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Abstract: Automation transparency offers a promising way for users to understand the uncertainty
of automated driving systems (ADS) and to calibrate their trust in them. However, not all levels
of information may be necessary to achieve transparency. In this study, we conceptualized the
transparency of the automotive human–machine interfaces (HMIs) in three levels, using driving
scenarios comprised of two degrees of urgency to evaluate drivers’ trust and reliance on a highly
automated driving system. The dependent measures included non-driving related task (NDRT)
performance and visual attention, before and after viewing the interface, along with the drivers’
takeover performance, subjective trust, and workload. The results of the simulated experiment
indicated that participants interacting with an SAT level 1 + 3 (system’s action and projection)
and level 1 + 2 + 3 (system’s action, reasoning, and projection) HMI trusted and relied on the
ADS more than did those using the baseline SAT level 1 (system’s action) HMI. The low-urgency
scenario was associated with higher trust and reliance, and the drivers’ visual attention and NDRT
performance improved after viewing the HMI, but not statistically significantly. The findings verified
the positive role of the SAT model regarding human trust in the ADS, especially in regards to
projection information in time-sensitive situations, and these results have implications for the design
of automotive HMIs based on the SAT model to facilitate the human–ADS relationship.

Keywords: trust; HMI; transparency; scenario urgency; automated driving system

1. Introduction

The use of autonomous technologies in in the automotive industry is an inevitable
trend, as automated driving systems (ADS) can reduce traffic congestion, increase fuel
efficiency, and improve road safety [1–3]. A prerequisite for realizing these benefits of
technology advances and reaching the full potential of automation is that users must
trust and accept ADS. But many users may harbor distrust due to their preconceived
notions [4,5], which may subsequently lead to the disuse of part or all of the functions of
the automation [6]. On the contrary, over-trust in ADS could lead to excessive reliance on
this technology, and further, to its misuse [7], which is suspected to be a major cause of
various accidents involving automated vehicles [8]. To prevent such situations, drivers
must be aware of the capabilities and limitations of the ADS they use and adjust their trust
level to the real automation capability [9].

According to the Society of Automotive Engineers (SAE), under certain conditions,
highly automated driving systems are responsible for all driving maneuvers on the road [10],
and users of these systems will delegate operational, tactical, or strategic tasks to the driving
system and will be encouraged to engage in non-driving related tasks (NDRT) [11,12]. In
this case, users in the vehicle may have little information about the road ahead, prompting
an insufficient awareness of potential hazards, which can exacerbate their feelings of in-
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security. Therefore, building user trust in the vehicle system is particularly important in
highly automated driving systems.

The industry and academia have been testing methods that have the potential to
improve awareness and levels of trust in ADS, such as intelligent agents exhibiting human
traits [13] and system uncertainty information [14]. One promising approach is the use
of automation transparency, which can fill in gaps in people’s understanding of ADS’s
behavior and also increase situational trust in ADS by communicating the agent’s expla-
nations, upcoming strategies, or decision-making rationale [15–18]. Lyons and Havig
defined automation transparency as “the degree of shared intent and shared awareness
between a human and a machine” [19], indicating that transparent automation should com-
municate its capability and performance, its decision-making logic and rationale, and its
intent and future states to the human agent. The majority of research concerning achieving
transparency involved the visualization of additional meta-information, or information
qualifiers via user interfaces [20–23], which has been found to be an intuitive way to convey
large amounts of information without increasing the perceived workload [17,20,24].

In order to clarify transparency requirements to understand the intelligent agent’s task
parameters, logic, and predicted outcomes, Chen et al. developed the Situation Awareness-
Based Agent Transparency (SAT) model [25], based on the theory of situation awareness
(SA) [26], which mirrors the three levels of perception, comprehension, and projection (see
Figure 1). In the SAT model, the basic information about the agent’s current state and
goals, intentions, and proposed actions are provided at the first level. The agent’s reasoning
process and the constraints/affordances when planning those actions are provided at
the second level. Information regarding the agent’s projections of the future states (such
as predicted consequences and likelihood of success/failure) are provided at the third
level. Previous studies have already confirmed the effects of SAT on operator trust. For
example, Stowers et al. indicated that with increasing levels of agent transparency, operator
performance and reliance on key parts of the interface increased [27]. Mercado et al. found
that operator performance and trust in the agent increased as a function of the agent
transparency level [20]. Chen et al. found that the SAT model continues to be an effective
tool for facilitating shared understanding and proper calibration of trust in human–agent
teams [24]. And in recent studies, conveying the automation’s decision-making rationale
via the display resulted in an increase in the participants’ level of trust, which became more
calibrated over time [28,29].
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While understanding the effect of uncertainty at various SAT levels is considered
important in ADS, Chen et al. noted that all three levels may not be absolutely necessary
to achieve transparency, and in time-sensitive situations, drivers may only need to know
the agent’s actions (level 1) and the projections (level 3) to make a sufficiently informed
decision [24]. This is due to the fact that human attention resources are limited, and under
time pressure, it may be more feasible to provide the correct levels of information than to
provide all of the data, especially in regards to visual or auditory information [30]. Recently,
researchers have begun to emphasize the effect of transparency in time-critical decision and
have found that integrating AI transparency into time-critical decision support is complex
and requires consideration of the impact on human–machine teaming [31]. However,
according to our review, studies involving ADS transparency have not emphasized time or
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scenario urgency, but have focused primarily on the effects of the sequential stacking of
transparency levels (i.e., comparing SAT level 1, SAT level 1 + 2, and SAT level 1 + 2 + 3) on
human trust and reliance regarding ADS [20,28,32]. One of the studies most relevant to our
current research is the work of Li et al. [28], in which the role of the SAT model in different
driving scenarios was considered. Another relevant work was the study of Bhaskara et al.,
which discussed the implications of transparent interfaces to improve human–autonomy
teaming outcomes in time-critical environments [32]. However, these two studies did
not focus on the particular role of SAT level 3 information in trust calibration. As of yet,
there is still a limited understanding on how SAT affects trust and human–automation
team performance, especially what transparency information supports trust calibration in
different driving scenarios.

The Current Study

The main purpose of this paper was to examine how transparency information can
be presented to support user trust calibration in highly automated driving systems (SAE
level 4 automation) under different levels of driving scenario urgency. In highly automated
driving systems, the system does not issue takeover requests (TORs), and the driver no
longer has the responsibility of supervising driving task, but is free to engage in NDRT.
The HMIs in highly automated driving systems are only used to present new possibilities
that are not safety critical [33], such as SAT information about the ADS.

Building on the discussion of projection information (SAT level 3) in a time-sensitive
situation [25,32], we attempted for the first time to experimentally verify the effects of
SAT information obtained from the HMI on driver trust and reliance and particularly, to
verify whether SAT level 1 + 3 information offers advantages in terms of enhancing human
trust without increasing the workload in urgent driving scenarios. Thus, we designed
interface concepts with different levels of SAT information (SAT level 1, SAT level 1 + 3,
and SAT level 1 + 2 + 3) and created different urgent driving scenarios in a simulated highly
automated driving system to explore the benefits and limitations of these SAT conditions
in impacting user trust and reliance on the ADS. We formulated the following hypotheses,
based on prior research:

H1: Participants expressed greater reliance on and trust in the ADS after viewing the SAT interface
than before this experience.

H2: Participants in high transparency conditions show a greater reliance on and trust in the ADS
than those who were in the SAT level 1 condition.

H3: Participants in the low urgency driving scenarios expressed greater reliance on and trust in
the ADS than those in the high urgency driving scenarios.

H4: Participants in the SAT level 1 + 3 condition did not have higher workloads compared to
those in the SAT level 1 condition, but participants in the SAT level 1 + 2 + 3 condition had higher
workloads compared to those in the SAT level 1 condition.

The remaining article is structured as follows; first, a detailed description of the
methodology, including the participant details, the apparatus used, the experimental
design, and procedures employed, is provided. Then, a statistical analysis is provided to
demonstrate the relationship between the data collected and the independent variables.
Further, the discussion and interpretation of the experiment results are provided, followed
by the study limitations and the scope of future research. Finally, the conclusions of this
study are reported.
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2. Materials and Methods
2.1. Participants

A total of 38 participants from the local community and university were recruited
for this experiment. Upon inspection, data from two participants were excluded from
statistical analysis due to consistent manual driving and technical issues. Therefore, the
data from a total of 36 participants (16 males and 20 females) were adopted for use in
the experiment. The ages or the participants ranged from 23 to 44 years (M = 31.03,
SD = 5.78). All participants were required to possess a valid Chinese driver license, and the
average driving experience of the participants was 7.17 years (SD = 4.03, range: 1–16 years).
All participants reported having normal or corrected-to-normal hearing and vision. The
assignment of the participants was counter balanced among three groups, according to the
SAT conditions.

2.2. Apparatus

The experiment was carried out using a static driving simulator. The simulator in-
cludes three primary monitors (Samsung C32JG50FQC, 27 inches, 1920 × 1080 resolution,
Samsung, Seoul, Republic of Korea), active pedals, a force-feedback steering wheel (Log-
itech G29 dual-motor force feedback steering wheel, Logitech, Lausanne, Switzerland), and
an adjustable driver’s seat. A 2.1 surround sound audio system provides replications of the
engine and driving sounds of the driver’s own and surrounding vehicles. The automated
driving scenarios and functions were programmed and implemented using SCANeR™
studio (AVSimulation, Boulogne-Billancourt, France). The automation could be toggled via
the red autopilot takeover button on the steering wheel. On the participants’ right-hand
side, a laptop (ThinkPad X1 Carbon 344327C, 14 inches, 1600 × 900 resolution, Lenovo,
Beijing, China) was mounted to simulate the vehicle center console display for presenting
NDRT and SAT information for the participants. The NDRT and SAT information interface
were programmed using ErgoLAB 3.0, which could present material in multiple formats
and record participant responses. The SAT information interface for the components was
drawn by Figma, and Adobe Premiere Pro 2023 was employed for the motion effects.

For the experiment, the participants were seated in the simulator. A head-mounted
eye-tracking system (Tobii Pro Glasses 3) was used to record the participants’ eye gaze
data. Tobii Glass 3 1.19.1 software was used to calibrate the eye-tracker, and Tobii Pro Lab
was used to analyze the eye movement data of participants. The driving simulator, center
console display, and eye-tracking system are shown in Figure 2.
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2.3. Study Design

To investigate the hypotheses, we designed a 3 × 2 × 2 mixed factorial experiment
with SAT (SAT level 1/SAT level 1 + 3/SAT level 1 + 2 + 3) as a between-subject factor, and
driving scenario urgency (high/low) and driving stage (stage 1/stage 2, referring to the
stage before and after viewing the SAT interface) as within-subject factors. Each participant
completed two trials of a simulated automated drive, in which each trial consisted of a
specific driving event and two stages of smooth automated driving. The participants were
required to decide whether to take over the vehicle by combining the driving scenario
with the SAT interface during the special driving event. And they were asked to engage in
NDRT through the center control display during both stages of smooth automated driving.
Figure 3 depicts the driving process under the default program (i.e., no takeovers).
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The participants’ eye movement data, NDRT performance, and takeover performance
throughout the drive were recorded as dependent variables. After the entire drive, the
participants were asked to evaluate their trust in the ADS and workload during the drive via
accepted scales. Since takeover performance and subjective evaluations were established
for the entire trial, this portion of the data was only adopted as the dependent variables in
a 3 × 2 (SAT × driving scenario urgency) factorial design. Thus, the dependent variables
for the 3 × 2 × 2 mixed factorial design were inlcuded as the participants’ performance on
the NDRT and eye-tracking metrics.

2.3.1. Driving Scenario Urgency

The driving scenario was a suburban road with low traffic levels. In this driving sce-
nario, the participant’s vehicle started automatically, was able to handle all situations on the
road automatically, and stopped automatically when it reached the destination. Precisely in
the middle of the drive, a hazardous event, based on a high-profile collision involving ADS,
occurred on the road [34]. In this real-life collision, an automated vehicle was traveling
behind another vehicle. Due to an earlier collision, a truck was parked diagonally across the
lane. The lead vehicle changed lanes to avoid the truck. The automated vehicle remained
in the lane, accelerated, and struck the rear of the truck (Figure 4). In this experiment, as
soon as the front vehicle changed lanes, the ADS detected the truck ahead and presented
the SAT interface. The beginning of the hazardous event occurred when the front vehicle
changed lanes, exposing the stationary truck. The end of the hazardous event occurred
when the participant’s vehicle completed the automated lane change or takeover and drove
away from the hazardous event area.

The independent variable of driving scenario urgency was manipulated according to
the timing of the system’s detection of the hazard and the presentation of the SAT interface.
Since highly automated driving systems rarely issue TORs, in this experiment, the timing
referenced the takeover request lead time (TORlt) in the conditionally automated driving
system and the constant speed of 78 km/h of the vehicle during autopilot (taking into
account the 70–80 km/h speed limit on Chinese suburban roads). Based on previous
studies, an acceptable TORlt was about 6 s when engaged in NDRT [35], and a relatively
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sufficient TORlt for driver to react was 12 s [36]. Thus, under high- and low-urgency
conditions, the participant’s vehicle was 130 and 260 m from the hazard when the system
detected the danger and presented the SAT interface. Figure 4 depicts the distances between
vehicles under both urgency conditions. For each participant, the order of the two urgency
conditions has been balanced using a random generator.
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2.3.2. SAT Interface

The SAT interfaces consisted of bird’s eye view videos that correspond to the driving
events, including the vehicle the participant was riding in, as well as the surrounding
vehicles within a certain distance.

The independent variable of SAT was manipulated across the three experimental
conditions. Under the SAT level 1 condition, only the vehicle’s current action was shown;
in the SAT level 1 + 3 condition, the vehicle’s action and the projection of the event were
revealed; and in SAT level 1 + 2 + 3 condition, the reason for the vehicle taking this action
was presented. Figure 5 depicts screenshots of the interface for the three SAT conditions at
the 1st second under the two urgency conditions.
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2.4. Dependent Measures

The dependent measures included objective indicators of takeover performance, NDRT
performance, eye gaze durations, and subjective measures of situational trust and work-
load. All the dependent variables, except for workload, were shown to be related to trust
or reliance.
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2.4.1. Takeover Performance

Since the concept of reliance refers to the operator’s refraining from a response when
the system is silent [37], the driver takeover of the vehicle when the ADS does not is-
sue a TOR represents non-reliance on the system. Takeover in this case was labeled as
unanticipated takeover, or unplanned takeover, and was found to disrupt the human–
ADS collaborative relationship [38,39]. The more frequent and longer this unanticipated
takeover lasts, the greater the negative impact on the relationship. Thus, we considered
unanticipated takeover (set as a binary variable, i.e., whether or not takeover occurred) and
the duration of manual driving after takeover (unit: s) as non-reliance on the ADS, and
these were included as dependent variables in this experiment.

2.4.2. NDRT Performance

Higher NDRT performance indicates that participants focus less on supervised driving,
and this is often associated with trust in or reliance on the ADS [40]. Therefore, we designed
specific NDRTs and asked participants to engage in them while the vehicle was driving
autonomously. The NDRT in this experiment was the one-back task. A series of integers
from 0 to 9 was randomly presented in the center of the screen. Whenever the current
number was the same as the previous one, the participants were required to press the “→”
button on the laptop’s keyboard. During the task, the number switched every 1.1 s. The
number would switch to the next one whenever the participant pressed any key. NDRT
performance referred to the score for the correct completion of the NDRT, i.e., the number of
times a participant correctly completed the NDRT divided by the total number of NDRTs.

In the formal trials, the participant’s vehicle would start automatically, and the center
control display began to present the NDRTs. When the vehicle entered the hazardous event
area, the NDRT interface switch to the SAT interface. If the participant did not take over
the vehicle, the NDRT would be presented again when the event was over (Figure 3); If the
participant took over the vehicle, the NDRT switch to the interface of “manual driving”,
and the NDRT would reappear after the participant reactivated the autopilot.

2.4.3. Eye-Tracking Metrics

In highly automated driving systems, the driver no longer has the responsibility for
scanning the driving scenario and supervising the driving task [10]. Therefore, whether or
not drivers gaze at the driving scenario frequently or for long periods of time while driving
is of interest in this experiment.

Two eye-tracking metrics—the percentage of the duration of the eye gaze on the
driving scenario and the percentage of the duration of the eye gaze on the central control
display—were used to assess driver monitoring while driving. The two measures referred
to the percentage of the duration of eye gaze at the driving scenario or at the central control
display under the eye-tracking system. These two gaze areas are shown in Figure 2.

2.4.4. Subjective Measures

At the end of each drive, the participants were asked to provide subjective evaluations
of both trust and workload for the drive they had just completed employing two scales.
Each of the scales underwent two rounds of translations and revisions to accommodate
the experimental scenario and endure participant understanding. Table 1 presents the
definitions and descriptions of the subjective measures employed in this study.
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Table 1. List of subjective measures.

Measure Item Description

Trust

Trust

Measured using a 7-point Likert scale,
derived from the Situational Trust Scale for

Automated Driving [41].

Performance
NDRT
Risk

Judgement
Reaction

Workload
Time load Measured using a 100-point continuous scale,

adapted from S-SWAT [42].Mental load
Stress load

2.5. Procedure

Upon arrival at the laboratory, each participant was provided with the basic setup of
the experiment and was asked to sign an informed consent form and complete a demo-
graphic questionnaire. The participants were then asked to sit in a driving simulator and
adjust their seats so that they could comfortably reach the wheel, pedals, and keypad for
the center control display. Then they were asked to put on the head-mounted eye-tracker,
which was then calibrated.

Next, a task introduction and practice session was provided, lasting approximately
5 min. In this session, participants would practice the basic processes of highly automated
driving 1–2 times, including auto start, manual takeover, autopilot activation, and auto
parking. This session did not involve the hazardous events employed in the formal
experiment. The participants in this session were also told that the reliability of the ADS
was very high, and that even if the vehicle did not issue a TOR during automated driving,
they could take over the vehicle by pressing the takeover button, if they felt that the
conditions were unsafe. If the participant took over the vehicle, then they were required to
return driving control to the ADS by pressing the same button once they felt that they had
reached a safe roadway.

For each drive, the participants were asked to engage in NDRT in the center control
display for about 65 s while the vehicle experienced automated driving, followed by a beep
from the center control system, at which point the participant could see the SAT interface
on the center control display regarding the hazardous event.

The participants could recognize the ADS and hazardous event by combining the
driving scenario with the SAT interface and then considering whether or not to take over
the vehicle. After the event, the NDRT would reappear on the center control display, and the
participants were required to engaged in the task again until the vehicle automatically parked.

After driving, the participants used two scales to complete an online survey platform,
wjx. At the end of the formal trial, the participants answered questions via an interview
and received the participation fee. The total duration of the experimental procedure was
approximately 25 min.

3. Results

The data from a total of 36 participants were collected in this study. There were two
participants who exhibited a significant loss of eye movement data (<85% data logging).
Consequently, the eye movement data from four trials were excluded from the analysis. For
all data, the Shapiro–Wilk test was used to check the normal distribution of all dependent
variables. If the data were normally distributed, binary variables were predicted using
binary logistic regression, and other discrete and continuous variables were analyzed using
the Kruskal–Wallis or Mann–Whitney tests. Dependent variables data that were normally
distributed and passed the test of homogeneity of variance were analyzed using ANOVA.
Post hoc analysis was conducted using Tukey’s HSD test. The significance was set at 0.05
for the statistical tests.
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3.1. Takeover Performance

In this study, takeover performance consisted of two variables: unanticipated takeover
and the duration of manual driving after takeover. The two data samples were not nor-
mally distributed (p < 0.05); thus, non-parametric tests were performed. A binary logistic
regression revealed that the model of unanticipated takeover was statistically insignificant
(p > 0.001), and none of the independent variables in the equation were statistically sig-
nificant (p > 0.05). The data of duration of manual driving was not normally distributed
(p < 0.05), but tests showed that there were no statistically significant effects of the indepen-
dent variables on this factor. This suggests that there was no significant difference in the
likelihood of takeover, nor for the duration of manual driving across SAT conditions and
scenario urgency conditions.

In fact, since very few unanticipated takeovers occurred during the experiment, the
data were not significant. From the descriptive statistics, three takeovers occurred in the
SAT level 1* high-urgency condition; all other conditions resulted in only one unanticipated
takeover. Overall, according to the results for unanticipated takeover, the participants
trusted the ADS and let the vehicle handle the hazardous events on its own.

3.2. NDRT Performance

The program recorded all NDRT results. After data organization, the correctness of
the NDRTs were presented as percentages. The data revealed no outliers, but were not
normally distributed (p < 0.05). Tests showed that there was a significant effect of SAT on
the correctness of the NDRT, i.e., χ2(2) = 8.475, p < 0.05, mean rank = 58.63, 80.25, and 78.63
for SAT level 1, SAT level 1 + 3, and SAT level 1 + 2 + 3, respectively (Figure 6). Pairwise
comparisons showed that the difference between the SAT level 1 + 3 condition and the SAT
level 1 condition and the SAT level 1 + 2 + 3 condition and the SAT level 1 condition were
significant. However, tests revealed that there was no significant effect on correctness of
NDRT in regards to scenario urgency and driving stage (p > 0.05).
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Although the effects of the scenario urgency and driving stage were not signifi-
cant, from the descriptive statistics, the correctness of the NDRT was higher under the
low-urgency condition (M = 95.97, SD = 4.207) than under the high-urgency condition
(M = 95.49, SD = 4.570), and was higher in stage 2 (M = 95.90, SD = 4.139) than in stage 1
(M = 95.56, SD = 4.639).

3.3. Eye-Tracking Metrics

To assess the influence of SAT and scenario urgency on the participants’ visual atten-
tion, the percentage of the duration of eye gaze on the driving scenario and the central
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control display were analyzed. First, the 3D eye movement data were mapped in 2D
pictures, then the driving scenario and central control display were set as areas of interest
(AOIs) (As shown in Figure 7, the yellow box vs. the red box), and the duration of eye gaze
on the two AOIs was measured during the entire driving experiment.
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The eye gaze duration data were normally distributed (p > 0.05). A three-way ANOVA
revealed that the main effect of the SAT on the percentage of the duration of eye gaze on
the central control display was significant, F(2, 124) = 5.797, p < 0.05, η2p = 0.086. Post hoc
analysis revealed that the percentage of the duration of eye gaze on the central control
display under the SAT level 1 + 3 condition and the SAT level 1 + 2 + 3 condition was
significantly higher than that under the SAT level 1 condition (p < 0.05), but the difference
between the SAT level 1 + 3 condition and the SAT level 1 + 2 + 3 condition was not
significant (p > 0.05), as shown in Figure 8a. Correspondingly, the main effect of the
SAT on the percentage of eye gaze duration in the driving scenario was also significant,
F(2, 124) = 5.831, p < 0.05, η2p = 0.086, and post hoc analysis yielded similar results
(Figure 8b). However, there were no statistically significant effects of scenario urgency
and driving stage on the two percentages of eye gaze duration (p > 0.05), and none of the
interaction effects were statistically significant (p > 0.05).

The descriptive statistics revealed that the percentage of eye gaze duration on the
central control display was higher under the low-urgency condition (M = 80.75, SD = 12.436)
than under the high-urgency condition (M = 79.29, SD = 12.751), and it was higher in stage



Appl. Sci. 2024, 14, 3203 11 of 17

2 (M = 81.08, SD = 12.596) than in stage 1 (M = 78.96, SD = 12.546). The opposite was true
for the attention on driving scenarios.
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3.4. Trust

First, Cronbach’s alpha was used to determine the degree of consistency and reliability
for the participants’ trust scores. The calculated value of Cronbach’s alpha for the six items
was 0.914, indicating that all responses were consistent. Then, the trust data were obtained
by averaging the scale scores (three items have been calculated in reverse).

The trust data were not normally distributed (p < 0.05). Thus, non-parametric analyses
were performed. Tests revealed that there was a significant effect of SAT on the partic-
ipants’ trust, H(2) = 26.105, p < 0.05, mean rank = 18.71, 45.21, and 45.58 respectively,
for SAT level 1, SAT level 1 + 3, and SAT level 1 + 2 + 3 (Figure 9). Tests revealed that
there was no significant effect of scenario urgency on the participants’ trust, p > 0.05. De-
scriptive statistics reveled a higher trust score under the low-urgency condition (M = 4.96,
SD = 1.175) than under the high-urgency condition (M = 4.57, SD = 1.266).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18 
 

 
Figure 9. Box plots showing subjective trust under SAT conditions (including outliers). Error bars 
are 95% confidence intervals. 

3.5. Workload 
The participants’ self-reported workload data were weighted and averaged, and then 

they were tested for normality, indicating that the workload data were not normally dis-
tributed (p < 0.05). Thus, non-parametric analyses were performed. Tests revealed that the 
main effect of SAT on the participants’ workload approached significance, H(2) = 5.220, p 
= 0.074. Tests also revealed there was no significant effect of scenario urgency on the par-
ticipants’ workload, p > 0.05. 

According to the descriptive statistics, the participants’ workloads were lower under 
the SAT level 1 + 3 (M = 78.22, SD = 39.811) and SAT level 1 conditions (M = 84.12, SD = 
54.706) than under the SAT level 1 + 2 + 3 condition (M = 100.64, SD = 39.966). The partici-
pants’ workloads were numerically higher under the high-urgency condition (M = 92.52, 
SD = 48.436) than under the low-urgency condition (M = 82.81, SD = 42.993). 

4. Discussion 
In our study, even though the participants were told that they were riding in a highly 

automated vehicle and that automation could handle various risky events on the road, 
there were still a few (n = 8) who took over the vehicle during the driving event due to 
fear that the automation would not handle the hazard well. The behavior of unanticipated 
takeover can be viewed as a form of non-reliance, by definition. And reliance was often 
correlated with trust [17,37,38] or was even a result of trust in the automation [43]. In this 
study, driver takeover was clearly an undesirable result of mistrust, albeit infrequent, and 
this behavior should be avoided. In comparison, the other dependent variables, even if 
they were skewed to the side of distrust, do not have much of a negative impact on hu-
man–vehicle collaboration. Moreover, in line with our expectations, the participants’ 
NDRT performance while driving was generally high, their attention was more focused 
on the center control display, and the trust scores after driving were relatively high. While 
participants’ attitudes and behaviors to the ADSs of this experiment generally tended to 
be on the side of trust and reliance, the effects of SAT, scenario urgency, and driving stage 
varied and were somewhat subtle. 

In this study, the effects of the SAT on trust and reliance were generally consistent 
with our expectations, and these results partially supported H2, which was the focus of 
the study. For example, under the SAT level 1 + 3 and SAT level 1 + 2 + 3 conditions, par-
ticipants paid more attention to the NDRT, exhibited a higher NDRT performance, and 
showed an increased trust in the ADS compared to the results for the SAT level 1 condi-
tion. This finding is consistent with the view of many previous studies that the transpar-
ency in terms of uncertain information (i.e., reasoning information for SAT level 2 and 
projection information for level 3) improved both trust and task performance [20,44,45]. 

Figure 9. Box plots showing subjective trust under SAT conditions (including outliers). Error bars are
95% confidence intervals.



Appl. Sci. 2024, 14, 3203 12 of 17

3.5. Workload

The participants’ self-reported workload data were weighted and averaged, and
then they were tested for normality, indicating that the workload data were not normally
distributed (p < 0.05). Thus, non-parametric analyses were performed. Tests revealed that
the main effect of SAT on the participants’ workload approached significance, H(2) = 5.220,
p = 0.074. Tests also revealed there was no significant effect of scenario urgency on the
participants’ workload, p > 0.05.

According to the descriptive statistics, the participants’ workloads were lower under
the SAT level 1 + 3 (M = 78.22, SD = 39.811) and SAT level 1 conditions (M = 84.12,
SD = 54.706) than under the SAT level 1 + 2 + 3 condition (M = 100.64, SD = 39.966).
The participants’ workloads were numerically higher under the high-urgency condition
(M = 92.52, SD = 48.436) than under the low-urgency condition (M = 82.81, SD = 42.993).

4. Discussion

In our study, even though the participants were told that they were riding in a highly
automated vehicle and that automation could handle various risky events on the road,
there were still a few (n = 8) who took over the vehicle during the driving event due to
fear that the automation would not handle the hazard well. The behavior of unanticipated
takeover can be viewed as a form of non-reliance, by definition. And reliance was often
correlated with trust [17,37,38] or was even a result of trust in the automation [43]. In
this study, driver takeover was clearly an undesirable result of mistrust, albeit infrequent,
and this behavior should be avoided. In comparison, the other dependent variables, even
if they were skewed to the side of distrust, do not have much of a negative impact on
human–vehicle collaboration. Moreover, in line with our expectations, the participants’
NDRT performance while driving was generally high, their attention was more focused
on the center control display, and the trust scores after driving were relatively high. While
participants’ attitudes and behaviors to the ADSs of this experiment generally tended to
be on the side of trust and reliance, the effects of SAT, scenario urgency, and driving stage
varied and were somewhat subtle.

In this study, the effects of the SAT on trust and reliance were generally consistent
with our expectations, and these results partially supported H2, which was the focus of
the study. For example, under the SAT level 1 + 3 and SAT level 1 + 2 + 3 conditions,
participants paid more attention to the NDRT, exhibited a higher NDRT performance, and
showed an increased trust in the ADS compared to the results for the SAT level 1 condition.
This finding is consistent with the view of many previous studies that the transparency in
terms of uncertain information (i.e., reasoning information for SAT level 2 and projection
information for level 3) improved both trust and task performance [20,44,45]. The effects
also indicated the two high-level SAT conditions were not significantly different in regards
to the dependent variables of takeover performance, NDRT performance, eye-tracking
metrics, and subjective trust. These results are inconsistent with those obtained in some
previous studies involving SAT, which found that the participants’ trust or performance
increased as the level of transparency increased [20,24,27,28]. There may be several ex-
planations for this difference. The most straightforward explanation is that the interface
designs in the SAT level 1 + 3 and SAT level 1 + 2 + 3 conditions were quite similar because
of the simplicity of the driving event employed in the experiment. As mentioned by several
participants, for the two high-level SAT groups, to make a decision, they did not pay
attention to what particular information the interface provided, but only to the driving
scenarios. To speculate further on differences regarding scenario simplicity, follow-up
efforts should conduct more targeted testing.

Another possible explanation for the results obtained in the current study is that
previous experimental studies involving SAT model have focused only on the sequential
stacking of transparency levels and not on the combination of SAT level 1 and level
3 conditions [24,28,32]. Instead, this study investigated the role of SAT level 1 + 3 in
supporting driver trust and reliance and proposed the hypothesis that SAT level 1 + 3 may
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be superior to other levels of transparency, especially in high-urgency scenarios, based
on Chen’s statement that humans may only need to know the system’s actions and the
projection to make a sufficiently informed decision in time-sensitive situations [25]. In
the experiment, the results regarding workload did not support H4, but the following
insights may explain this result. The differences in participants’ workloads were small
between the SAT level 1 and SAT level 1 + 3 conditions, and the participants showed
the highest workload under the SAT level 1 + 2 + 3 condition, although the difference
was not statistically significant. As Stowers et al. discovered, the users did not enjoy
the increase in task workload, despite the utility of the added information [27]. One
participant in the SAT level 1 + 2 + 3 group also noted that the interface looked a little
messy, so he preferred to look at the driving scenarios to determine whether the road was
dangerous and if the vehicle needed to be taken over. From this evidence, we deduced
that additional transparency information does enhance the interpretability or increase the
user’s understanding of the system, but in a risky, time-critical task, such as driving, too
much information may be detrimental to task performance and user experience. This
interpretation is supported by the findings of Yeh and Wickens, who found a decrease
in perceived usability with increased transparency information and workload, despite
no difference in performance [46]. Therefore, if the road condition and workload are the
sources of driver reliance and trust, one solution may be to utilize in-vehicle interfaces to
enhance trust and human–vehicle collaboration, based on road conditions and physiological
indicators of workload.

To fully examine the effects of SAT on driver reliance on the ADS, this study also
investigated participants’ visual attention and NDRT performance before and after viewing
the SAT interface. The results indicated that the users did have a tendency to shift their
attention from the driving scenario to the center control display after viewing the SAT
interface, but this shift was not statistically significant in terms of eye movement metrics and
NDRT performance. These results do not support H1, but still warrant further investigation
in the future in regards to more realistic hazardous events, as well as to higher fidelity
simulated driving.

In addition to the impact of the SAT on driver trust and reliance, this study also
focused on differences in the SAT across various levels of driving scenario urgency. At the
time of design, the two driving scenarios used in this study were manipulated according to
the distance between the participant’s vehicle and the hazard at the beginning of the event,
and the urgency of the two scenarios was progressive. However, the results indicated that
the effects of scenario urgency on all dependent variables were not statistically significant,
which did not support H3. One possible reason for this is that, as discussed above, the
driving event was too simple, so participants were able to quickly understand the hazard
in both the high- and low-urgency scenarios. Another possibility is that the experimental
design did not sufficiently differentiate the level of urgency in the scenarios, or that the
high-urgency scenarios were not designed to be adequately time-sensitive. As previously
suggested, an acceptable TORlt was about 6 s when engaged in a NDRT [35]; presenting
the SAT interface 6 s earlier in the experiment did prompt the participants to feel adequate
urgency. In their interviews, some of the participants also mentioned that there was little
difference between the two driving trials. If the second statement is true, then it makes
sense that the advantages of receiving SAT level 1 + 3 information under time-sensitive
contexts were not fully realized under this study design.

Nonetheless, we were able to observe some differences among SAT conditions in
scenarios with different levels of urgency. For example, the participants showed the highest
correctness of NDRT and paid the most attention to the central control display in the
combination of SAT level 1 + 3* condition, or low urgency*, stage 2. Although this data
did not provide statistical evidence for the role of SAT 1 + 3 level information in regards
to improving user trust and performance in ADS, it nevertheless provided a basis for the
potential advantages of projection information in certain contexts. However, regardless
of whether or not the advantages of SAT level 1 + 3 in high-urgency driving scenarios are
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significant, and if so, for what reasons, it seems safe to conclude that different scenarios may
require alternative transparency information. The complex road conditions that automated
driving must manage will present interaction designers with a series of new challenges.

Limitation and Future Work

In general, this study provides a solid framework for evaluating vehicle interfaces
with SAT information to test trust behaviors in regards to ADS. However, as mentioned
above, it is possible that this study failed to test one of the key hypotheses because some of
the data were not significant due to the design of the variable of scenario urgency. From the
experiment results, the advantage of the SAT level 1 + 3 interface was numerically more
evident in high-urgency situations. Therefore, more reasonable experimental variables
should be designed to test this hypothesis. Due to the inability of some participants to
understand the differences between the scenarios, in future studies, scenario urgency could
be used as a between-subject variable to delineate additional levels. Another limitation
involving the experiment design was the inadequate amount of time during which the SAT
information interface was presented to the participants. This may also account for some
of the hypothesized effects not being statistically significant. As one participant stated, he
would pay more attention to the road when the event occurred, and by the time he tried to
evaluate the interface again, it was too late. Therefore, future research should design more
hazardous events during one drive, which would allow participants to evaluate the SAT
interface more accurately.

Future research should also attempt to present SAT information in more ways than in
just a bird’s eye view, with the inclusion of some text on an additional screen. As previous
studies have mentioned, “an invisible interface is also not usable” and “placing the screen
closer to the instrument cluster“ was suggested [47]. Also, several participants suggested
various alternatives for the presentation of transparency, for example, striking light effects,
voice prompts, and a heads-up display (HUD). The effectiveness of different methods of
displaying SAT information in increasing user trust and reducing cognitive load is also
worth investigating. After all, the ultimate goal of researching SAT is to enhance user trust
in ADS and to promote human–vehicle collaboration. Researchers and designers should
focus not only on what SAT information should be communicated in different scenarios,
but also on how the information is communicated.

Finally, driving simulations in the lab do not provide participants with experience
on real roads, especially in high-risk scenarios. We also recognized that a low number
of participants in this research had previous autonomous driving experience, which may
have resulted in users retaining supervisory habits from manual driving. Future studies
could recruit more autonomous vehicle owners or make use of longitudinal methods to
evaluate the evolution of user experience and trust in order to obtain more realistic and
valid data regarding automated driving performance and user evaluation. And, it is widely
accepted that users form and modify their judgments about automation over time [48], so
research concerning trust in automation should inlcude sufficient consideration regarding
longitudinal study.

5. Conclusions

In this study, we designed three levels of transparency-interface for a specific haz-
ardous event with different urgencies based on the SAT model, and we then evaluated
user trust and reliance before and after viewing the interface via NDRT performance and
eye gaze duration. Also, takeover performance during driving, as well as subjective trust
and workload after driving in different transparency and scenario conditions, were also
compared. The most significant finding of the experiment was that transparency has a
significant effect on driver trust and reliance on ADS. Presenting SAT level 1 + 3 and level
1 + 2 + 3 information to drivers resulted in less attention being paid to the driving scenario,
higher NDRT performance, and increased subjective trust than did the provision of baseline
SAT level 1 information. Driver trust and reliance on ADS was higher in the low-urgency
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than in the high-urgency scenarios, and driver NDRT performance and attention improved
after viewing the SAT information, but not statistically significantly. Thus, it can be con-
cluded that providing drivers with SAT information can increase their trust in and reliance
on the ADS, and vehicle’s actions and projection information may result in increased trust
calibration without increasing the cost of the workload.

These findings highlight the positive role of the SAT model in human–vehicle inter-
actions and present important implications for the design of automotive HMIs based on
the SAT model. In order to achieve a safe and efficient employment of highly automated
driving systems, the driver should be provided with transparency information regarding
the uncertainty of the vehicle. Developers of ADS should also consider designing HMIs
including different transparency and communication channels based on various driving
scenarios to improve driver understanding of the vehicle conditions, while minimizing
the workload.
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