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Abstract: Knowledge distillation based on the features from the penultimate layer allows the student
(lightweight model) to efficiently mimic the internal feature outputs of the teacher (high-capacity
model). However, the training data may not conform to the ground-truth distribution of images
in terms of classes and features. We propose two knowledge distillation algorithms to solve the
above problem from the directions of fitting the ground-truth distribution of classes and fitting the
ground-truth distribution of features, respectively. The former uses teacher labels to supervise student
classification output instead of dataset labels, while the latter designs feature temperature parameters
to correct teachers’ abnormal feature distribution output. We conducted knowledge distillation exper-
iments on the ImageNet-2012 and Cifar-100 datasets using seven sets of homogeneous models and six
sets of heterogeneous models. The experimental results show that our proposed algorithms improve
the performance of penultimate layer feature knowledge distillation and outperform other existing
knowledge distillation methods in terms of classification performance and generalization ability.

Keywords: knowledge distillation; ground-truth distribution; image classification

1. Introduction

Deep learning neural networks play a significant role in computer vision applications such
as image classification [1–3], object detection [4–6], and semantic segmentation [7–9]. How-
ever, since computational resources are often limited in mobile scenarios, high-accuracy
models with high computational loads are unsuitable for these applications. Furthermore,
lightweight models may not meet the performance and accuracy requirements of practical
applications. To address this issue, Hinton et al. [10] introduced knowledge distillation
(KD), which involves supervising a student network’s training by extracting logits output
from the teacher network. Throughout the development of knowledge distillation, there
has been considerable focus on feature distillation [11,12]. However, most feature distilla-
tion is based on middle-layer features in neural networks, with little emphasis on utilizing
the features from the penultimate layer.

Penultimate layer feature knowledge distillation transfers knowledge by extracting the
penultimate layer feature representation of the teacher model and minimizing the distance
between it and the student’s penultimate layer features. In this way, students learn the
abstract features contained in the teacher’s model. Logit distillation aims to make students
learn the ability to map and categorize feature maps. In comparison, the penultimate layer
of feature distillation focuses more on learning the feature map representation ability. In
contrast to knowledge distillation using intermediate layer features, the penultimate layer
features are obtained through multi-layer transformations of neural networks, which usu-
ally have a higher level of abstraction and semantic information. Recently, Wang et al. [13]
used the penultimate layer outputs as distillation knowledge, combining locality-sensitive
hashing (LSH) loss with mean square loss, achieving the ability to fit both feature directions
and magnitudes effectively.
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LSH [13] is an effective algorithm for knowledge distillation that can match features
in the penultimate layer of teacher and student. However, some important considerations
must be addressed.

Firstly, due to the visual similarity between images, one-hot labels cannot accurately
describe the ground-truth distribution based on classes [14]. We use an example of a binary
classification task of tigers and lions. The training data for tigers in the dataset are labelled
as (1,0), indicating that these training data are a tigers. However, the label for the ground-
truth distribution of images based on classes is (0.7,0.3). The reason for this difference
is that the category’s ground-truth distribution consists of feature correlations. Because
there is a partial visual similarity between lions and tigers, a small number of category
label values are assigned to the lion category. In the paper [14], the difference between the
dataset labels and the image’s ground-truth distribution of classes was considered as label
noise. Incorrect labels could potentially have a negative impact on training [15].

Secondly, the penultimate layer feature outputs of some pre-trained teacher models
(such as vgg13, resnet32×4, etc.) are generally lower. These were found in the penultimate
layer feature distillation experiments. As shown in Figure 1, we extracted some of the
feature values from the penultimate layer output of the model from the pre-trained resnet56,
the pre-trained vgg13, and the untrained resnet20. The distribution of feature values in the
figure shows that the pre-trained resnet56 discriminates feature values between important
and non-important features. Because resnet20 is not trained, it is difficult to distinguish
between important and non-important features, so it assigns lower eigenvalues to each
feature. The pre-trained vgg13 can distinguish between important and non-important
features (important features have higher feature values than non-important features),
but the overall feature differentiation is small. Because of the lack of distinctiveness in
penultimate layer feature outputs, it cannot accurately represent the ground-truth feature
distribution of images.
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Knowledge distillation is a compression algorithm in which students learn the ground-
truth distribution of images in real task scenarios by fitting the teacher’s output. The reason
why this type of learning works is that the teacher can learn about the task in advance and
output data that more closely matches the ground-truth distribution to provide knowledge
to the students. These learning data do not necessarily conform to the true distribution
for the reasons mentioned above. This discrepancy makes it difficult for students to learn
more effectively, thus reducing the performance of knowledge distillation. To tackle these
challenges, the main contributions can be summarized as follows:

• We propose a knowledge distillation algorithm based on fitting the ground-truth
distributions of classes (locality-sensitive hashing—teacher label, LSH-TL), which
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uses the teacher’s classification labels instead of one-hot labels to reduce the negative
impact on distillation caused by label noise between the ground-truth distribution
of classes and the dataset one-hot label. Experimental results on the CIFAR-100 and
ImageNet-2012 image classification datasets demonstrate that this method enhances
feature distillation at the penultimate layer;

• To address situations where the distribution of feature outputs at the penultimate
layer in some models is lower than the ground-truth feature distribution, we propose
a knowledge distillation algorithm based on fitting the ground-truth distributions of
features (locality-sensitive hashing—temperature, LSH-T), which enhances feature
mimicry by introducing the feature temperature. This improvement significantly
alleviates the issue of overly smooth feature outputs in teacher models. Extensive
experiments involving the distillation of various model groups demonstrate that this
approach outperforms other distillation methods.

• The rest of the paper is organized as follows: We review related work in Section 2.
Section 3 introduces our innovative approach. In Section 4, we report and analyze
experimental results to demonstrate the method’s effectiveness. Lastly, we summarize
our work in Section 5.

2. Related Work

The earliest source of knowledge in knowledge distillation is response-based.
Hinton et al. [10] involves applying Softmax to the classification outputs of the student and
teacher models to generate soft logits. Using the soft logits to calculate the KL-divergence
loss for knowledge transfer. Zhao et al. [16] introduced a decoupling and analysis approach
to KD. It separates logits into target and non-target classes, assigning greater weight to the
more informative non-target classes. This method can make more effective use of the logits
information of the teacher and further improve the performance of knowledge distillation
based on response.

Non-response-based knowledge distillation focuses on relationships between samples
or feature layers. Romero et al. [11] extended the knowledge distillation proposed by
Hinton and designed FitNets. It begins by using intermediate layer features of the teacher
model as the knowledge to be distilled. Zagoruyko et al. [17] proposed the improvement of
network performance through attention transfer (AT). Heo et al. [18] argued that distillation
supervision should not only be based on neuron activation values but should also consider
the neuron activation boundary (AB). Tung et al. [19] found that similar semantic input
will produce similar activation in a trained network and proposed similarity-preserving
(SP) knowledge distillation. Yim et al. [20] utilized the inner product between feature
layers to obtain the FSP matrix for knowledge distillation. Kim et al. [21] introduced
factors as an interpretable form of intermediate layer features to implement factor transfer
(FT). Tian et al. [12] proposed contrastive representation distillation (CRD) to bring the
student closer to the teacher on outputs of the same class while pushing them further
apart on outputs of different classes. Xu et al. [22] proposed self-supervised knowledge
distillation (SSKD) which designed a self-supervised module to identify hidden knowledge.
Wang et al. [13] combined the model’s penultimate layer outputs with a locality-sensitive
hashing algorithm for knowledge distillation, achieving excellent results on the majority of
distillation model groups.

The distillation knowledge used in KD [10] comes from the output of the model classi-
fication layer after Softmax. FitNet [11], AT [17], and AB [18] use distillation knowledge
from intermediate layers of the model. We observed that there has been limited research
focused on the model’s penultimate layer features. Our work is related to the LSH [13]
algorithm, which allows students to fit the feature output of the teacher’s penultimate
layer by designing a knowledge distillation algorithm based on location-sensitive hashing.
However, it did not further explore the potential feature learning ability of the model’s
penultimate layer. We improve distillation performance by mapping image classification
and feature output distributions to ground-truth distribution of images.
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3. Method

The overall framework is shown in Figure 2. For a given image data x, all images
are cropped to the same size via image preprocessing operations and fed into the teacher
backbone network and student backbone network respectively. Teachers usually refer
to complex networks that have been pre-trained and have a certain feature recognition
capability. Students refer to untrained, smaller, as well as lighter networks relative to
teachers. In the teacher and student backbone networks, the data undergo a layer-by-layer
feature extraction that captures the main information in the data and outputs a data matrix
in each layer. The data are processed through the backbone network and changed into a
one-dimensional matrix through the average pool (avgpool) layer, which outputs the fea-
tures of the penultimate layer. The teacher backbone network can extract features ft which
are the penultimate layer feature outputs of the teacher network. The student backbone
network also extracts the penultimate features fs and fits ft for knowledge distillation.

When conducting knowledge distillation using the model’s penultimate layer outputs,
especially in the case of heterogeneous model distillation, we encounter the issue of mis-
matched dimensions between the student’s feature dimension Ds and the teacher’s feature
dimension Dt. Therefore, a linear embedding layer f cls is added to complete the dimension
matching between teacher and student:

f cls = w f + b. (1)

w ∈ RDs×Dt and b ∈ RDt are the weight and bias parameters of the embedded layer
which are updated via loss backward in training. After the student backbone network
output enters f cls, it will output the student feature with dimension Dt.

The loss function used is as follows. Lmse is defined as the mean squared error loss:

Lmse( ft, fs) =
1

nD

n

∑
i=1

∥ ft(xi)− fs(xi)∥2
2 (2)

where n represents the number of samples. D denotes the feature dimension. x represents
input image data. ft(xi) and fs(xi), respectively, represent the penultimate layer feature
outputs of the teacher model and the student model for the ith image in the dataset.

LLSH is locality-sensitive hashing knowledge distillation:

LLSH = α(Llsh( ft, fs) + Lmse( ft, fs) + β1Lce. (3)

LLSH builds upon Lmse by introducing locality-sensitive hashing loss (Llsh). The cross-
entropy loss Lce is used as the classification loss. α and β1 are balancing weights. Llsh is
locality-sensitive hashing loss:

Llsh = − 1
nN

n

∑
i=1

N

∑
j=1

[
hj log pj + (1 − hj) log(1 − pj)

]
(4)

where h represents the teacher’s hash and p represents the student’s hash:

h = sign(WT ft + B), (5)

p = σ(WT fs + B). (6)

W is the weight sampled from the Gaussian distribution and B is the bias. Equation (5)
generates N hashes for each feature.

sign(x) =
{

1, i f x > 0
0, otherwise

(7)
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σ(x) =
1

1 + exp(−x)
(8)

LSH extracts the correctly classified teacher features through the sign function. The
calculation of the hash value can be implemented via the linear layer in the neural network.
The purpose is to match the hash of the student features with the hash of the teacher’s
correct classification features.

When the teacher and the student have completed their respective feature extraction,
the penultimate layers of features are mapped into a classifier equal in size to the number
of categories in the dataset. The distribution of image categories judged by the network is
the output in the classifier. The class with the largest category value obtained is the class to
which the network has judged this image to belong.

As shown in Figure 2. Based on LSH [13], we designed two different knowledge distil-
lation algorithms based on ground-truth distribution fitting of images. The two algorithms
are LSH-T and LSH-TL. LSH-T fits the ground-truth distribution of features, while LSH-TL
fits the ground-truth distribution of classes. Figure 2a illustrates the method for fitting
the ground-truth distribution of features (LSH-T). We address the overly smooth feature
distribution of the penultimate layer by introducing a feature temperature τ to correct the
penultimate layer feature output of the teacher. After the feature temperature treatment, the
penultimate layer feature output of the teacher obtains greater discriminability of features
and the feature distribution becomes sharper. In the process of distilling the penultimate
layer of feature knowledge with Llsh and Lmse, the teacher can provide students with more
significant feature relevance information; Figure 2b shows the fitting method of the ground-
truth distribution of classes (LSH-TL). The original LSH used dataset labels to supervise
student classifier outputs. We believe that there is a discrepancy between the dataset
labels and the ground-truth distribution of image classes. Because the teacher has been
pre-trained in the relevant task scenarios, the teacher can output category distributions that
are similar to the ground-truth distribution. So, we extract the teacher classifier output
to supervise the output of the student classifier without using the dataset labels. Such
supervision is more in line with the need for the penultimate layer of feature knowledge
distillation for fitting the ground-truth distribution.
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3.1. Fitting The Ground-Truth Distributions of Classes (LSH-TL)

Due to the visually similar features between images, one-hot labels cannot accurately
describe the ground-truth distribution of classes determined by features, as shown in
Figure 3. The model assigns values to classification categories based on the features. Be-
cause hamsters and mice share similarities, the one-hot labels only represent single values
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for categories, which cannot reflect the ground-truth distribution of classes. Teacher classi-
fication label output by the pre-training teacher is closer to the ground-truth distribution
of classes.

To solve this problem, we replaced the one-hot label with the teacher classification label.
Because the classification layer is below the penultimate layer, the student autonomously
learns the teacher’s classification output while mimicking the teacher’s penultimate layer
features. Therefore, learning the teacher classification label allows the student to focus
more on mimicking the feature.

We utilize the Ltl to supervise the student’s classification output with the teacher
classification label. Ltl is defined as follows:

pI(x) = Softmax(s(x)) =
exp(sI(x))

∑k exp(sk(x))
, (9)

Ltl = ∑
x∼Dx

C

∑
i=1

pI
t (x) log(pI

s(x)) (10)

where s(x) represents the score logits, I is the category index, x is the data sample, t and s
denote teacher and student, C is the total number of classes, and Dx indicates the dataset.

Replacing Lce with Ltl in LSH, β2 is the balancing weight of Ltl . The loss function of
LSH-TL is as follows:

LLSH−tl = α(Llsh( ft, fs) + Lmse( ft, fs)) + β2Ltl . (11)
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3.2. Fitting the Ground-Truth Distributions of Features (LSH-T)

When the distillation training stage is at epoch 0, the penultimate layer feature losses
between some distillation teacher–student groups are quite low, which is almost equal to
the feature loss value of some distillation teacher–student groups that have completed the
training. We show some examples in Figure 4. The penultimate layer feature losses between
the pre-trained teachers (vgg13, resnet32×4, and WRN-40-2) and untrained students are
significantly lower. On the contrary, the penultimate layer feature losses are relatively
normal when resnet110 and resnet56 are used as pre-training teachers. We believe that
overly low feature loss is harmful to feature distillation in the penultimate layer, which
limits the potential of feature mimicking.
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This phenomenon can be explained using Figure 5. In normal circumstances, features
that are more relevant to the image tend to receive higher feature values. In the real feature
distribution of images, feature A is the most important feature and feature B is the least
important feature. The pre-trained resnet110 includes feature recognition ability and can
assign appropriate feature values to each feature. Untrained resnet20’s feature recognition
ability is relatively low, and it is impossible to determine which features are important.
It assigns relatively average and lower feature values to all features. Therefore, when
resnet110 and resnet56 serve as teachers in Figure 5 they maintain a relatively high feature
loss when facing all students. In the penultimate layer of feature distillation, the student
gradually reduces feature loss by learning the feature recognition ability from the teacher.

In abnormal circumstances, the pre-trained vgg13 assigns low feature values to all fea-
tures, even though the feature value of the most important feature (A) remains the highest
compared to other features (B, C). However, the feature loss between teacher and student
remains low. This makes feature mimicking more difficult during the distillation process.

In order to solve the above problems, we introduce the feature temperature (τ) as a
corrective factor to improve the teacher’s feature output:

Lmse(τ ft, fs) =
1

nD

n

∑
i=1

∥∥∥∥τ ft(xi)− fs(xi)

∥∥∥∥2

2

. (12)

As shown in Figure 5. By introducing the feature temperature parameter, we can
enhance the distinguishability between important features and other features. Make the
overall feature distribution of the teacher closer to the ground-truth distribution of features
and release the potential of feature mimicking. The loss function of LSH-T is as follows:

LLSH−τ = α(Llsh(τ ft, fs) + Lmse(τ ft, fs)) + β1Lce. (13)

By introducing the feature temperature parameter, we widen the gap between the
feature values of important and non-important features. However, the relative importance
of features remains unchanged. Both the KD [10] temperature parameter and our feature
temperature parameter are designed to make the transmitted knowledge better match
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the ground-truth distribution of images. The reason for using distillation temperature is
that the teacher’s classified output is too absolute after Softmax. Low-probability classes
receive fewer weights, making it challenging to provide similar information for low-
probability classes during distillation. In contrast, our design of feature temperature aims
to address the issue of the teacher’s feature distribution being too flat, resulting in minimal
differences between the features represented by feature values. During the distillation
process, the teacher cannot provide distinguishing information between important and
non-important features. By applying the feature temperature parameter, we can reduce
the student’s attention to low-importance features and emphasize the matching of high-
importance features.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 16 
 

This phenomenon can be explained using Figure 5. In normal circumstances, features 
that are more relevant to the image tend to receive higher feature values. In the real feature 
distribution of images, feature A is the most important feature and feature B is the least 
important feature. The pre-trained resnet110 includes feature recognition ability and can 
assign appropriate feature values to each feature. Untrained resnet20′s feature recognition 
ability is relatively low, and it is impossible to determine which features are important. It 
assigns relatively average and lower feature values to all features. Therefore, when res-
net110 and resnet56 serve as teachers in Figure 5 they maintain a relatively high feature 
loss when facing all students. In the penultimate layer of feature distillation, the student 
gradually reduces feature loss by learning the feature recognition ability from the teacher. 

In abnormal circumstances, the pre-trained vgg13 assigns low feature values to all 
features, even though the feature value of the most important feature (A) remains the 
highest compared to other features (B, C). However, the feature loss between teacher and 
student remains low. This makes feature mimicking more difficult during the distillation 
process. 

In order to solve the above problems, we introduce the feature temperature (τ ) as a 
corrective factor to improve the teacher’s feature output: 

2

1 2

1( , ) ( ) ( )
n

mse t s t i s i
i

L f f f x f x
nD

τ τ
=

= − . (12)

As shown in Figure 5. By introducing the feature temperature parameter, we can en-
hance the distinguishability between important features and other features. Make the over-
all feature distribution of the teacher closer to the ground-truth distribution of features and 
release the potential of feature mimicking. The loss function of LSH-T is as follows: 

1( ( , ) ( , ))LSH lsh t s mse t s ceL L f f L f f Lτ α τ τ β− = + + . (13)

By introducing the feature temperature parameter, we widen the gap between the 
feature values of important and non-important features. However, the relative importance 
of features remains unchanged. Both the KD [10] temperature parameter and our feature 
temperature parameter are designed to make the transmitted knowledge better match the 
ground-truth distribution of images. The reason for using distillation temperature is that 
the teacher’s classified output is too absolute after Softmax. Low-probability classes re-
ceive fewer weights, making it challenging to provide similar information for low-proba-
bility classes during distillation. In contrast, our design of feature temperature aims to 
address the issue of the teacher’s feature distribution being too flat, resulting in minimal 
differences between the features represented by feature values. During the distillation 
process, the teacher cannot provide distinguishing information between important and 
non-important features. By applying the feature temperature parameter, we can reduce 
the student’s attention to low-importance features and emphasize the matching of high-
importance features. 

 
Figure 5. Distribution of features in different conditions of a single image. Figure 5. Distribution of features in different conditions of a single image.

4. Experiments and Analysis

In this section, we will evaluate the performance of the proposed LSH-TL and LSH-T
algorithms. As a comparison, we also include the results of LSH [13], which does not utilize
the ground-truth distribution fitting method proposed in this paper. Furthermore, we will
compare the performance of LSH-TL and LSH-T algorithms with other state-of-the-art
distillation algorithms. The knowledge distillation methods compared in the experiment
are introduced in Section 2.

4.1. Experiment Details

Our experiments were conducted using PyTorch 1.12.0, and the experimental setup used a
single NVIDIA GeForce 4090 GPU (NVDIA, Santa Clara, CA, USA) for graphic processing.

To evaluate the performance of our algorithm, we utilized two prominent datasets:
CIFAR-100 and ImageNet-2012. The CIFAR-100 dataset consists of 100 classes of color
images with a resolution of 32 × 32 pixels. It comprises 50,000 training images and
10,000 testing images. The ImageNet-2012 dataset contains 1,200,000 training images and
50,000 validation images, divided into 1000 categories. The image resolution of Image-
Net2012 is below 600 × 600 and the average resolution is around 469 × 387. The input
image resolution after image preprocessing is 224 × 224.

The specific parameter settings used in the experiments for LSH-TL and LSH-T are
as follows:

To make a fair comparison and to better demonstrate the performance gain of our
method on the original LSH [13]. The learning rate, number of epochs, batch size, and
learning rate decay strategy are the same as the original LSH setup parameters. The
learning rate was set to 0.05, and the training was conducted for 240 epochs using a batch
size of 64. The learning rate was decreased by a factor of 0.1 at epochs 150, 180, and 210.
The pre-trained teacher and untrained student models were obtained from the open-source
files of LSH [13].
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In the LSH-TL experiment, the original LSH scale parameter (α, β1, β2) is (6, 1, 0) in
terms of the scale parameter. To demonstrate the effectiveness of our proposed LSH-TL
algorithm, the standard cross-entropy classification loss scale parameter β1 is changed to
the scale parameter β2 of the label replacement loss function Ltl proposed in LSH-TL. The
final scale parameter (α, β1, β2) is (6, 0, 1).

In the LSH-T experiment, the scale parameter (α, β1, β2) is the same as the original
LSH—both are (6, 1, 0). In terms of the selection of the feature temperature parameter, the
experimental results are shown in Table 1. The feature temperature parameter taken as
1 represents the original LSH results. We find that the best performance is obtained when
the feature temperature parameter is taken as 2. The performance of LSH-T decreases
with the increase in the feature temperature after the value of the feature temperature is
larger than 2. This is because too large a value of feature temperature can damage the
original feature representation. To unify the experimental parameters, we set the feature
temperature value to 2 in our LSH-T experiment.

Table 1. Student classification accuracy (%) of LSH-T algorithm with different feature temperature
values for the scenario where the teacher is resnet32×4 and the student is resnet8×4.

Feature
temperature τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

resnet32×4-
resnet8×4 76.82 77.20 77.10 76.72 76.89 76.67

4.2. Experiment on Fitting The Ground-Truth Distributions of Classes (LSH-TL)

Table 2 illustrates that LSH-TL outperforms LSH [13] in terms of distillation perfor-
mance in five out of seven groups of homogeneous models. Compared with other methods,
LSH-TL achieves the best performance in four out of seven groups of homogeneous models
and achieves the second-best performance in one of the groups. In homogeneous models,
the output layers of the teacher and student have similar structures, and the teacher labels
are beneficial for training. Using teacher labels to supervise the classification outputs of
the student and fitting the ground-truth distribution of the classes can improve the distilla-
tion performance of the penultimate layer features in homogeneous models. Even in the
distillation of the WRN-40-2 and WRN-16-2, when the pre-trained WRN-40-2 teacher’s per-
formance is lower than the LSH distillation-trained WRN-16-2 student, fitting the teacher’s
ground-truth classification distribution still improved the classification accuracy by 0.12%.

In Table 3, LSH-TL performs better than LSH [13] in four out of the six groups of
distilled heterogeneous models. Among the above four groups, LSH-TL achieves the
second-best performance among all methods. This suggests that, even when the teacher
and student models have different structures, distilling teacher labels can still have a
positive impact on distilling penultimate-layer features after replacing the dataset labels.
While LSH-TL may not surpass SSKD in heterogeneous model distillation, it still enhances
the performance of penultimate-layer feature distillation.

Table 4 presents the distillation performance of LSH-TL on the large-scale ImageNet-
2012 dataset. Due to limited computing resources, we only conducted distillation tests
using resnet34 and resnet14. Our method reduces student’s Top-1 and Top-5 error rates by
0.14% and 0.06%, respectively.
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Table 2. Test accuracy (%) of the student network on CIFAR-100. The teacher and the student share
similar architectures. We use * to denote methods we re-ran five times using author-provided codes.
The results of our method were run five times. Red represents the best, while blue represents the
second best. ▲ indicates the performance improvement effect of LSH-TL (ours) over LSH.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32×4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8×4 vgg8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD [10] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [11] 73.58 72.24 69.21 68.99 71.06 73.50 71.02

AT [17] 74.08 72.77 70.55 70.22 72.31 73.44 71.43
SP [19] 73.83 72.43 69.67 70.04 72.69 72.94 72.68
AB [18] 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT [21] 73.25 71.59 69.84 70.22 72.37 72.86 70.58

FSP [20] 72.91 n/a 69.65 70.11 71.89 72.62 70.23
CRD [12] 75.48 74.14 71.16 71.46 73.48 75.51 73.94

CRD+KD [12] 75.64 74.38 71.63 71.56 73.75 75.46 74.29
SSKD [22] 75.55 75.50 71.00 71.27 73.60 76.13 74.90

LSH * [13] 76.30 74.51 71.34 71.59 73.97 76.71 74.50
LSH-TL
(ours) 76.42 74.50 71.50 71.81 74.10 76.73 74.11

▲ +0.12 −0.01 +0.16 +0.12 +0.13 +0.02 −0.39

Table 3. Test accuracy (%) of the student network on CIFAR-100. The teacher and the student share
different architectures. We use * to denote methods we re-ran five times using author-provided codes.
The results of our method were run five times. Red represents the best, while blue represents the
second best. ▲ indicates the performance improvement effect of LSH-TL (ours) over LSH.

Teacher vgg13 resnet50 resnet50 resnet32×4 resnet32×4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD [10] 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [11] 64.14 63.16 70.69 73.59 73.54 73.73

AT [17] 59.40 58.58 71.84 71.73 72.73 73.32
SP [19] 66.30 68.08 73.34 73.48 74.56 74.52
AB [18] 66.06 67.20 70.65 73.55 74.31 73.34
FT [21] 61.78 60.99 70.29 71.75 72.50 72.03

CRD [12] 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD [12] 69.94 69.54 74.58 75.12 76.05 76.27
SSKD [22] 71.24 71.81 75.71 78.18 78.75 77.30

LSH * [13] 68.38 68.34 74.48 75.63 76.56 76.54
LSH-TL
(ours) 68.17 68.02 74.65 75.80 76.62 76.62
▲ −0.21 −0.32 +0.17 +0.17 +0.06 +0.08

Table 4. Top-1 and Top-5 error rates (%) on the ImageNet-2012 validation set. The teacher and student
are resnet34 and resenet18.

Teacher Student KD [10] AT [17] CRD [12] CRD+KD [12] SSKD [22] LSH [13] LSH-TL

Top-1 26.70 30.25 29.34 29.30 28.83 28.62 28.38 28.78 28.64
Top-5 8.58 10.93 10.12 10.00 9.87 9.51 9.33 9.76 9.70

4.3. Experiment on Fitting the Ground-Truth Distributions of Features (LSH-T)

In Table 5, LSH-T outperforms LSH [13] in terms of distillation performance in
three out of seven groups of homogenous model distillation. One group achieves the
best performance, while three groups achieve second-best performance. We have antic-
ipated that the inclusion of the temperature parameter in resnet’s homogeneous model
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distillation would degrade the distillation performance. The data from Figure 4 indicate
that when resnet is used as the teacher model, the feature loss values between teacher
and student are within a reasonable range. The feature distribution of the teacher model
exhibits sufficient feature discriminability. However, introducing feature temperature will
disrupt the original feature output. The finding that the addition of feature temperature to
the distillation process of the resnet homogeneous model leads to a decrease in distillation
performance further supports the argument made in this study that the feature loss of the
resnet as a teacher model is within the normal range.

Table 5. Test accuracy (%) of the student network on CIFAR-100. The teacher and the student share
similar architectures. We use * to denote methods we re-ran five times using author-provided codes.
The results of our method were run five times. Red represents the best, while blue represents the
second best. ▲ indicates the performance improvement effect of LSH-T (ours) over LSH.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32×4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8×4 vgg8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD [10] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [11] 73.58 72.24 69.21 68.99 71.06 73.50 71.02

AT [17] 74.08 72.77 70.55 70.22 72.31 73.44 71.43
SP [19] 73.83 72.43 69.67 70.04 72.69 72.94 72.68
AB [18] 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT [21] 73.25 71.59 69.84 70.22 72.37 72.86 70.58

FSP [20] 72.91 n/a 69.65 70.11 71.89 72.62 70.23
CRD [12] 75.48 74.14 71.16 71.46 73.48 75.51 73.94

CRD+KD [12] 75.64 74.38 71.63 71.56 73.75 75.46 74.29
SSKD [22] 75.55 75.50 71.00 71.27 73.60 76.13 74.90

LSH * [13] 76.30 74.51 71.34 71.59 73.97 76.71 74.50
LSH-T (ours) 76.29 74.68 70.96 71.37 73.55 76.94 74.65

▲ −0.01 +0.17 −0.38 −0.22 −0.42 +0.23 +0.15

In Table 6, LSH-T outperforms LSH [13] in five out of six groups of heterogeneous
model distillation. Three groups achieve second-best performance. When the feature
temperature is applied to the low feature outputs of pre-trained teachers, such as vgg13
and resnet32×4, it addresses the issue of flat feature distribution and increases the discrim-
inability of different features. This adjustment brings the teacher feature outputs closer
to the ground-truth feature distribution of images, resulting in significant performance
improvement for LSH. The highest improvement, relative to LSH, is observed in the distilla-
tion of ShuffleNetV1 using resnet32×4, with an increase of 0.60% in classification accuracy.
LSH-T performs far better than LSH in knowledge distillation where the teachers have low
feature outputs.

Table 7 demonstrates the distillation performance of LSH-T on the large-scale ImageNet-
2012 dataset. Because the penultimate layer of feature output for the resnet34 teacher is in
the normal range, we only set the feature temperature to 1.5, boosting the feature output by
a small amount. It shows that both the Top-1 error rate and Top-5 error rate are lower than
those of LSH, proving that our algorithm is equally effective for large-scale datasets.



Appl. Sci. 2024, 14, 3284 12 of 16

Table 6. Test accuracy (%) of the student network on CIFAR-100. The teacher and the student share
different architectures. We use * to denote methods we re-ran five times using author-provided codes.
The results of our method were run five times. Red represents the best, while blue represents the
second best. ▲ indicates the performance improvement effect of LSH-T (ours) over LSH.

Teacher vgg13 resnet50 resnet50 resnet32×4 resnet32×4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD [10] 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [11] 64.14 63.16 70.69 73.59 73.54 73.73

AT [17] 59.40 58.58 71.84 71.73 72.73 73.32
SP [19] 66.30 68.08 73.34 73.48 74.56 74.52
AB [18] 66.06 67.20 70.65 73.55 74.31 73.34
FT [21] 61.78 60.99 70.29 71.75 72.50 72.03

CRD [12] 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD [12] 69.94 69.54 74.58 75.12 76.05 76.27
SSKD [22] 71.24 71.81 75.71 78.18 78.75 77.30

LSH * [13] 68.38 68.34 74.48 75.63 76.56 76.54
LSH-T
(ours) 68.71 68.74 74.45 76.23 76.69 76.89
▲ +0.33 +0.40 −0.03 +0.60 +0.13 +0.35

Table 7. Top-1 and Top-5 error rates (%) on the ImageNet-2012 validation set. The teacher and student
are resnet34 and resnet18.

Teacher Student KD [10] AT [17] CRD [12] CRD+KD [12] SSKD [22] LSH [13] LSH-T

Top-1 26.70 30.25 29.34 29.30 28.83 28.62 28.38 28.78 28.72
Top-5 8.58 10.93 10.12 10.00 9.87 9.51 9.33 9.76 9.73

4.4. Visualizations

We carried out the visualization of the features in the penultimate layer of the model
using the t-SNE algorithm (t-distributed Stochastic Neighbor Embedding) (on the Cifar-100
dataset, with resnet110 and resnet32×4 for teachers and resnet32 as well as shufflenetv1
for students).

In the t-SNE results, we can observe whether data points of different categories can be
separated in space, and judge whether the model has effectively learned the features and
structure of the data. In general, we want data points of different categories to be separated
in the graph. Data points of the same category are as close to each other as possible, while
data points of different categories are clearly bound or spaced apart.

In Figure 6, we have enclosed with dashed boxes some of the places where LSH-TL and
LSH-T perform better relative to the original LSH for penultimate layer feature separation.
The t-SNE results show that representations of LSH-TL and LSH-T are more separable
than LSH.

4.5. Discussion on Results

Despite the improvement in performance compared to LSH, our algorithm still per-
forms slightly worse than SSKD in heterogeneous model distillation. This can be attributed
to two reasons. First, there are differences in the penultimate dimension between teachers
and students in heterogeneous model distillation. The feature output of a heterogeneous
teacher is less helpful to the student than that of a homogeneous teacher. Secondly, because
the SSKD self-supervised image enhancement method increases the amount of data and
requires pre-training of the teacher self-supervision module, the SSKD training time is
longer. In contrast, as shown in Table 8, our algorithms have a shorter training time and
lower memory usage.
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Table 8. Comparison of SSKD, LSH-TL, and LSH-T on training time and memory usage.

Time Memory Usage

SSKD 7564.332 s 3.3 GB
LSH-TL 4047.144 s 2.4 GB
LSH-T 3870.336 s 2.4 GB

In Sections 4.2 and 4.3, we conducted ablation experiments on LSH-TL and LSH-T,
respectively. Although these two algorithms cannot be utilized together, the experiments
indicate that they have distinct application scenarios. At the same time, we summarize the
underlying reasons for the excellent performance of LSH-TL and LSH-T:

The superior performance of LSH-TL and LSH-T compared to other algorithms in
homogeneous and heterogeneous model distillation is the effectiveness of the penultimate
layer of features as knowledge. The model penultimate layer features are derived from the
output of the backbone network features after pooling. Compared with other knowledge
distillation algorithms based on intermediate layer features, the advantage is that more
layers of neural networks process the penultimate layer features, and the amount of infor-
mation contained is richer. As opposed to logits distillation, students prioritize learning
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the mapping parameters (weights and biases) of the penultimate layer to the classification
layer to fit the teacher output logits, instead of fitting the backbone network output features.
The advantage of penultimate layer feature distillation is that the pooling operation has
no updatable parameters. Students need to fit the teacher’s penultimate layer features
to fit the teacher’s backbone network feature output at the same time. The students can
learn the teacher’s feature outputs from all parts of the teacher in a better way. LSH-TL
and LSH-T further address the need for students in knowledge distillation to learn the
data distribution of images in real task scenarios by further fitting the training data to the
ground-truth distribution of images based on classes and features.

LSH-TL enhances the penultimate layer feature distillation performance of both homo-
geneous and heterogeneous models by employing teacher labels instead of dataset one-hot
labels to supervise student classification. This adjustment allows the student classification
output to better align with the ground-truth distribution of classes. Due to the unique resid-
ual structure of the resnet [2], the deep resnet model is built upon the shallow resnet model.
It is likely that the deep resnet model outperforms the shallow resnet model under similar
training conditions. Therefore, the teacher label generated by the deep resnet model is
beneficial for training the shallow resnet model. Therefore, LSH-TL is suitable for distilling
resnet models with similar architectures. Moreover, LSH-TL compensates for the limitation
of LSH-T, which cannot be applied to resnet model distillation.

LSH-T is applied to adjust the teacher’s penultimate layer feature output by introduc-
ing feature temperatures, aiming to align it with the ground-truth distribution of features.
The LSH-T algorithm performs better when the penultimate layer feature output of the
teacher model is relatively low. Vgg13, resnet32×4, and WRN-40-2 fit the application
scenario when used as teacher models for feature distillation. However, when using resnet
base models as teachers, the feature output values in their penultimate layer are in the
normal range, resulting in poor performance of the LSH-T algorithm.

5. Conclusions

In this paper, we argued that the existing work on penultimate layer feature distillation
overlooked the efforts focused on fitting the ground-truth distribution of the image. To
address this issue, we proposed two penultimate layer feature distillation algorithms
LSH-TL and LSH-T.

LSH-TL focuses on fitting the ground-truth distribution based on classification. It
supervises the classification output by replacing the traditional dataset labels with teacher
classification labels that are more consistent with the ground-truth distribution of classes;
LSH-T corrects the low-feature output distribution of the teacher by designing the feature
temperature. Make the teacher feature output distribution more consistent with the ground-
truth distribution of features. On the Cifar-100 dataset, LSH-TL outperforms the base LSH
in nine out of a total of thirteen homogeneous and heterogeneous distillation model groups,
providing a maximum performance gain of 0.17% for LSH. LSH-T outperforms the base
LSH in eight out of a total of thirteen homogeneous and heterogeneous distillation model
groups, providing a maximum performance gain of 0.60% for LSH. The two methods have
their application areas and compensate for each other’s shortcomings. LSH-TL can provide
a performance gain effect in the three-group homogeneous model of resnet where LSH-T
distillation performance is poor. LSH-T can also obtain good distillation performance results
on distillation teacher–student groups such as vgg13–vgg8 where LSH-TL performance
is not satisfactory. Experimental results on the large dataset ImageNet-2012 show that
LSH-TL and LSH-T are lower than the original LSH algorithm in both Top-1 and Top-5 error
rates. These experimental results validate the effectiveness of our ground-truth distribution
fitting approach.

Our work still has some limitations. In LSH-TL, it is hard to eliminate the effect of
teacher output mislabeling on the distillation performance of the algorithm. In LSH-T, the
characteristic temperature parameters need to be set manually, which makes it difficult
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to select the optimal parameters for all distillation model groups. And, the distillation
performance is not good after the fusion of the two methods.

Teacher output mislabeling affects the performance of the LSH-TL algorithm because
teacher labels are used in LSH-TL to supervise student classification output. Students’
judgment is poor when their performance is low, and students will receive all of the
teacher’s output mislabels, causing them to learn the wrong knowledge and affecting
the algorithm’s distillation performance. To address this issue, future work will explore
how to incorporate more efficient supervised approaches such as self-supervised learning
to compensate for the problem of teachers outputting incorrect labels. In the following
works, we will explore more ways to improve our algorithms, such as incorporating a
dynamic search for optimal intervals for feature temperature parameters, and combining
the two algorithms into one to become a more adaptable algorithm.
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