1.022
India: (5 years ahead forecast): MAE: 1.615, MAPE: 8.387, RMSE: 1.718
Indonesia: (1 year ahead forecast): MAE: 1.221, MAPE: 3.013, RMSE: 1.245
Indonesia: (5 years ahead forecast): MAE: 1.287, MAPE: 4.154, RMSE: 1.331

11 Yurtsever [21]
Unemployment rate
forecasting: LSTM-GRU hybrid
approach

LSTM-GRU
LSTM-GRU
USA: MAE: 0.26, RMSE: 0.93, MAPE 3.91
UK: MAE: 0.20, RMSE: 0.28, MAPE 4.66
France: MAE: 0.096, RMSE: 0.16, MAPE 1.09
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Table 1. Cont.

No. Authors Investigation Work Design of the Proposed Model Metrics + Performance Parameters

12 Ahmad M. et al. [22]

The impact of COVID-19 on the
unemployment rate: An
intelligent unemployment rate
prediction in selected countries
of Europe

ARIMA, ARNN, ANN,
and SVM.
Proposed hybrid approaches:
ARIMA-ARNN, ARIMA-ANN,
and ARIMA-SVM.

ARIMA-ARNN
France: (2 years ahead forecast): MAE: 0.078, MAPE: 1.071, RMSE: 0.087
France: (5 years ahead forecast): MAE: 0.310, MAPE: 4.165, RMSE: 0.325
Belgium: (2 years ahead forecast): MAE: 0.214, MAPE: 2.192, RMSE: 0.235
Belgium: (5 years ahead forecast): MAE: 0.197, MAPE: 0.234, RMSE: 4.529
Turkey: (2 years ahead forecast): MAE: 0.078, MAPE: 2.068, RMSE: 0.110
Turkey: (5 years ahead forecast): MAE: 0.255, MAPE: 4.120, RMSE: 0.290
Germany: (2 years ahead forecast): MAE: 0.071, MAPE: 1.068, RMSE: 0.077
Germany: (5 years ahead forecast): MAE: 0.509, MAPE: 6.272, RMSE: 0.566
ARIMA-SVM
Spain: (2 years ahead forecast): MAE: 0.185, MAPE: 2.135, RMSE: 0.165
Spain: (5 years ahead forecast): MAE: 0.601, MAPE: 7.017, RMSE: 0.635
Italy: (2 years ahead forecast): MAE: 0.251, MAPE: 3.024, RMSE: 0.281
Italy: (5 years ahead forecast): MAE: 0.218, MAPE: 3.321, RMSE: 0.263

13 Mero K. et al. (proposed)

Unemployment rate prediction
using a hybrid model of
recurrent neural networks and
genetic algorithms

BiLSTM, GRU, and
GA-LSTM (proposed).

GA-LSTM
Ecuador: MSE: 0.052, MAE: 0.200, MAPE: 3.797%
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3. Methodology

In order to test the proposed model, a quantitative approach has been applied. This
section is detailed in the following six items: (i) Section Materials and Methods gives a
theoretical explanation of the algorithms; (ii) data collection explains the process for picking
up data; (iii) data preprocessing shows the preprocessing techniques that were applied;
(iv) determining significant variables that were used for predicting the unemployment rate;
(v) building prediction methods; and (vi) performance evaluation of methods.

3.1. Materials and Methods

Genetic algorithms (GAs) are a class of optimization algorithms inspired by biological
evolution. Sourabh Katoch et al. [23] highlight the resemblance of GAs to natural genet-
ics. These algorithms use an iterative initialization process, fitness evaluation, selection,
crossover, and mutation to generate optimal output results. In this study, GA was used
to optimize the hyperparameters of the LSTM model. In the optimization problem, the
GA algorithm starts with an initial population of solutions encoded as bit strings [0 and 1].
Each population member represents a specific combination of two key parameters for
the LSTM model: the window size and the number of LSTM units. These solutions then
compete against each other based on their fitness, which is evaluated by the prediction
accuracy of the LSTM model. Fitter individuals have a higher probability of being selected
to reproduce and produce offspring. During reproduction, solutions are combined and
mutated, generating new solutions that may be even more effective for the problem at hand.
Over time, the GA algorithm converges towards an optimal solution or close to it, that is,
towards the optimal combination of parameters for the LSTM model that maximizes its
predictive ability on the training data set.

LSTM is a special type of RNN that was designed to solve the vanishing gradient
problem of classical RNN networks. LSTM networks are composed of modules (also called
cells). An LSTM module internally consists of three gates (i.e., forget, input, and output)
that regulate the flow of information in an LSTM module. The LSTM has the ability to
remove or add information to the cell state, which is carefully regulated by structures called
gates. The forgetting gate consists of a sigmoid layer and a multiplication operation similar
to the output gate, which additionally has a hyperbolic tangent operation, while the input
gate has two layers: the sigmoid and the hyperbolic tangent, as well as multiplication
and addition operations. The forgetting gate controls when information is forgotten or
remembered using a sigmoid function. The input gate helps to update the state of the
cell; the current input and previous state information pass through the sigmoid function
and tangent function (tanh), which will update and decrement the values, respectively,
to regulate the network; furthermore, the sigmoid output will decide what information
is important to keep from the tangent output. Based on the information on the hidden
door and the entrance door, the state of the cell, as well as the multiplication and product
operations, are calculated to obtain the new cellular state. Finally, the output gate decides
what the next hidden state should be.

The GA-LSTM hybrid model is required in unemployment rate prediction due to the
benefits of combining these models. GA models are useful for parameter optimization and
finding global solutions, while LSTM models are effective in capturing sequential patterns
in data. Therefore, the combination of GA and LSTM was considered due to the need
to improve the predictive ability of the unemployment rate as well as the possibility of
optimizing the hyperparameters of LSTM using GA to achieve optimal results.

To adjust the GA and LSTM models, data preprocessing was considered within the
methodology, which included the collection of data from different Ecuadorian organiza-
tions, the cleaning of missing data, and the analysis and treatment of outliers. Likewise,
the hybrid model was optimized by adjusting the LSTM parameters, that is, the window
size and the number of LSTM units. Once the configuration of the GA-LSTM model was
determined, the evaluation metrics mean squared error (MSE), MAE, MAPE, and the paired
t-test were used to evaluate its performance.
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The novelty of the proposed methodology is its unique application, which is the
combination of GA and LSTM to a specific data set for the prediction of the unemployment
rate. To the best of our knowledge, the GA-LSTM hybrid model has not been applied to the
prediction of the unemployment rate.

The type of applied research is non-experimental with a quantitative approach. In this
section, the variables and the GA-LSTM model that will be used to obtain the unemploy-
ment rate in Ecuador are described, specifically the collection and pre-processing of the
data, the significant variables that affect unemployment, the hybrid prediction method, and
the statistical techniques that will be used to predict the unemployment rate in Ecuador.
The models we use are BiLSTM, GRU, and the hybrid GA-LSTM model.

This unemployment rate prediction research used the process described in Figure 1,
which is composed of five phases for the prediction process.
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3.2. Data Collection

In this research, the monthly data on the economic indicators of inflation, minimum
wage, gross domestic product (GDP), gross fixed capital formation (GFCF), and unemploy-
ment rate in Ecuador from January 2002 to December 2019 were prepared by the Central
Bank of Ecuador (BCE), the National Institute of Statistics and Censuses (INEC), and the
Ministry of Labor of Ecuador; part of this data is available on official websites, while
others were provided by the aforementioned organizations for the purposes of unifying
the information that was required in this investigation. The figures for inflation, GDP,
and GFCF were obtained from the Central Bank of Ecuador, the minimum wage from the
Ministry of Labor of Ecuador, and the unemployment rate from the National Institute of
Statistics and Censuses of Ecuador (INEC).

The features of inflation, minimum wage, GDP, and GFCF were selected from official
sources in order to guarantee the coherence and reliability of the analyses. This choice is
based on its close relationship with the unemployment rate. These indicators have proven
to be of great relevance since they exert direct or indirect influence on the dynamics of the
labor market, with a significant impact on unemployment trends.

3.3. Data Preprocessing

The necessary preprocessing techniques that were applied to ensure the quality of the
data were the analysis to check the existence of outliers and the need to treat them, the
matching of the range of observations in the data set, and the normalization of the input
values (X). These techniques are described below:

The process of preparing the data for subsequent detailed analysis consisted of per-
forming data cleaning by removing missing observations from the data set. In this sense,
the five indicators obtained were the inflation rate, the minimum wage, GDP, GFCF, and
the unemployment rate; the GDP and the GFCF had a range of data from 2000 to 2020 and
the inflation rate, minimum wage, and unemployment rate from 2002 to 2020, so it was
decided to match the range of years and omit the year 2020 to correspond to the time of the
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COVID-19 coronavirus pandemic and be considered valid outliers. Likewise, the minimum
wage was deflated based on 2007. No missing values were found in the data set.

To determine outliers in characteristics, the interquartile range (IQR) technique was
used using the 1.5 IQR rule, which designates any value greater than Q3 + (1.5× IQR)
and any value less than Q1− (1.5× IQR) as an outlier (Table 2).

Table 2. Determining outliers in features.

Feature IQR Minimum Value Maximum Value Lower Threshold
for Outliers

Upper Threshold
for Outliers

Minimum wage 92.75 160.47 295.42 56.57 427.57
GDP 1,658,039.56 3,354,522 6,027,977.67 1,660,780.82 8,292,939.05
GFCF 546,292.34 659,222 1,597,455 30,574.75 2,215,744.11

The minimum wage, GDP, and GFCF features do not present outliers since their minimum and maximum values
are within the range of the lower and upper threshold values for outliers.

The unemployment rate is an economic indicator that refers to the portion of people
who are actively looking for work but cannot find work. This measure of the prevalence of
unemployment can be a good indication of the economic situation of the country [24]. A low
unemployment rate is generally a sign of a good economy. The data set has 216 observations,
four input variables, and the unemployment rate, which is the output variable (target).
There is no defined way to divide the data into training, validation, and testing. In
the literature, most researchers have suggested splitting the data as 60:20:10, 70:20:10,
or 80:10:10 [25]. Therefore, we have divided the data set as follows: for the GA-LSTM
prediction model, 80% of the data is for training, 10% for validation, and 10% for testing
purposes; for the rest of the prediction models, 90% of the data is for training and 10% for
testing purposes. This division allows us to predict the last 22 months of the unemployment
rate using the individual algorithms (BiLSTM and GRU) and the last 19 months of this
economic indicator using the hybrid GA-LSTM algorithm due to the sliding length of the
temporal sequence of data (window size of 3). Before training the proposed models, the
input data were standardized using the StandardScaler class of Scikit-learn’s preprocessing
module, where the mean is removed and the data are scaled to unit variance, as follows:

z =
x− µ

σ
(1)

where z indicates the normalized value, x represents the actual value, µ is the mean of the
training samples or zero, and σ is the standard deviation of the training samples or one.

3.4. Determine Significant Variables

The unemployment rate is affected by many factors. Therefore, it is necessary to
consider all these economic indicators in the prediction system, such as GDP, value added
of primary, secondary, and tertiary industries, consumer price index (CPI), investment
in fixed assets, total imports and exports, total retail sales of consumer goods, financial
expenses, number of urban residents, disposable income of urban residents, balance of
savings deposits of urban and rural residents, the value aggregate of the entire industry
of the city, population number, inflation rate, and average gross monthly salary [17,26,27].
Based on the relevant research, 4 factors have been selected as indicators of the prediction
model: the inflation rate, the national minimum wage, the GDP, and the GFCF.

The Pearson correlation coefficient was used to measure the relationship between
the predictor variables and the target variable (Table 3). It is calculated as the covariance
between two characteristics, x and y, divided by the product of their standard deviations.

r = ∑ (xi− x)(yi− y )√
∑(xi− x)2∑(yi− y)2

(2)
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Table 3. Significant variables.

Economic Indicator Monthly Unemployment Rate

Monthly inflation rate 0.241
Monthly minimum wage −0.804 *

Monthly GDP −0.863 *
Monthly GFCF −0.877 *

* Statistically significant correlation coefficients at the significance level α = 0.05.

The monthly view revealed a statistically significant linear relationship between the
minimum wage and the unemployment rate, GDP and the unemployment rate, and the
GFCF and the unemployment rate (with a negative relationship). The inflation rate shown
here is not correlated with the characteristics of the unemployment market (Figure 2).
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Based on the above tests, the final columns selected for machine learning are minimum
wage, GDP, and GFCF, and the target column is the unemployment rate.

3.5. Build Prediction Methods

The BiLSTM, GRU, and GA-LSTM prediction methods used in this study are briefly
described below.

3.5.1. Bidirectional LSTM (BiLSTM)

A BiLSTM is a type of recurrent neural network where the signal is propagated backward
and forward in time, i.e., it allows additional training by traversing the input data twice: from
left to right and from right to left [28]. BiLSTM has demonstrated good results in many fields,
such as natural language processing, semantic segmentation of the QRS complex, prediction
or forecasting of time series, and phoneme classification, among others.

As the output sequence of the forward LSTM layer
→
h is commonly obtained as the

unidirectional one, the output sequence of the reverse LSTM layer
←
h is calculated using the

reverse inputs from time t− 1 to time t− n. These output sequences are then fed to the σ
function to combine them into an output vector yt [29]. Similar to the LSTM layer, the final
output of a BiLSTM layer can be represented by a vector, Yt = [yt−n, . . . , yt−1], in which
the last element, yt−1, is the estimated unemployment rate for the next iteration.
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3.5.2. Gated Recurrent Unit (GRU)

The GRU are similar to the LSTM; they were created to solve the vanishing gradient
problem; for this, they use two gates (restart and update) instead of the three gates that
LSTM uses. The reset gate is used to determine how much information from the past
is forgotten, and the update gate decides what information to discard and what new
information to add. In the GRU structure, the reset gate r selects information from the
previous state h to be discarded, and the update gate z selects new information from the
input vector and the previous state h to be added to a new state. The candidate for the future
hidden state is found by the candidate state gate g [30]. Compared with an LSTM-based
model, a GRU-based model has a simpler structure and fewer tensor operations (about 25%
less) due to the fusion of the cell state and the hidden state, making it easier to train the
model and making it a very suitable candidate for integrated implementations [31].

3.5.3. A Hybrid Intelligence of LSTM and the Genetic Algorithm (GA)

Evolutionary algorithms (EA) are stochastic search and optimization methods that
are based on genetic inheritance and ideas from Darwinian evolution. The paradigms
of evolutionary computing are evolutionary programming, evolutionary strategies, and
genetic algorithms. In this sense, genetic algorithms are optimization methods used to solve
nonlinear, non-differentiable, discontinuous, or multimodal optimization problems. These
algorithms are applied to solve optimization, classification, and regression problems [32].
Its operation generally consists of starting with an initial generation of candidate solutions,
randomly generated or another method, which is tested with the objective function; then
the following generations are produced, which evolve from the first generation through
the typical genetic operators of selection, crossing, and mutation. Chromosomes, which
represent a better solution to the objective problem, have a few more opportunities to “re-
produce” and “survive” than those chromosomes that have poorer and “weaker” solutions.
The “goodness” of a solution is usually defined with respect to the current population [33].

Evolutionary algorithms have been widely applied to neural networks, and various
hybrid approaches have also been used for economic time series prediction. Genetic
algorithms allow the learning algorithm to be improved by acting as a network training
method, feature subset selection, and neural network topology optimization, as well as
reducing the complexity of the feature space [34].

Figure 3 shows the hybrid GA-LSTM approach to find the time window size and
the number of LSTM units for the prediction of the unemployment rate in Ecuador. De-
termining the time window and the number of LSTM units is quite important for the
performance of the algorithm. If the window size is too small, the model will neglect
important information, or if it is too large, the model will overfit the training data.

Initially, the study consisted of designing the appropriate network parameters for
the LSTM network. We use an LSTM network to solve the prediction problem using the
feedforward architecture. This architecture consists of a sequential input layer, a Keras
LSTM layer, and a dense output layer. GA investigates the optimal number of hidden
neurons in the LSTM layer. In the GA-LSTM model, the hyperbolic tangent function is
used as an activation function for the input nodes and the LSTM nodes, while the linear
function is used as an activation function at the output node. The hyperbolic tangent
function is a scaled sigmoid function and returns the input value in a range between −1
and 1, and the linear activation function (identity) is directly proportional to the input,
allowing the output to vary continuously and linearly. The activation function of the
output node is designated as a linear function because our goal is the prediction of next
month’s unemployment rate, which can be formulated as a regression problem. The initial
network weights are set as random values, and the network weight is adjusted using the
“Adam” stochastic optimization method; this optimization algorithm was developed by
Kingma and Ba. Among its characteristics, it stands out that it is simple to implement, it
is computationally efficient, it has few memory requirements, it is suitable for problems
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that are large in terms of data and/or parameters, and it is appropriate for non-stationary
objectives, among others [35].
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We then employ the GA heuristic search method to investigate the optimal size of the
time windows and the architectural factors of the LSTM network. Various time window
sizes and different numbers of units are applied in the LSTM layer to evaluate the fitness
of GA. Populations are composed of possible solutions and are initialized with random
values before genetic operators start exploring the search space. The chromosomes used
in this study are encoded in binary bits that represent the size of the time window and
the number of LSTM units; specifically, each chromosome is represented by nine bits,
of which five bits are for the window size and four bits for the number of units. Once
the population is initialized, the crossover operations are used for pairing, mutation to
rearrange the chromosomes, and the roulette selection algorithm to select the parents and
find the superior solution. Solutions are evaluated using a predefined fitness function,
and the best-performing chromosomes are selected for breeding. The fitness function
evaluates how close a given solution is to the optimal solution of the desired problem.
This function is a crucial part of the GA, so it has been chosen carefully. In this research,
we use RMSE to calculate the fitness of each chromosome, and the subset of architectural
factors that produced the smallest RMSE is selected as the optimal solution. If the output
of the breeding process satisfies the termination criteria, the derived optimal or near-
optimal solution is applied to the predictive model. Otherwise, the selection, crossover,
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and mutation processes of the genetic algorithm are repeated. To acquire a superior
solution for the problem, genetic parameters such as crossover rate, mutation rate, and
population size can affect the outcome. Previous research has suggested setting genetic
algorithm parameters to specific values, such as a population of (4, 10, 20), a crossover
probability of (0.7, 0.4, 0.6), and a mutation probability of (0.15, 0.1, 0.3) [36–38]. There is no
established consensus on the optimal population size, and crossover and mutation values
are generally in the range of 0 to 1. These studies have provided an initial basis for setting
up and evaluating various combinations of genetic algorithm values, thus seeking to find
the optimal configuration of model parameters that allows for improving the predictive
performance of the test data. In this study, we have adopted an approach based on the
above findings by setting a population size of 4, a crossover rate of 0.6, and a mutation rate
of 0.4 in the experiment. As a stopping condition, the number of generations is assigned
to 10.

To determine if the LSTM network architecture is suitable for prediction, several
experiments were performed, varying the hyperparameters and evaluating the performance
of the model. This involved building and training multiple LSTM models with different
configurations, evaluating their performance using the RMSE metric, and selecting the best-
performing model. This iterative approach allows us to identify the optimal combination
of hyperparameters that maximizes the predictive capacity of the model for a specific task.
Using this systematic approach, we use an LSTM network with a sequential input layer
followed by an LSTM hidden layer and a dense output layer, and GA investigates the
optimal number of neurons in each hidden layer. Subsequently, the parameter optimization
process in the GA-LSTM model was carried out rigorously to improve the predictive
ability of the unemployment prediction task. We started by importing a variety of essential
libraries and modules to manipulate data, design the LSTM neural network, and run the
genetic algorithm. Furthermore, we imported the unemployment time series data in CSV
format and prepared it by dividing it into sequences of specific length to be used as input
for the LSTM network. We define a training and evaluation function that creates and trains
the LSTM network for each individual of the genetic algorithm, using the RMSE metric to
evaluate the training accuracy on a validation set. The structure of the genetic algorithm
was defined with the DEAP library, specifying characteristics such as gene size, population,
crossover, mutation, and selection operations. We run the genetic algorithm to evolve
the population and select the best individual from the last generation as the best solution.
These optimal parameters, such as the window size and the number of units of the LSTM
network, were used to build and train the neural network. The choice of these parameters
was based on the need to maximize the performance of the model and improve its ability
to capture complex patterns in unemployment time series data.

Integrating an LSTM neural network with a GA involves combining the learning
capability of the neural network to model sequential data with the optimization capability
of the genetic algorithm to search for the best set of hyperparameters for the neural network.
The specific steps involved in this process are detailed below:

1. Import the libraries and modules necessary for prediction. This includes libraries
for manipulating data (NumPy, Pandas, and Scikit-learn), plotting data (Matplotlib),
neural networks (Keras), and genetic algorithms (DEAP), as well as extra libraries for
manipulating bit structures (Bitstring) and generating random binary values using
the Bernoulli distribution (SciPy).

2. Import the time series data; the time series will be used for model training and evaluation.
The unemployment data are expressed in a comma-separated value (CSV) format.

3. Prepare the data set; the data are divided into sequences of specified length (window
size), which will be used as input for the LSTM neural network. In addition, the
corresponding input and output data are prepared.

4. Define the training and evaluation function “train_evaluate” that creates and trains the
LSTM neural network for a given individual of the genetic algorithm. This function
returns the training accuracy using the RMSE metric on a validation set.
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5. Define the structure of the genetic algorithm; the DEAP library is used to define the
structure of the genetic algorithm. Characteristics of individuals are defined, such as
gene size, population, crossover, mutation and selection operations, and the fitness
evaluation function of each individual in the population.

6. Run the genetic algorithm to evolve the population over several generations. During
each generation, individuals are crossed, mutated, and selected for fitness.

7. Select the best individual from the last generation as the best solution found by the
genetic algorithm. The optimal parameters of this individual are specified (number
of windows and number of units of the LSTM model) by setting the values in the
variables “window_size_bits” and “num_units_bits”.

8. Use the best solution found to build and train the LSTM neural network with the
optimal parameters. The model is trained using the training data set, and its per-
formance is evaluated using the test data set. During training, the cross-validation
technique is used, where 10% of the training data is reserved as a validation set. This
process allows model performance to be monitored on unseen data while tuning
hyperparameters to avoid overfitting and improve model generalization.

9. Finally, the results obtained by the model are graphed. The model predictions are
compared with the actual values of the time series.

The described process allows integrating an LSTM neural network with a genetic
algorithm to optimize the hyperparameters of the model and improve its predictive capacity
in the unemployment prediction task.

The Python code for our hybrid GA-LSTM prediction method is released on the
GitHub repository “unemployment rate prediction” at https://github.com/kevinmero/
Unemployment-rate-prediction (accessed on 19 February 2024).

3.6. Performance Evaluation of Methods

To evaluate the prediction performance of the GA-LSTM model before the BiLSTM
and GRU reference approaches, the criteria described by Chung and Shin (2018) were used
in our research, consisting of the mean square error (MSE), the mean absolute error (MAE),
and the mean absolute percentage error (MAPE) [39]. These evaluation measures can be
calculated as follows:

MSE =
1
n ∑n

i=1(yi− ŷi)2 (3)

MAE =
1
n ∑n

i=1|yi− ŷi| (4)

MAPE =
1
n ∑n

i=1

∣∣∣∣yi− ŷi
yi

∣∣∣∣x100 (5)

where residual error = yi− ŷi; yi is the actual output; ŷi is the predicted output; and n is
the number of predictions.

The paired t-test formula is as follows [40]:

t =
d− 0

Sd/
√

n
(6)

where d is the observed mean difference; Sd is the standard error of the observed mean
difference; and n is the number of differences.

The selection of the evaluation metrics MSE, MAE, and MAPE in unemployment
prediction allows a comprehensive evaluation of the performance of the proposed model.

The MSE is used to calculate the means of the squared differences between the ob-
served values and the predicted values, providing a measure of the spread of the squared
errors and their average. On the other hand, the MAE is used to determine the mean of the
absolute differences between the observed values and the predicted values, which is useful
to evaluate the overall accuracy of the model in terms of absolute deviation. In addition,
the MAPE is responsible for measuring the average percentage differences between the

https://github.com/kevinmero/Unemployment-rate-prediction
https://github.com/kevinmero/Unemployment-rate-prediction
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observed values and the predicted values. It is especially useful in tasks where sensitivity
to relative variations is more important than sensitivity to absolute variations [41].

In general, even small discrepancies in the values of these metrics can influence
decisions and actions taken in the economic and social spheres. It is vital to consider the
limitations of these metrics: compared to MAE, MSE may be more affected by outliers
due to its quadratic nature; MAE may not accurately reflect model performance if the data
set used for testing contains many outlier values; and with respect to MAPE, its use is
restricted to strictly positive data by definition, as well as its bias towards low forecasts,
which makes it inappropriate for predictive models where large errors are expected [42].

4. Results

In this section, all algorithms are coded in Python (version 3.8.16). Our models were
implemented using the Python Keras deep learning library (version 2.9.0) and the Ten-
sorFlow backend (version 2.9.2). Additionally, other major packages such as NumPy
(version 1.21.6), Pandas (version 1.3.5), and Matplotlib (version 3.2.2) were used to process,
manipulate, and visualize data; Deap (version 1.3.3) and Bitstring (version 4.0.1) were
required in the LSTM-GA model as an evolutionary computing framework and for binary
data management. All experiments were carried out on a personal computer with an Intel
Core i7-8750H processor (Intel, Santa Clara, CA, USA), a 2.20 GHz CPU (×64), 16 GB of
RAM, and the Windows 10 operating system. The hybrid algorithm processes 216 observa-
tions in an approximate runtime of around 5 min. The Google Collaboratory (Colab) cloud
service is used, and the Anaconda platform, specifically the GA-LSTM algorithm, was made
and executed on Google Colab. Stand-alone algorithms were built in Anaconda (version
2.3.2) due to usage limits and the availability of Colab hardware at no cost. Colab from
Google Research is ideal for application in data science projects related to machine learning,
deep learning, and data analysis. The main identified advantages of this product are that it
requires no configuration, free access to computational resources (such as executing code
in a GPU runtime environment), and easy sharing of online content. On the other hand,
the Anaconda platform is used for scientific computing, such as data science and machine
learning, and has thousands of scientific Python packages and libraries that facilitate the
development and maintenance of the system [43].

The hyperparameter tuning of neural models is important because it optimizes the
learning process [44]. Therefore, the corresponding parameter values significantly influence
the performance of BiLSTM, GRU, and GA-LSTM. For the hybrid algorithm, the parameters
are set as follows: the population is 4, the crossover probability is 0.6, the mutation
probability is 0.4, and the number of generations is 10. Meanwhile, the parameters of LSTM
are set as follows: the number of hidden layers is 1, the number of hidden units is 12, the
window number is 3, the batch number is 10, and the number of epochs is 5.

In the case of the individual algorithms, combinations were tested using the Grid-
SearchCV technique present in the Scikit-learn library: the number of hidden layers is (1, 2),
the number of hidden units is (2, 3, 4, 5, 6, 7, 8), the batch number is (2, 4, 8, 10, 12, 14), the
number of epochs is (32, 34, 36, 60, 65, 70, 75, 80), and the optimizers are (RMSprop, Adam).

In the experiments, we apply the hybrid GA-LSTM algorithm to the first 80% of the
data as a training set, the next 10% of the data as a validation set, and the rest of the data
set as test data. With respect to prediction evaluations, we have considered some of the
indices used to evaluate the performance of the algorithms in the experiments, specifically
the MSE, MAE, and MAPE indices, as well as the paired t-test.

This study applies a genetic algorithm to examine the optimal architectural parameters,
window size, and units that feed the LSTM neural network, obtaining results through a
genetic search. The best time window size for unemployment rate prediction chosen by
GA has been 3; in other words, it is more effective to analyze the unemployment rate using
information from the last three months of unemployment to predict the unemployment
rate. Furthermore, the optimal number of LSTM units obtained that constitute the hidden
layer has been 12 units.
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We trained the hybrid model with the best parameters, applied the input embedding
of the last three-time steps, and optimized the architecture to verify the effectiveness of the
GA-LSTM model on the holdout data. The result derived from the GA-optimized LSTM
network is measured by calculating the three mentioned performance indices of the actual
unemployment rate and the output of the proposed hybrid model.

The results of BiLSTM, GRU, and GA-LSTM are presented below in Table 4. It should
be noted that we chose the best results of the individual algorithms by testing various
combinations, as previously discussed.

Table 4. The performance measure of models for predicting the unemployment rate.

Model Configuration Metrics

Model Number of
Hidden Layer(s)

Number of
Hidden Units

Window
Number

Batch Number
(Batch Size)

Number of
Epochs Optimizer MSE MAE MAPE

(%)

BiLSTM 1 (2) - 2 34 Adam 0.130 0.291 5.565
2 (5, 5) - 2 80 Adam 0.135 0.326 6.168

GRU 1 (6) - 10 70 Adam 0.074 0.231 4.392
2 (5, 5) - 2 32 Adam 0.072 0.220 4.198

GA-LSTM 1 (12) 3 10 5 Adam 0.052 0.200 3.797

According to the data presented in Table 5, the MSE, MAE, and MAPE metrics were
used following the reference of Chung and Shin (2018); in this sense, they must be inter-
preted as follows:

Table 5. Performance of metrics.

Metrics Worse Better Observation

MSE +∞ 0 The closer the MSE or MAE value is to 0,
the more accurate the model will be.MAE +∞ 0

MAPE +∞ 0 The closer to 0, the better. Generally, a MAPE must be less than 20%
for a model to be good (reasonable) [45].

The smaller the MSE, MAE, and MAPE values, the better the prediction effect of the model.
The results reveal quantitative data that allows us to obtain the following findings:

(a) As shown in Table 4, machine learning models can establish unemployment prediction
models with reasonable results according to MAPE values. However, GA-LSTM per-
forms better than BiLSTM and GRU. For MSE, the best result of GA-LSTM is 0.052, while
the results of BiLSTM and GRU are 0.130 and 0.072, respectively. Meanwhile, for MAE,
the best result of GA-LSTM is 0.200, while for BiLSTM and GRU, the best results are
0.291 and 0.220, respectively. For MAPE, GA-LSTM is also better. Furthermore, when
the NHL is 2, the results are always better in the GRU model compared to BiLSTM.

(b) The performance of GA-LSTM is better in MSE, MAE, and MAPE metrics; GRU, with
two hidden layers, is the next model that presents the best predicted results.

(c) The features selected in the study for GA-LSTM and the individual BiLSTM and GRU
models achieved a good result.

(d) The proposed GA-LSTM works well with the configurations (1, 12, 3) for the number
of hidden layers, units, and windows, respectively.

Additionally, the data were analyzed using the paired t-test formula. The paired t-test
is a proper statistical technique to determine whether the mean of the differences between
two paired contexts (two prediction models) is different from 0. The hypothesis to be tested
is that the paired predictive models do not have identical performance. The statistical
significance of the test is determined by looking at the p-value. The hypothesis would be
validated with p-values close to zero for the paired predictive models, while values close
to 1 would invalidate the hypothesis. A 1% significance level was used to validate the
proposed hypothesis using a t-test (p-value ≤ 0.01).
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The results of the t-test validate the hypothesis for most of the proposed models,
except in the cases of GA-LSTM (one layer) vs. GRU (two layers) and BiLSTM (one layer)
vs. BiLSTM (two layers), where there is not enough evidence to conclude that there is a
significant difference. Therefore, from a statistical point of view, the performance of these
two proposed model case exceptions is very comparable.

Likewise, there is no statistically significant difference between the actual scores
obtained from the scale and the scores obtained with the GA-LSTM (one layer) approach
(t(18) = −2.81; p > 0.01). This result shows no difference between the unemployment rate
scores estimated by GA-LSTM (one layer) and the actual scores. Therefore, the real scores
and the artificial scores of GA-LSTM (one layer) are close, and the GA-LSTM 1L model
predicts results close to the real unemployment rate scores. For comparative models, the
real scores and the artificial scores are not close to each other.

Figure 4 shows the actual values and estimated values of the BiLSTM, GRU and
GA-LSTM prediction models.
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5. Discussion

The above results show that the proposed GA-LSTM approach has performed well in
predicting the unemployment rate in Ecuador. The approach’s advantages compared to
the individual models in the study are that GA allows for the automatic finding of the best
parameters (i.e., optimal combination) for the LSTM algorithm. Finding the optimal values in
machine learning (ML) is a great challenge because the hyperparameters in the algorithms
control various aspects of the training of the data. This task in past research has primarily
depended on the expertise of the researchers; however, it should be considered that time and
computational limitations make it impossible to sweep a parameter space to find the optimal
set of input variables for an algorithm [39]. Furthermore, satisfactory results can be obtained
with a small number of features (three in this study) and a limited sample.

The strengths and weaknesses of the models used in the study are shown below (Table 6).

Table 6. Comparison of the BiLSTM, GRU, and GA-LSTM models.

Models Strengths Weaknesses

BiLSTM

• Ability to capture long-term dependencies of sequential data.
• Bidirectionality of input data is used to improve the learning capabilities

of LSTM.
• It is suitable for tasks including text analysis, text classification, speech

recognition, and predicting the next words in an input sentence, among
others [46].

• The increased computational complexity
of BiLSTM compared to LSTM and GRU
results in increased training time,
affecting the model’s ability to perform
fast operations.

GRU

• Fewer parameters and calculations than LSTM.
• Faster training because its architecture is more straightforward

than LSTM.
• In the field of unemployment rate prediction with a limited amount of

data, GRU performs better than BiLSTM.
• To predict problems in time series analysis, it is recommended to use

GRU instead of BiLSTM and select BiLSTM instead of LSTM.
Furthermore, GRU is faster than the LSTM and BiLSTM algorithms [46].

• Lower computational complexity than LSTM and BiLSTM; they train
faster and work better for small amounts of data [47].

• Less ability to capture long-term
dependencies than LSTM.

• In situations where computational
efficiency and training times are critical,
GRU networks may be preferable over
BiLSTM.

GA-LSTM

• The GA-LSTM model, when combining two techniques, is more
complex and requires more computational resources and training time.

• It can handle search space exploration better, leading to better model
performance than more straightforward hyperparameter optimization
methods, especially in complex or high-dimensionality problems.

• There is a need to adjust the specific
parameters of the genetic algorithm and
an increase in computational cost
associated with evaluating multiple
solutions in each generation.
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The comparison table provides a clear view of the strengths and weaknesses of the
three recurrent neural network models, i.e., BiLSTM, GRU, and GA-LSTM. It is observed
that each model has distinctive characteristics that make it suitable for different contexts
and applications. BiLSTM excels at capturing long-term dependencies in sequential data,
while GRU offers a simpler architecture and faster training times, making it preferable in
situations where computational efficiency is critical. On the other hand, the hybrid GA-
LSTM approach combines the search space exploration capability of genetic algorithms with
the long-term dependency capture capability of LSTM, resulting in superior performance
in terms of prediction accuracy. Unemployment rate compared to the other two models.
Despite its higher complexity and computational requirements, the GA-LSTM hybrid model
shows a promising ability to improve the accuracy of unemployment rate prediction.

Regarding the limitations of this study, it is essential to highlight some assumptions
and restrictions that could affect the generalization of the findings to other contexts. First,
the research focused exclusively on predicting the unemployment rate in Ecuador, which
could limit the applicability of the results to other countries or regions with different
economic and social conditions. Furthermore, the data set’s small size could affect the
trained models’ robustness, especially when considering additional variability factors that
could influence the unemployment rate. Selected input characteristics, such as minimum
wage, gross domestic product (GDP), and gross fixed capital formation (GFCF), may not
fully capture the complexity of the factors influencing unemployment, which could limit
the ability of the model to generalize to other contexts where different variables might
be more relevant. Finally, although the GA-LSTM approach showed good results in this
study, training on larger data sets could require considerable time due to its computational
complexity. Consequently, it is recognized that generalization of the findings to other
contexts should be done with caution, considering these limitations and the need to validate
the model in different contexts before its practical implementation.

The selection of input data used in prediction systems is a critical issue. Inflation,
minimum wage, GDP, and GFCF characteristics were selected from official sources to
ensure consistency and reliability of the analyses. However, some possible limitations or
biases in the data set are the variability in the availability of certain data (periods of missing
data) and the fact that the selected economic indicators may not fully capture all the factors
that influence unemployment trends.

6. Conclusions

The present work evaluated the accuracy of the hybrid GA-LSTM system and the deep
learning neural networks BiLSTM and GRU to predict the unemployment rate in Ecuador.
Three characteristics influencing the unemployment rate were considered and used to
train the model. The proposed neural network models were based on three measures,
MSE, MAE, and MAPE, to predict the unemployment rate. The predictions generated
by the proposed models were calculated and compared with actual data; the GA-LSTM,
BiLSTM, and GRU models demonstrated a high level of accuracy in capturing the various
changes within the data set. However, because the differences are minor between the actual
values and those predicted by the model, a paired t-test was required to make an informed
decision. The results showed that the performance of the GA-LSTM models (one layer)
vs. GRU (two layers) and BiLSTM (one layer) vs. BiLSTM (two layers) is very comparable.
Likewise, the t-test allows testing whether the predictive accuracy of the prediction models
differs significantly from the fundamental values of the unemployment rate. The hybrid
GA-LSTM model (one layer) predicts results close to the actual unemployment rate scores.
The predictions were calculated from the sample for 22 months based on the BiLSTM and
GRU neural network models and 19 months in the case of the GA-LSTM hybrid model.

In terms of economic policy, the results can help anticipate future trends in the level
of unemployment in the country. Thus, those responsible for economic and labor policy
can have advanced information on the behavior of the labor market in the coming months
and develop support programs for the unemployed. Likewise, with accurate predictions
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of the level of unemployment, governments can implement preventive measures against
unemployment even before it occurs, either through the efficient allocation of public
resources, incentives for the creation of new jobs, or the improvement of labor laws. That
allows companies the possibility of increasing their labor supply.

Regarding the relevance of these results, their importance lies in their usefulness
as inputs for carrying out more in-depth research on the labor market in general and
unemployment in particular, since it is necessary to consider what factors can influence
unemployment predictions and thus propose more effective economic policies. Finally,
these results can raise awareness in society about the moments in which the level of
unemployment can increase, and thus families would be better informed to adjust their
budgets in the face of an imminent rise in the level of unemployment.

The importance of selecting an appropriate neural network architecture to evaluate
the accuracy of unemployment prediction was fundamental, that is, deciding on the appro-
priate number of input nodes and hidden nodes, because it plays a vital role in evaluating
the accuracy of neural network prediction. Different combinations of time window size
and number of memory cell units can be tried to predict monthly unemployment perfor-
mance. However, it requires a lot of time and experience on the part of researchers, so
a genetic algorithm was adopted to optimize the hyperparameters of the hybrid model.
Choosing a suitable neural network architecture is crucial when building unemployment
rate prediction models, so one should be careful when choosing an unemployment rate
prediction model.

One of the main limitations of our study lies in the inherent complexity of the labor
market in Ecuador since there have been abrupt changes in the unemployment environment.
Moreover, there is no open data with detailed information on the local unemployment rate
provided by official institutions. Therefore, we had to do a PDF transcript of the economic
reports, including the pandemic period.

It is important to note that while unemployment prediction is valuable in anticipating
economic trends, policymakers must also understand the underlying causes of unemploy-
ment and develop strategies to address it effectively. Therefore, future research should
focus on further analyzing the factors that influence labor market dynamics in Ecuador and
how policies can mitigate unemployment and promote labor inclusion.

Although unemployment prediction models can be valuable tools for policymakers and
researchers, it is crucial to recognize their limitations and complement the analysis with a
broader focus on understanding the causes and consequences of unemployment in Ecuador.
Future research should consider not only improving prediction accuracy but also developing
more effective strategies to address unemployment and promote job stability in the country.
It is also intended to investigate the application of GA-LSTM modeling compared to other
hybrid models for predicting economic indicators in several data sets from other countries.

Another possible extension of the work is to explore other hybrid model architectures
such as ARIMA-ARNN, ARIMA-LSTM, ARIMA-GRU, ARMAX-GARCHX, ARIMA-SVM,
and ARIMA-LR, among others, in the prediction of economic indicators. Furthermore,
applying the GA-LSTM methodology to a broader range of economic indicators, such as
GDP, consumer price index, producer price index, exchange rate, stock market, energy
consumption, house price, construction cost index, employment rate, and inflation, is
crucial. This diversified approach would allow for a comprehensive evaluation of the
effectiveness of the GA-LSTM model in predicting a variety of key economic indicators,
from economic growth to consumer confidence and public debt. Expanding the scope of the
methodology would provide us with a more complete and accurate view of the economic
landscape, which is essential to addressing current and future economic challenges.
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Abbreviations

RNN Recurrent neural networks
LSTM Long short-term memory
GA Genetic algorithm
GA-LSTM GA with long short-term memory
BiLSTM Bidirectional LSTM
GRU Gated recurrent units
GI Google index
NN Neural network
SVR Support vector regressions
EU-LFS European Union Labor Force Survey
SARIMA Seasonal autoregressive integrated moving average
SETAR Self-exciting threshold autoregressive
ETS Error, trend, seasonal
NNAR Neural network autoregression
RMSE Root mean squared error
MAE Mean absolute error
MAPE Mean absolute percentage error
BMA-PAR Bayesian model averaging with periodic autoregressive
SARMA Seasonal autoregressive moving average
PMEANS Seasonal (or periodic) MEANS
BPAR Bayesian PAR
VAR Vector autoregressive
SVAR Spatial VAR
NN Neural network
NNS Neural network seasonal
SpVAR Spatial vector autoregressions
SpNN Spatial neural network
SpANN Spatial artificial neural network
FARIMA Fractional autoregressive integrated moving Average
FARIMA-GARCH FARIMA with generalized autoregressive conditional heteroskedasticity
ANN Artificial neural network
SVM Support vector machine
MARS Multivariate adaptive regression splines
ARMA Autoregressive moving average
BIC Bayesian information criterion
FTS Fuzzy time series
NMSE Normalized mean square error
ARIMA Autoregressive integrated moving average
ARNN Autoregressive neural network
ARIMA-SVM ARIMA with support vector machine
ARIMA-ANN ARIMA with artificial neural network
ARIMA-ARNN ARIMA with autoregressive neural network
PSO Particle swarm optimization

ARMAX-GARCHX
Stochastic linear autoregressive moving average
with exogenous variable with GARCHX

https://github.com/kevinmero/Unemployment-rate-prediction/tree/main/data
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GARCH Generalized autoregressive conditional heteroskedasticity

GARCHX
Generalized autoregressive conditional heteroscedasticity
with exogenous variable

AIC Akaike information criterion
HQ Hannan and Quinn

ARMAX-GARCH
Stochastic linear autoregressive moving average
with exogenous variable with GARCH

ACF Autocorrelation Function
PACF Partial autocorrelation function
LSTM-GRU Long short-term memory with gated recurrent unit
GAs Genetic algorithms
MSE Mean squared error
GDP Gross domestic product
GFCF Gross fixed capital formation
IQR Interquartile range
CPI Consumer price index
EA Evolutionary algorithms
ML Machine learning

References
1. Li, Z.; Xu, W.; Zhang, L.; Lau, R.Y.K. An Ontology-Based Web Mining Method for Unemployment Rate Prediction. Decis. Support

Syst. 2014, 66, 114–122. [CrossRef]
2. Chakraborty, T.; Chakraborty, A.K.; Biswas, M.; Banerjee, S.; Bhattacharya, S. Unemployment Rate Forecasting: A Hybrid

Approach. Comput. Econ. 2021, 57, 183–201. [CrossRef]
3. Davidescu, A.A.; Apostu, S.-A.; Paul, A. Comparative Analysis of Different Univariate Forecasting Methods in Modelling and

Predicting the Romanian Unemployment Rate for the Period 2021–2022. Entropy 2021, 23, 325. [CrossRef] [PubMed]
4. Deng, W.; Wang, G.; Zhang, X.; Xu, J.; Li, G. A Multi-Granularity Combined Prediction Model Based on Fuzzy Trend Forecasting

and Particle Swarm Techniques. Neurocomputing 2016, 173, 1671–1682. [CrossRef]
5. Katris, C. Prediction of Unemployment Rates with Time Series and Machine Learning Techniques. Comput. Econ. 2020, 55,

673–706. [CrossRef]
6. Bokanyi, E.; Labszki, Z.; Vattay, G. Prediction of Employment and Unemployment Rates from Twitter Daily Rhythms in the US.

Epj Data Sci. 2017, 6, 14. [CrossRef]
7. Ryu, P.-M. Predicting the Unemployment Rate Using Social Media Analysis. J. Inf. Process. Syst. 2018, 14, 904–915. [CrossRef]
8. Vicente, M.R.; López-Menéndez, A.J.; Pérez, R. Forecasting Unemployment with Internet Search Data: Does It Help to Improve

Predictions When Job Destruction Is Skyrocketing? Technol. Forecast. Soc. Chang. 2015, 92, 132–139. [CrossRef]
9. Pavlicek, J.; Kristoufek, L. Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries.

PLoS ONE 2015, 10, e0127084. [CrossRef]
10. D’Amuri, F.; Marcucci, J. The Predictive Power of Google Searches in Forecasting US Unemployment. Int. J. Forecast. 2017, 33,

801–816. [CrossRef]
11. Xu, W.; Li, Z.; Cheng, C.; Zheng, T. Data Mining for Unemployment Rate Prediction Using Search Engine Query Data. Serv.

Oriented Comput. Appl. 2013, 7, 33–42. [CrossRef]
12. Smith, P. Google’s MIDAS Touch: Predicting UK Unemployment with Internet Search Data. J. Forecast. 2016, 35, 263–284. [CrossRef]
13. Mihaela, S. Improving Unemployment Rate Forecasts at Regional Level in Romania Using Google Trends. Technol. Forecast. Soc.

Chang. 2020, 155, 120026. [CrossRef]
14. Dilmaghani, M. Workopolis or The Pirate Bay: What Does Google Trends Say about the Unemployment Rate? J. Econ. Stud. 2019,

46, 422–445. [CrossRef]
15. Vosseler, A.; Weber, E. Forecasting Seasonal Time Series Data: A Bayesian Model Averaging Approach. Comput. Stat. 2018, 33,

1733–1765. [CrossRef]
16. Wozniak, M. Forecasting the Unemployment Rate over Districts with the Use of Distinct Methods. Stud. Nonlinear Dyn. Econom.

2020, 24, 20160115. [CrossRef]
17. Ramli, N.; Ab Mutalib, S.M.; Mohamad, D. Fuzzy Time Series Forecasting Model with Natural Partitioning Length Approach

for Predicting the Unemployment Rate under Different Degree of Confidence. In Proceedings of the 24th National Symposium on
Mathematical Sciences (sksm24): Mathematical Sciences Exploration for the Universal Preservation; Salleh, Z., Hasni, R., Rudrusamy, G., Lola,
M.S., Salleh, H., Rahim, H.A., AbdJalil, M., Eds.; American Institute of Physics: Melville, NY, USA, 2017; Volume 1870, p. 040026.

18. Olmedo, E. Forecasting Spanish Unemployment Using Near Neighbour and Neural Net Techniques. Comput. Econ. 2014, 43,
183–197. [CrossRef]

19. Ahmmed Mohammed, F. Applying Hybrid Time Series Models for Modeling Bivariate Time Series Data with Different Distribu-
tions for Forecasting Unemployment Rate in the USA. J. Mech. Contin. Math. Sci. 2019, 14. [CrossRef]

https://doi.org/10.1016/j.dss.2014.06.007
https://doi.org/10.1007/s10614-020-10040-2
https://doi.org/10.3390/e23030325
https://www.ncbi.nlm.nih.gov/pubmed/33803384
https://doi.org/10.1016/j.neucom.2015.09.040
https://doi.org/10.1007/s10614-019-09908-9
https://doi.org/10.1140/epjds/s13688-017-0112-x
https://doi.org/10.3745/JIPS.04.0079
https://doi.org/10.1016/j.techfore.2014.12.005
https://doi.org/10.1371/journal.pone.0127084
https://doi.org/10.1016/j.ijforecast.2017.03.004
https://doi.org/10.1007/s11761-012-0122-2
https://doi.org/10.1002/for.2391
https://doi.org/10.1016/j.techfore.2020.120026
https://doi.org/10.1108/JES-11-2017-0346
https://doi.org/10.1007/s00180-018-0801-3
https://doi.org/10.1515/snde-2016-0115
https://doi.org/10.1007/s10614-013-9371-1
https://doi.org/10.26782/jmcms.2019.10.00026


Appl. Sci. 2024, 14, 3174 28 of 28

20. Shi, L.; Khan, Y.A.; Tian, M.-W. COVID-19 Pandemic and Unemployment Rate Prediction for Developing Countries of Asia: A
Hybrid Approach. PLoS ONE 2022, 17, e0275422. [CrossRef]

21. Yurtsever, M. Unemployment Rate Forecasting: LSTM-GRU Hybrid Approach. J. Labour Mark. Res. 2023, 57, 18. [CrossRef]
22. Ahmad, M.; Khan, Y.A.; Jiang, C.; Kazmi, S.J.H.; Abbas, S.Z. The Impact of COVID-19 on Unemployment Rate: An Intelligent

Based Unemployment Rate Prediction in Selected Countries of Europe. Int. J. Financ. Econ. 2023, 28, 528–543. [CrossRef]
23. Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80,

8091–8126. [CrossRef] [PubMed]
24. Tatarczak, A.; Boichuk, O. The Multivariate Techniques in Evaluation of Unemployment Analysis of Polish Regions. Oeconomia

Copernic. 2018, 9, 361–380. [CrossRef]
25. Zou, H.F.; Xia, G.P.; Yang, F.T.; Wang, H.Y. An Investigation and Comparison of Artificial Neural Network and Time Series

Models for Chinese Food Grain Price Forecasting. Neurocomputing 2007, 70, 2913–2923. [CrossRef]
26. Cheng, Y.; Hai, T.; Zheng, Y.; Li, B. Prediction Model of the Unemployment Rate for Nanyang in Henan Province Based on BP

Neural Network. In Proceedings of the 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(icnc-Fskd); Liu, Y., Zhao, L., Cai, G., Xiao, G., Li, K.L., Wang, L., Eds.; IEEE: New York, NY, USA, 2017; pp. 1023–1027.

27. Miskolczi, M.; Langhamrova, J.; Fiala, T. Unemployment and Gdp. In Proceedings of the International Days of Statistics and Economics;
Loster, T., Pavelka, T., Eds.; Melandrium: Slany, Czech Republic, 2011; pp. 407–415.

28. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The Performance of LSTM and BiLSTM in Forecasting Time Series. In Proceedings of
the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3285–3292.

29. Cui, Z.; Ke, R.; Pu, Z.; Wang, Y. Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-Wide Traffic
Speed Prediction. arXiv 2019, arXiv:1801.02143v2. [CrossRef]
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