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Abstract: A knowledge graph is a structured semantic network designed to describe physical
entities and relations in the world. A comprehensive and accurate knowledge graph is essential
for tasks such as knowledge inference and recommendation systems, making link prediction a
popular problem for knowledge graph completion. However, existing approaches struggle to model
complex relations among entities, which severely hampers their ability to complete knowledge
graphs effectively. To address this challenge, we propose a novel hierarchical multi-head attention
network embedding framework, called RiQ-KGC, which integrates different-grained contextual
information of knowledge graph triples and models quaternion rotation relations between entities.
Furthermore, we propose a relation instantiation method for alleviating the difficulty of expressing
complex relations between entities. To enhance the expressiveness of relation representation, the relation
is integrated by Transformer to obtain multi-hop neighbor information, so that one relation can be
embedded into different embeddings according to different entities. Experimental results on four
datasets demonstrate that RiQ-KGC exhibits strong competitiveness compared to state-of-the-art models
in link prediction, while the ablation experiments reveal that the proposed relation instantiation method
achieves great performance.

Keywords: knowledge graph embedding; link prediction; quaternion; complex relation; multi-hop
neighbor

1. Introduction

Knowledge graphs (KGs) represent a structured semantic network used to describe
diverse entities and their associations in the physical world, thereby organizing knowledge
in a graph structure. In the domains of natural language understanding [1] and knowledge
inference [2,3], a comprehensive KG offers significant performance improvements as prior
knowledge for downstream tasks such as question answering [4] and recommendation
systems [5,6]. However, real-world KGs often represent only a subset of the complete KG,
containing a vast amount of undiscovered and poorly organized potential knowledge that is
valuable for deep mining and analysis, including node classification [7], node clustering [8],
graph query [9–11], entity recognition [12], and link prediction [13]. Consequently, efficient
KG representation has become a critical challenge.

A KG consists of a set of entities and a set of relations, with an objective fact represented
as a triple comprising entities and relations. Although widely used in large KGs such as
WordNet [14], Wikidata [15], and YAGO [16], each is considered to be incomplete, despite
containing hundreds of thousands of objective facts.

To address the challenge of effectively representing KGs, certain models [17,18] utilize
low-dimensional vectors to represent entities and relations. Through this method, triples
are perceived as having potential semantics within the vector space, resulting in entities
being distributed across various complex spaces. Relations, on the other hand, are viewed
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as transformation patterns between entities such as translation and rotation. These KG
representation models can be classified as machine-learning-based, including models
such as TransE [19] and RotatE [20]. By embedding entities in more intricate spaces and
conveying relational patterns in a more logical manner, these models can achieve a more
precise fit to the physical world.

The emergence of deep learning techniques has paved the way for the adoption of
large-scale neural networks in extracting entity and relation features. KG representation
models that utilize these techniques can be classified as deep-learning-based models such
as MTL-KGC [21] and HittER [22]. These models are capable of learning KG features in
an automated way, without pre-defining entity and relation representations, resulting in
a more flexible modeling approach. However, deep-learning-based models come with
certain requirements, such as larger datasets and an increased number of training iterations,
that allow the models to fully learn the characteristics of the KG representations.

In this paper, we firstly propose a novel RiQ-KGC framework, which is a KG-embedding
model that embeds KGs into hierarchical multi-head attention networks in quaternion space.
RiQ-KGC models and extracts geometric information between entities and relations and
leverages the attention parameters of the model to generalize the geometric transformation
capabilities of entities. The quaternion representation is an ideal choice for smooth rotations
and spatial transformations in parametric vector spaces [23], and can accurately represent
the symmetric, anti-symmetric, and inverse relations present in the KGs. As a result, RiQ-
KGC incorporates the advantages of machine-learning-based models and allows entities to
be related to each other using a lower embedding dimension. At the same time, RiQ-KGC
offers better learning capability than current deep-learning-based models by leveraging
both entity geometry transformation and multi-hop neighborhood information to support
model learning.

In the physical world, the number of entities tends to be much greater than the number
of relations. However, relations that are expressed as transformation patterns can be
too coarse, which restricts the flexibility of transformations and inhibits the geometric
representation quality on one-to-one, one-to-n, m-to-n, and m-to-one relations, which we
call complex relations. To address this issue, we propose a method of relation instantiation.
This method enables the same relation to have different representations in different triples,
thereby incorporating additional information about the multi-hop neighboring nodes in
the triple. This information represents the context in which the relation is located and
enables the relation to be expressed as a transformation pattern that is specific to that
context. Employing the relation instantiation method into RiQ-KGC allows the model to
capture more useful information when modeling geometric relations, thereby enhancing
the embedding performance.

To summarize, we have contributed in the following ways:

• We present RiQ-KGC, a hierarchical multi-head attention network framework that
embeds KGs in quaternion spaces and constructs graph embeddings using geomet-
ric information.

• We propose a novel relation instantiation method that utilizes contextual information
to transform relations, making them express transformation patterns unique to their
corresponding triple context.

• We conduct theoretical and empirical analyses that demonstrate the competitiveness
of RiQ-KGC against numerous existing models.

The subsequent sections of this paper are structured as follows: Section 2 delves
into the advancements of machine learning models and deep learning models in the task
of knowledge graph completion. Section 3 presents a detailed exposition of the model
architecture of RiQ-KGC. Section 4 conducts comprehensive experiments on RiQ-KGC to
demonstrate its superior performance.
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2. Related Work

In the realm of graph embedding for KGs, existing research can be roughly categorized
into two major families: the machine-learning-based model family and the deep-learning-
based model family. The core issue for these models is how to define a scoring function for
triples that can be utilized to determine whether a given triple represents an objective fact,
serving as the basis for evaluating the quality of graph embeddings. In this section, we will
delve into the technical evolution trajectories of these two families.

2.1. Machine-Learning-Based Model

Machine-learning-based models typically adopt a geometric approach, embedding
entities into a specific space and using relation vectors to represent the transformation
between entities, including translation and rotation. TransE [19] is the most classical model
that represents relations as translation patterns. However, TransE has limitations in that
translations can only express inverse and symmetric relations, which causes some triples to
not be correctly represented. TransH [24], TransR [25], and TransD [26] are all improvements
built upon the score function of TransE.

Following translation models, bilinear models such as DisMult [27] and ComplEx [28]
were developed, which employ similarity-based scoring functions to gauge the likelihood
of triples by matching potential entity and relation semantics in the embedding vector
space. DisMult builds on the framework of RESCAL [29], modeling entities as vectors
and relations as matrices, with the relation matrix being defined as a diagonal matrix.
HolE [30] combines the advantages of RESCAL and DisMult by representing both enti-
ties and relations as vectors in space and introducing a loop mechanism for interactions
between head and tail entities. This results in a powerful but computationally efficient model.
ComplEx, on the other hand, introduces complex embeddings, which represent the embed-
dings of entities and relations in complex space instead of real space. Additionally, ComplEx
modifies the scoring function of the model to an asymmetric form, thereby better capturing
asymmetric relations.

Drawing inspiration from complex space bilinear models such as DisMult and Com-
plEx, RotatE treats relations as rotation operations between entities. This enables relations
to express a wide range of attributes, including symmetric, anti-symmetric, inverse, and
synthetic attributes. Additionally, TorusE [31], which appeared around the same time as
RotatE, defines embeddings as translations on tight Lie groups, embedding entities and
relations in spatial torus, thereby eliminating the need for regularization steps. QuatE [23]
further developed the concept of complex space and extended it into a quaternion space
with two rotation surfaces, allowing for more flexible representation compared to that
achievable in a complex space. Additionally, QuatE utilizes Hamilton products to capture
internal dependencies among entities and relations, resulting in a simplified and more
efficient process for relation modeling. Continuing in this vein, DualE [32] further extended
the space to an octonion space, which offers a means for representing both translation and
rotation patterns. In recent years, researchers have developed models that embed KGs into
more complex spaces. MuRP [33] and MuRE [33] incorporate multi-relation graphs into
Poincaré balls in hyperbolic space and transform entity embeddings through the learning of
relation-specific parameters via Mobius matrix vector multiplication and Mobius addition.
RoTH [34] combines hyperbolic reflections and rotations with attention to simultaneously
capture hierarchical and logical patterns in a hyperbolic space. ReTIN [35] introduces
real-time influence information on historical facts in hyperbolic geometric space to capture
potential hierarchical structures and other rich semantic patterns.

Although some of machine-learning-based models note the difficulty of embedding
complex relations, they address the problem posed by single rotation patterns, which
cannot adequately model hierarchical structures and relations between entities.
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2.2. Deep-Learning-Based Model

Deep-learning-based models provide a flexible approach to extract hidden features of
triples using popular frameworks such as convolutional neural networks (CNNs) or Graph
Neural Networks (GNNs). A notable example is ConvE [36], which uses relation-specific
filters to perform adaptive convolution on the entity transformation matrix, followed by
scoring through a dot product of the output and tail embedding. HypER, proposed by [37],
is a hypernetwork architecture that generates simplified specific relation convolutional
filters. This approach combines tensor factorization techniques to enhance the perfor-
mance of the model compared to traditional convolutional models like ConvE. GLSP [38]
combines a GNN with an LSTM to effectively store temporal information. By leveraging
both long- and short-term networks, GLSP can better capture the complex dynamics of
temporal KGs and enhance the predictive ability. Recently, there has been an increasing
trend of using attention mechanisms and Transformer [39] frameworks to extract potential
connections between entities and relations. For instance, HittER [22] leverages neighbor in-
formation extensively and designs a masking and prediction mechanism for source entities
to appropriately extract data from the structured Transformer module.

The recent advancement in large-scale pre-trained models in the natural language
processing field has inspired researchers to introduce text pre-training models such as
BERT [40] to graph embedding. This approach leverages the text descriptions of entities to
represent their embeddings, which enhances their semantic information and expressive
ability. For example, MTL-KGC [21] introduces an effective multi-task learning method
aimed at overcoming the limitations of BERT in the KG domain. By combining relation
prediction and correlation sorting tasks with target link prediction, the method achieves
stronger performance. StAR [41], on the other hand, proposes a structure-enhanced text
representation learning framework for effective KG completion. PKGC [42] discusses the
issue of the improper use of pre-trained language models in KG completion, proposing
to transform each triplet and its supporting information into natural prompt sentences
and further input them into pre-trained language models for classification. More recently,
SimKGC [43] adopted a dual-encoder architecture utilizing two parallel BERT modules
to model head-entity-relation combinations and tail entities. The model leverages three
negative sampling mechanisms and introduces the InfoNCE loss function to make use of
comparative learning. KGLM [44] generates a corpus by converting triples in the KG into
text sequences, continuing to pre-train language models that have already been pre-trained
on other large natural language corpora, and enhancing the model by adding additional
entity/relation-type embedding layers to better understand the underlying graph structure.

In fact, deep-learning-based models lack prior rules of feature construction, resulting
in lower efficiency in utilizing triples compared to machine-learning-based models. As a
result, deep-learning-based models require significant amounts of knowledge triples to
learn effective feature construction methods.

The RiQ-KGC proposed in this paper is a deep-learning-based model that integrates
geometric information into a new hierarchical Transformer network architecture. It embeds
entities into quaternion space and generalizes the rotation between entities using attention
mechanism and innovative relation instantiation methods. With regard to embedding
complex relations, RiQ-KGC can alleviate the associated difficulties better than machine-
learning-based models. Additionally, compared to deep-learning-based models, RiQ-KGC
demonstrates more efficient learning capabilities. We evaluated the performance by testing
its ability to detect missing entities in triples using link prediction as a downstream task.
Our empirical analysis shows that the model is significantly more competitive compared to
previous state-of-the-art models.

3. Methodology

In this section, we provide a detailed description of the RiQ-KGC model, which is
shown in Figure 1. RiQ-KGC is composed of three functional modules, namely relation
instantiation, quaternion space rotation, and geometric decoding. The relation instantiation
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module is utilized to localize the relations and make them entity-specific representations.
The quaternion space rotation module rotates the entity in quaternion space through the
instantiated relation to obtain geometric information. The geometric decoding module
analyzes the information obtained from the above two modules. Its output compares the
similarity with each entity in the quaternion space, and the entity with the highest score
is considered the target result for the triple. Starting with the problem definition of link
prediction, we will describe the working mechanism of each module of RiQ-KGC. For ease
of comprehension, the primary notations relevant to this paper are enumerated in Table 1.

Figure 1. General architecture of RiQ-KGC, which includes three modules: Relation Instantiation,
Quaternion Space Rotation, and Geometric Decoding.

Table 1. Notations used in this paper.

Symbol Description

h, r, t Head entity, relation, and tail entity in a KG triple
eh, er, et Embeddings of h, r, and t, respectively
es Embeddings of the source entity in a given incomplete triple
e′s Embeddings of the predicted entity obtained by quaternion transform
esec, ethr, e f or Embeddings of the second-hop, third-hop, and fourth-hop neighbors
e f s, e f r Embeddings of the first-hop neighbor’s entity and relation
CLS0, CLS1, CLS f , CLSout Different flag vectors
CLS′

0, CLS′
1, CLS′

f , CLS′
out Output of CLS0, CLS1, CLS f , and CLSout

Tr A multi-head Transformer for relation instantiation
Tn A multi-head Transformer for quaternion space rotation
Tm A multi-head Transformer for geometric decoding

3.1. Quaternion for Link Prediction

The KG consists of a set of entities E and a set of relations R, which are stored in
the database as a series of triples (h, r, t) ⊆ E × R × E, where h ∈ E and t ∈ E are the
head and tail entities in the triples, respectively, and r ∈ R are the relations in the triples.
Each triple represents a fact in the KG, indicating that the head entity is connected to the
tail entity by the relation, which can be denoted as h r→ t . To better express the semantic
meaning of entities and relations, triples in the graph embedding problem are represented
as a combination of three d-dimensional vectors (eh, er, et), where eh ∈ Ed and et ∈ Ed

denote the embedding of the head and tail entities, respectively, and er ∈ Rd denotes
the embedding of the relations. The link prediction task aims to discover the missing
links between entities in the KG and is therefore considered to play an important role in
KG completion.

Each triple is assigned a score, which represents the likelihood that the triple is a true
fact. Higher scores indicate that the triple is closer to the true fact. The essence of link
prediction is to construct a scoring function that accurately expresses the degree of truth.
Given an incomplete triple (eh, er, ?) or (?, er, et), we need to find the correct head or tail
entity. In this paper, we calculate the score as
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et = arg max
i∈E

ϕ(es, er, ei) (1)

where the known entity in the triple is referred to as the source entity es and the entity to be
predicted is called the target entity et . Following Lacroix [45], we unify the prediction tasks
as (es, er, et), where es can be either the head entity or the tail entity in the triple, and two
different sets of er are used to distinguish between the head entity prediction task and the
tail entity prediction task. We initialize ne vectors to represent entities and 2nr vectors to
represent relations for the datasets containing ne entities and nr relations.

In RiQ-KGC, entities are distributed in quaternion space, and relations are represented
as transformation patterns of the entities. Quaternion is a hyper-complex system introduced
by Hamilton (Holland, OH, USA). A quaternion Q consists of a scalar q0 and a set of vectors
q = (q1, q2, q3), which can be represented as Q = q0 + q = q0 + q1i + q2 j + q3k, where i, j,
and k denote the unit vectors on the x-, y-, and z-axis, respectively. They satisfy i2 = j2 =
k2 = i · j · k = −1, so that a quaternion can be represented as a quaternion (q0, q1, q2, q3).
In RiQ-KGC, both the entity embedding es = (es0, es1, es2, es3) and the relation embedding
er = (er0, er1, er2, er3) consist of four parts. The dimension of each part is d/4, while the
embedding of entities and relations is still represented using d-dimensional vectors.

Quaternions can express ideal parametric smooth rotations that are robust to noise
and perturbations. Additionally, a quaternion is able to represent simultaneous rotations
on three axes, unlike Eulerian rotation which rotates in a fixed order and can potentially
lead to gimbal lock. Zhang [23] demonstrated the advantages of using a quaternion in link
prediction, as it possesses similar properties to complex rotations, including the ability
to model symmetry, anti-symmetry, and inversion. Furthermore, compared to complex
rotation, which only allows a single plane of rotation, a quaternion has two planes and thus
provides more degrees of freedom. In the traditional embedding method using quaternion,
the relation is represented as a quaternion that describes a rotation pattern. Meanwhile,
a source entity can be rotated by the relation using the Hamilton product (quaternion
multiplication) as

e′s = es ⊗ er

= (es0er0 − es1er1 − es2er2 − es3er3)

+ (es0er1 + es1er0 + es2er3 − es3er2)i

+ (es0er2 − es1er3 + es2er0 + es3er1)j

+ (es0er3 + es1er2 − es2er1 + es3er0)k

(2)

This method enables interactions between different parts of the quaternion, leading to
richer expressive power.

For link prediction, the similarity between the resulting vector e′s obtained after rotating
es and the target entity et is commonly used as a scoring function to evaluate the validity of
a triple. The similarity between the two entities can be measured by computing the inner
product of the corresponding quaternions as

ϕ(es, er, e′s) = e′s · et

= ⟨e′s0, et0⟩+ ⟨e′s1, et1⟩+ ⟨e′s2, et2⟩+ ⟨e′s3, et3⟩
(3)

The traditional method of quaternion embedding imposes a strict constraint on the
embedding of entities. Specifically, it expects e′s to be equal to the et in the triple, which
maximizes the objective function ϕ(es, er, e′s). Nevertheless, in reality, each entity might be
rotated by numerous other entities through different relations, and the constraint imposed
by numerous neighboring entities can lead to a Pareto optimal scenario for the final
embedding position of the entity. In such a scenario, the objective is to ensure that each true
triple containing a score is as high as possible, rather than aiming to make each of them
achieve the highest score. However, this constraint can have a significant impact on the
model performance, particularly when the entities are more densely distributed. Figure 2
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shows how RiQ-KGC leverages a large number of parameters to establish a mapping
relation between e′s and et, enabling the deep learning network to capitalize on its powerful
fitting ability, while still retaining the interpretability advantages of the geometric approach.
Additionally, we utilize Transformer to incorporate contextual information and enable the
model to more accurately capture the entity’s information with the increase in knowledge.

se

re

'
se

 quaternion rotation

m
apping

te
neighbor space of es  

direction

Figure 2. Visualization process of entity transformation.

3.2. Relation Instantiation

The expressiveness of relations is a critical factor in determining the effectiveness
of graph-embedding models. As relations represent patterns of transformation between
entities, they play a crucial role in the representation of geometric information. In most KGs,
the number of entities is significantly larger than the number of relations. For example,
the WN18RR [36] dataset contains 40,943 instances of entities with 93,003 triples, while
only 11 relations are given. As a result, each entity has only 11 geometric transformations,
even though the number of neighbors can be much higher. Instantiating relations to corre-
sponding entities can alleviate the m-to-1 problem in entities and the problem of complex
relations between them. In the following section, we will demonstrate the effectiveness of
the relation instantiation method in two different cases.

Case 1. Suppose that Hank, Ross, and Bruce are John’s father, mother, and uncle,
respectively, and that all three of them are doctors at the Johns Hopkins Hospital (JHP). We
can represent the relations between them using a relational rotation graph, as shown in
Figure 3a. The relations for father, mother, and uncle are different, and therefore their corre-
sponding embedding positions are also different. However, the Work_ f or relation forces
JHP to be in three potential embedding positions simultaneously, which is not possible.

Figure 3b shows that the Work_ f or relation can represent different rotations after
the relation instantiation, and thus the embedding position of JHP can be accurately
represented. This illustrates how relation instantiation can alleviate the m-to-1 problem.
The process of relation instantiation can be seen as a form of “reverse clustering”, which
prevents similar entities from being embedded in close proximity due to m-to-1 relations.
This approach enhances the model’s ability to distinguish and accurately classify the
hardest negative samples.
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John Ross

Hank

Bruce

JHP?

JHP?

JHP?

Father
Mother
Uncle
Work for

John Ross

Hank

Bruce

JHP

(a) (b)

Figure 3. M-to-1 relation representation of entities. Subfigure (a) shows the inaccurate expression
of a single relation pattern in M-to-1 relations, while subfigure (b) improves this situation through
relation instantiation method. The arrows in different colors indicate the different rotation between
entities, with solid lines representing the determined rotation process and dashed lines representing
the indeterminate rotation process.

Case 2. As shown in Figure 4a, when John grows up and becomes a doctor at JHP,
Hank is not only his father but also his colleague. However, since father and colleague
are represented by two different relations that correspond to different rotations, an error
can occur if Hank is assigned two possible embedding positions simultaneously. One
potential approach to address this issue involves making two relations represent the same
rotation, which can uniquely position Hank, albeit in a way that is not equivalent in the
physical world.

Figure 4b illustrates how two relations can be used to express the rotation from John
to Hank using different rotations, without affecting other entities when the relations are
applied after the relation instantiation. This approach enables us to uniquely position Hank
and resolve the issue of having two possible embedding positions simultaneously.

John

Hank?

Father
Colleague
Work for

(a) (b)

Hank?

JHP?

JHP?

JHP?

Hank

JHP

John

Figure 4. Representation of complex relations between entities. Subfigure (a) shows the inaccurate
expression of complex relations, while subfigure (b) improves this situation through relation instantia-
tion method. The arrows in different colors indicate the different rotation between entities, with solid
lines representing the determined rotation process and dashed lines representing the indeterminate
rotation process.

The contextual information of an entity can be reflected by considering its neighboring
entities in the KG, also known as “neighbors”. We designed a hierarchical Transformer
structure to enable relations to fully integrate the environmental information contained
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within a given entity’s neighbors. Our goal was to ensure that relations can have different
rotations in different environmental contexts. Figure 5 shows the specific construction of
the relation instantiation module. In relation instantiation, we select a significant number
of second-hop, third-hop, and fourth-hop neighbors, represented by esec, ethr, and e f or,
to provide contextual information for the source entity. The nth-hop neighbors refer to
the nodes that the source entity can reach through n transformations of relations. In this
context, each transformation of the source entity to the tail entity through a relation in the
triple is considered a first-hop. Neighbors with smaller hop counts, such as 1-hop and
2-hop neighbors, have a closer relationship with the source entity. They can directly reflect
relevant information about the source entity. On the other hand, neighbors with larger hop
counts, such as 3-hop and 4-hop neighbors, can provide additional information by roughly
reflecting the scene where the source entity is located. It is important to note that we do not
use the relations of these neighboring triples, as the size of the relation set R is significantly
smaller than the number of neighboring triples we will select. As a result, these relations
do not contribute to the feature representation of the source entity.


Multi-Head
Attention8-Head

Attention
X

Q

K

V

Drop and Norm ... ...

Feed-Forward Layer

Drop and Norm


Relation Instantiation Module

'
0CLS
'
1CLS

0CLS
1CLS

se
re

...sece

...thre

...fore
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Multi-head Transformer Tr×3  layers

Figure 5. Architecture of relation instantiation module.

Then, we obtain three 1 × d context vectors by averaging the representations of esec,
ethr, and e f or. These context vectors are then inputted into the multi-headed Transformer
Tr along with the source entity es, the relation er, and the two flag vectors, CLS0 and CLS1.
The resulting two relation components that are obtained via Tr are represented by CLS′

0 and
CLS′

1, which represent the instantiation results of the relation from different perspectives.
Using multiple relation components is intended to convey more contextual information
and to help balance the weight of information across multi-hop neighbors during decoding.

The multi-head Transformer consists of a sub-layer that comprises a multi-head at-
tention network connected in series with a sub-layer of a feed-forward network. The two
sub-layers are connected by a connection layer that includes residual connections, dropout,
and normalization operations.

3.3. Quaternion Space Rotation

Figure 6 shows the specific construction of the Quaternion space rotation module. We
combined the outputs CLS′

0 and CLS′
1 with er to obtain a relation instantiation matrix. We

performed a Hamilton product of es with each of the three vectors in this matrix, resulting
in a quaternion rotation of the source entity from three different angles and producing a
quaternion matrix Mq as

Mq = concat(es ⊗ er, es ⊗ CLS′
0, es ⊗ CLS′

1) (4)

Mq represents multi-hop neighbor information of the source entity, capturing a coarse-
grained contextual situation. Meanwhile, fine-grained neighbor information is derived
from the first-hop neighbors of the source entity. To integrate and unify these different levels
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of contextual information, we link the first-hop neighbor information with Mq. The first-
hop neighbors serve as intermediate information that are used to explicitly establish the
association between the source entity and its context, thus creating hierarchical contextual
information. Inspired by Chen [22], we utilize a multi-head Transformer Tn to integrate the
first-hop neighbor entities e f s and the relations e f r. The source entity and relation, es and
er, respectively, are also used as input to ensure that the information of the triple can be
fully processed. Thus, each input group consists of the flag vector CLSn, together with es or
e f s and er or e f r, which are sequentially fed into Tn. The first-hop neighbor information is
combined through Tn using CLS f , and their corresponding outputs CLS′

f are concatenated
and stored as the neighbor matrix Mn as

Mn = concat(
f+1

∑
i=1

CLS′
f i) (5)

where f is the number of first-hop neighbors. To ensure that the source entity information
is not overwhelmed by excessive neighbor information, es in Tn is replaced or masked by
a random entity with a certain probability, encouraging the model to recover the source
entity later.

Mn conveys the source entity information in a fine-grained environment, while Mq
conveys the target entity information produced by rotation in a coarse-grained environment.
We combine Mn with Mq to produce a mixed matrix Mm as

Mm = concat(CLSout, Mn, Mq) (6)

Consequently, it covers the complete process of quaternion rotation under the influence of
contextual relation. We insert a flag vector CLSout onto the first line of Mm, which is subsequently
employed in geometric decoding to resolve the representation of the target entity.

concat
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Mixed
matrix Mm

...

outCLSfCLS
se
re

fse
fre

...


Multi-Head
Attention8-Head

Attention
X

Q

K

V

Drop and Norm ... ...

...

'
fCLS

Feed-Forward Layer

Drop and Norm


Instantiation for 
Relation

Quaternion
matrix Mq

Quaternion Space Rotation Module

'
0CLS
'
1CLS

re

se



Multi-head Transformer Tn ×3 layers

Figure 6. Architecture of quaternion space rotation module.

3.4. Geometric Decoding

As shown in Figure 7, Mm is processed by a multi-head Transformer Tm for decoding.
The first two lines of the resulting outputs, CLS′

out and epred, are applied for resolving
the representation of the target entity and the degree of entity reduction, respectively.
To provide the model with additional fitting space, CLS′

out is finally inputted into a linear
feed-forward network as

eo = W × CLS′
out + b (7)
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where W and b correspond to the weight and bias, and the output eo represents the target
entity. Subsequently, we compute the similarity with each i ∈ E through dot product as

ϕ(es, er, ei) = eo · ei (8)

The similarity serves as the score of the triple, which can be perceived as a confidence
level when the tail entity of the triple corresponds to ei. The higher the score of the triple,
the more likely it is that the entity is the target entity and is therefore appropriately predicted.


Multi-Head
Attention8-Head

Attention
X

Q

K

V

Drop and Norm ... ...

Feed-Forward Layer

Drop and Norm


Mixed
matrix Mm

...

outCLS

prede

'
outCLS

... ...

Feed-Forward Layer

ie

Geometric Decoding Module

Multi-head Transformer Tm× 6 layers

DotProduct

DotProduct

srtY

sY

outLoss

predLoss

Cross-
Entropy

Cross-
Entropy

Figure 7. Architecture of geometric decoding module.

During the training process, the score is established as the probability distribution of
the correct entity based on the softmax activation function. This probability distribution is
implemented to calculate the cross-entropy loss as

Lossout = −
E

∑
i=1

Ysrt · softmaxϕ(es, er, ei) (9)

where Ysrt ∈ {0, 1} and Ysrt is 1 if i is the true target entity.
To avoid overemphasizing neighbor information and disregarding source entity in-

formation during decoding, we use epred to reduce the impact of the source entity. This is
achieved by calculating similarity through the dot product for each i ∈ E. The degree of
reduction in epred to the source entities is measured using cross-entropy loss as

Losspred = −
E

∑
i=1

Ys · softmax(epred, ei) (10)

where Ys ∈ {0, 1} and Ys is 1 if i is the source entity.
We obtain the final loss value by adding the two loss values with weights as

Loss = αLossout + βLosspred + γ∥E∥2 (11)

Additionally, we apply entity regularization to deter over-fitting and to generalize the
embedding location of the entity.

4. Experiments and Numerical Results

This section presents detailed comparative experiments, exploring the competitive
ability of RiQ-KGC for link prediction. We provide an enumeration of the application and
experimental configuration of the datasets. We also conducted ablation experiments to
evaluate the ability of each model component to contribute to performance. Furthermore,
we investigate the model’s capacity to capture complex relations.



Appl. Sci. 2024, 14, 3221 12 of 20

4.1. Experimental Setup
4.1.1. Datasets

We utilized a diverse set of four datasets, as outlined in Table 2. These datasets were
specifically chosen due to their distinct scales, enabling a comprehensive demonstration of
the model’s capabilities across various scenarios.

FB15K-237 [46] is a subset of the widely used Freebase [47]. Its entities consist of those
mentioned more frequently than 100 times in FreeBase entities. To avoid information leakage
caused by test data in the training set, FB15K-237 filters the datasets. Similarly, WN18RR is a
subset of WordNet that avoids the same issue by selecting entities exclusively from WordNet.
Evaluating models on both FB15K-237 and WN18RR could be beneficial for comparing the
performance comprehensively, which are widely used in link prediction tasks.

Table 2. Dataset settings.

Datasets |E| |R| Training Validation Test

FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3034 3134
CoDEx-M 17,050 51 185,584 10,310 10,311
CoDEx-L 77,951 69 551,193 30,622 30,622

The CoDEx-M and CoDEx-L datasets are subsets derived from CoDEx [48], a collection
of KG completion datasets obtained from Wikidata and Wikipedia. CoDEx provides
a broader and more diverse range of content, resulting in richer relations and a more
balanced distribution of relation types. Furthermore, there are distinct characteristics that
differentiate CoDEx-M from CoDEx-L in terms of relation types. CoDEx-M consists of
a higher proportion of symmetric relations, while CoDEx-L contains a larger number of
composition relations. Evaluating models on both the CoDEx-M and CoDEx-L datasets
offers valuable insights into their performance in challenging and complex scenarios.

4.1.2. Evaluation Metrics

In link prediction, the aim is to rank all entities in the triple according to their probabil-
ity of being the correct target. The model’s performance is evaluated based on the ranking
position of the actual target entity. To assess the model’s overall recall, we employed Mean
Reciprocal Rank (MRR), which measures the average proportion of correctly ranked entities
across all test cases. We report the MRR and ranking results in a filtered setting, where
entities other than the ground-truth target are filtered out.

4.1.3. Baselines

For the FB15K237 and WN18RR datasets, we carefully selected models from different
families between 2015 and 2023, whose results were taken from their original paper, to
serve as baselines. In the machine-learning-based model family, we chose classical models
such as DisMult, RotatE, QuatE, MuRE, and MuRP. These models employ spatial geometric
embeddings and have been widely utilized in KG completion tasks. In the deep-learning-
based model family, we selected the classical convolutional neural network model ConvE,
as well as recent models including HypER, MTL-KGC, StAR, and KGLM. All of these
models utilize Transformer architectures, which have achieved state-of-the-art performance
and have significantly contributed to the advancement of KG link prediction.

The aforementioned models have not been experimentally recorded on the CoDEx-M
and CoDEx-L datasets. Therefore, we selected models and experimental results from the
original CoDEx article, namely TransE, RESCAL, ComplEx, ConvE, and TuckER. This choice
was made to ensure consistency with previous research and to maintain comparability by
using the same benchmarks for evaluation.
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4.1.4. Implementation Details

Our code was implemented using the PyTorch (Version 1.13.1, Facebook AI Research,
Menlo Park, CA, USA) [49] framework and was built upon the LibKGC [50] library. We
utilized a multi-head Transformer architecture in both Tn and Tr, which consists of three
multi-head Transformers, and Tm, which contains six multi-head Transformers. Each multi-
head Transformer consists of eight heads with a feed-forward network dimension of 1280,
and the hidden layer dropout rate is set to 0.1.

To train the datasets, we initialized entity- and relation-embedding dimensions to
320 and established a batch size of 256 samples. Table 3 displays the detailed training
parameter configurations for the four datasets, while the determination of the parameters
relating to the number of multi-hop neighbors was based on the guidelines presented in
Section 4.4. We employed a grid search strategy to obtain the optimal configuration of
hyperparameters, where α, β, and γ were searched within the set {0.1, 0.5, 0.8, 1}. Finally,
the optimal parameters for α, β, and γ were determined to be 1, 0.8, and 0.1, respectively.
We applied the Adamax optimization strategy [51] with a learning rate set to 0.01. The rate
started at 0, linearly increased during the first 10% of epochs, and linearly decreased
in subsequent epochs. Our experiments ran on RTX 4060 8G graphics cards using the
above configuration.

Table 3. Settings of the number of multi-hop neighbors.

Datasets 1-Hop 1-Hop Dropout 2-Hop 3-Hop 4-Hop

FB15K-237 40 0.3 50 150 500
WN18RR 30 0.5 30 100 250
CoDEx-M 40 0.3 50 150 500
CoDEx-L 20 0.5 30 100 250

After training RiQ-KGC, we performed additional fine-tuning steps on the model.
Firstly, we fixed the entity- and relation-embedding representation and fine-tuned the
model with a learning rate of 0.003. Subsequently, we fixed all Transformer module
parameters and fine-tuned only the final linear layer using a learning rate of 0.001.

4.2. Comparison with Existing Methods

Table 4 presents a comparison between RiQ-KGC and the baseline models for the
FB15K-237 and WN18RR datasets. The results show that RiQ-KGC demonstrates notable
advantages in terms of the MRR, H@1, and H@3 indicators for both datasets. Notably,
RiQ-KGC exhibited a remarkable performance improvement of 1.5% in the MRR indicator
for the WN18RR dataset. This highlights RiQ-KGC’s superior precision in identifying
target entities. However, it should be noted that RiQ-KGC under-performed compared to
StAR and KGLM in the H@10 indicator. While the BERT-based models excel in extracting
extensive entity feature information from textual descriptions, thereby enhancing rough
recall rates, the presence of noise stemming from these descriptions poses a challenge to
achieving precise recall. The relation instantiation and quaternion transform mechanism
employed in RiQ-KGC contribute to a sparser distribution between entities, facilitating
the precise identification of relevant entities. This characteristic grants RiQ-KGC a notable
advantage over non-BERT-based models in H@10.

Table 5 presents a performance comparison between RiQ-KGC and the baseline model
on CoDEx-M and CoDEx-L. As shown in Table 5, RiQ-KGC outperforms the baseline model
in all evaluation metrics, particularly exhibiting a remarkable performance improvement of
0.8% and 1.8% in the H@10 indicator, for the CoDEx-M and CoDEx-L datasets, respectively,
where it demonstrates the greatest advantage. This suggests that RiQ-KGC can maintain good
recall performance even in challenging scenarios and, as a result, outperform other models.
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Table 4. Comparison of model results on FB15K-237 and WN18RR datasets, where the bold font
represents the optimal result and the underlined font represents the sub-optimal result. The results of
these baselines are taken from their original article.

FB15K-237 WN18RR

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DisMult [27] 0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490
RotatE [20] 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
QuatE [23] 0.311 0.221 0.342 0.495 0.481 0.436 0.500 0.564
MuRP [33] 0.335 0.243 0.367 0.518 0.481 0.440 0.495 0.566
MuRE [33] 0.336 0.245 0.370 0.521 0.475 0.436 0.487 0.554
ConvE [36] 0.325 0.237 0.356 0.501 0.430 0.400 0.440 0.520
HypER [37] 0.341 0.252 0.376 0.520 0.465 0.436 0.477 0.522

MTL-KGC [21] 0.267 0.172 0.298 0.458 0.331 0.203 0.383 0.597
StAR [41] 0.296 0.205 0.322 0.482 0.401 0.243 0.491 0.709

KGLM [44] 0.289 0.200 0.314 0.468 0.467 0.330 0.538 0.741

RiQ-KGC (ours) 0.346 0.257 0.378 0.524 0.496 0.457 0.509 0.572

Table 5. Comparison of model results on the CoDEx-M and CoDEx-L datasets, where the bold font
represents the optimal result and the underlined font represents the sub-optimal result. The results of
these baselines are taken from the original article of the CoDEx datasets.

FB15K-237 WN18RR

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE [19] 0.303 0.223 0.336 0.454 0.187 0.116 0.218 0.317
RESCAL [29] 0.317 0.244 0.347 0.456 0.304 0.242 0.331 0.419
ComplEx [28] 0.337 0.262 0.370 0.476 0.294 0.237 0.318 0.400

ConvE [36] 0.318 0.239 0.355 0.464 0.303 0.240 0.330 0.420
TuckER [45] 0.328 0.259 0.360 0.458 0.309 0.244 0.339 0.430

RiQ-KGC (ours) 0.339 0.262 0.368 0.484 0.313 0.242 0.340 0.448

4.3. Parameter Evaluation

We hypothesized that the quantity of multi-hop neighbor information may have an
impact on relation instantiation. Figure 8 illustrates the impact of the number of one-hop
neighbors (left figure) and the number of multi-hop neighbors (right figure) on model
performance. For the one-hop neighbors, the number of neighbors significantly influences
the model’s performance, and the optimal number varies across different datasets. The
FB15K237 and CoDEx-M datasets exhibit optimal performance with 40 one-hop neighbors,
while the WN18RR and CoDEx-L datasets perform best with 30 and 20 one-hop neighbors,
respectively. The experimental results across the four datasets indicate that the increase in
the number of one-hop neighbors correlates positively with the model’s performance, par-
ticularly when the number of neighbors is small. However, beyond a certain performance
threshold, the additional increase in one-hop neighbors no longer contributes significantly
to the model’s performance.

For the multi-hop neighbors, we conducted further experiments with varying multi-
hop neighbor settings, as listed in Table 6. For the multi-hop neighbors, their influence on
the model’s performance was not substantial. This is attributed to the fact that the embed-
dings of multi-hop neighbors are indirectly utilized in the instantiation for relation modules
through an average pooling operation, which is not directly employed in constructing the
features of the target entity. In terms of specific datasets, FB15K237 and CoDEx-L achieved
their best performance in Setting-2, whereas WN18RR and CoDEx-M attained their optimal
performance in Setting-3.
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Figure 8. Impact of multi-hop neighbors on four datasets.

Table 6. Settings of multi-hop neighbors.

Second-Hop Third-Hop Fourth-Hop

Setting-1 10 25 60
Setting-2 30 100 250
Setting-3 50 150 500
Setting-4 80 200 750

4.4. Ablation Studies

We conducted ablation experiments on all four datasets to assess the contribution of
each module in RiQ-KGC. Apart from the complete model, we designed four additional
ablation models. “RiQ-KGC w/o allN” removes all neighboring inputs in each module.
“RiQ-KGC-w/o-234N” excludes multi-hop neighbor inputs in the instantiation for the rela-
tion module. “RiQ-KGC-w/o-Q” eliminates the quaternion rotation step in the quaternion
space rotation module and replaces the corresponding input position with the source entity.
“RiQ-KGC-w/o-R” discards the instantiation for the relation module and utilizes original
relation to rotate the source entity.

Figure 9 presents the performance of each ablation model on the four datasets using
the MRR metric, which can show the overall recall rate of samples. The most significant
conclusion is that “RiQ-KGC” achieved the best performance, while “RiQ-KGC w/o all
N” exhibited the worst performance, indicating the crucial role of neighboring nodes.
The efficacy of “RiQ-KGC-w/o-R” was generally poor, highlighting the importance of
relation instantiation methods. “RiQ-KGC-w/o-234N” outperformed “RiQ-KGC-w/o-R”
in all datasets, demonstrating that multi-hop neighbor information enhances the relation
instantiation method. The impact of “RiQ-KGC-w/o-Q” is highly uncertain because
the proportion of complex relations in the four datasets varied and quaternion rotation
patterns have a greater advantage when applied to datasets with a higher ratio of one-to-
one relations.
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Figure 9. Ablation study on each component.

4.5. Modeling Capability for Complex Relation

To better demonstrate the model’s ability to handle complex relations, we conducted
visual experiments to separately evaluate the modeling speed and effectiveness of the abla-
tion model for four types of complex relations. Based on Figure 10, the four graphs in each
column correspond to the modeling process of the ablation model for four distinct complex
relation types on the same datasets. Meanwhile, the four graphs in each row provide a
comparison of modeling for the same complex relation type across the four datasets.

From the results, it is evident that there is no significant difference in the modeling
speed and effectiveness of each ablation model for the one-to-one and m-to-n relations,
indicating that each ablation model does not have a specialized ability to handle these two
complex relations. However, there are significant differences in the modeling processes
of one-to-n and m-to-one relations among different ablation models. Specifically, “RiQ-
KGC” and “RiQ-KGC w/o-Q” usually perform better, whereas “RiQ-KGC w/o-234N” and
“RiQ-KGC w/o-R” usually perform worse, and “RiQ-KGC w/o-all-N” is the worst in all
scenarios. This demonstrates the targeted contribution ability of “RiQ-KGC-w/o-234N” and
“RiQ-KGC-w/o-R” to complex relationships, which is consistent with the theory in Section 3.2.

Additionally, the one-hop neighbor was found to have a strong overall contribution
ability to the model, consistent with the results of the ablation experiment.
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Figure 10. Comparison of modeling capabilities for complex relations on four datasets. All subplots
share the same legends. To avoid cluttering the layout, we set the legends in the bottom right corner
of the last subplot.

5. Conclusions

The present study proposes a novel knowledge-graph (KG)-embedding framework
called RiQ-KGC, which utilizes geometric rotation information from the quaternion space
and integrates multi-hop neighbor information into relation representation using a relation
instantiation method. The proposed model builds upon the strengths of quaternion space
embedding by enabling the representation of symmetric, anti-symmetric, and inverse rela-
tions between entities and enhancing the ability to represent complex relations. Moreover,
RiQ-KGC learns intrinsic connections in KGs by applying a large number of parameters
and strengthening the association between rotation results and target entities via parameter
mapping. Consequently, entities and relations can be more accurately expressed.

In the future, we aim to explore more accurate and efficient methods of representing
neighbor information to support more powerful relation instantiation methods. Entity
transformation via relations is a classical notion in graph embedding and integrating entity
transformation with advanced deep learning frameworks is a promising direction for future
research. We will continue exploring methods to represent entity transformation in deep
learning models with the goal of building more advanced and effective embedding models
for link prediction.
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