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Abstract: Pattern recognition in myoelectric control that relies on the myoelectric activity associated
with arm motions is an effective control method applied to myoelectric prostheses. Individuals with
transhumeral amputation face significant challenges in effectively controlling their prosthetics, as
muscle activation varies with changes in arm positions, leading to a notable decrease in the accuracy
of motion pattern recognition and consequently resulting in a high rejection rate of prosthetic devices.
Therefore, to achieve high accuracy and arm position stability in upper-arm motion recognition,
we propose a Deep Adversarial Inception Domain Adaptation (DAIDA) based on the Inception
feature module to enhance the generalization ability of the model. Surface electromyography (sEMG)
signals were collected from 10 healthy subjects and two transhumeral amputees while performing
hand, wrist, and elbow motions at three arm positions. The recognition performance of different
feature modules was compared, and ultimately, accurate recognition of upper-arm motions was
achieved using the Inception C module with a recognition accuracy of 90.70% ± 9.27%. Subsequently,
validation was performed using data from different arm positions as source and target domains, and
the results showed that compared to the direct use of a convolutional neural network (CNN), the
recognition accuracy on untrained arm positions increased by 75.71% (p < 0.05), with a recognition
accuracy of 91.25% ± 6.59%. Similarly, in testing scenarios involving multiple arm positions, there
was a significant improvement in recognition accuracy, with recognition accuracy exceeding 90% for
both healthy subjects and transhumeral amputees.

Keywords: transhumeral amputee; deep learning; domain adaptation; surface electromyography
(sEMG); arm position

1. Introduction

Human arm amputation causes substantial functional and muscle loss for amputees.
The loss of a hand or arm through amputation greatly decreases the quality of life of an
individual [1]. Amputees sometimes vividly experience the presence of their missing limb
and voluntarily execute “real” motions [2]. This form of motor execution, termed phantom
limb movement (PML), exists with its own underlying neurophysiological mechanisms,
and the associated muscle activity varies depending on the type of movement being
executed [3]. Based on this theory, pattern-recognition-based myoelectric prostheses can
recognize specific movement patterns by acquiring myoelectric signals from the residual
limb through electrodes around the arm, visually linking the signals to the movements,
and effectively enhancing the intuitiveness of prosthetic control [4–11].
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However, transhumeral (TH—above the elbow) amputees suffer greater loss of mus-
cles and functionality than transradial (TR—below the elbow) amputees. Operating a
prosthesis requires excessive physical or mental effort on the part of the TH amputees
because it necessitates the use of arm muscles that are not naturally involved in these
motions, which results in inaccurate and unreliable recognition. It is difficult for the user to
learn, making the prosthesis frustrating to use [11] and resulting in a higher rate of rejection
compared to TR prostheses [12,13].

Enrichment of signal source techniques, including the use of high-density electrodes,
filtering techniques and signal fusion, has become one of the main research directions to
improve pattern recognition performance. High-density electrodes can cover a larger mus-
cle area and provide rich feature information [14]. Filtering techniques improve the spatial
resolution of EMG signals by reducing crosstalk between surface EMG signals [15]. Meth-
ods for monitoring brain activity, including electroencephalography (EEG) or functional
near-infrared spectroscopy (fNIRS), which is non-invasive and has a relatively short time
constant, have proven to be strong candidates for additional inputs for human–machine
device control [16]. The fusion of brain activity information, complementing the limited
EMG signals, can effectively classify the motor intentions of amputees. Although these
methods have yielded satisfactory results in research, the complexity of devices associated
with multiple types of information falls short of practical application scenarios.

In pattern recognition, traditional machine learning methods rely heavily on hand-
crafted features and can only capture shallow features, resulting in limited accuracy. Pre-
vious research has shown that deep learning is a viable solution, deep learning can learn
feature representations for classification tasks without domain-specific knowledge and
outperform traditional machine learning in terms of recognition performance [17].

However, when subjects perform hand movements in different arm positions, the
performance of the pattern recognition control scheme is inevitably affected. Several studies
have shown that arm position increases classification errors when using training data from
one arm position and test data from another [18–22]. Existing studies typically use data
from multiple arm positions for training, using datasets or feature sets large enough to
achieve the desired performance. However, this approach usually fails to achieve the
desired performance and can place a significant burden on model updates.

To address the above issues, our research objective is to explore an algorithmic frame-
work that can accurately recognize upper arm movements at different arm positions. In
order to achieve this objective, a domain adversarial neural network named the Deep
Adversarial Inception Domain Adaptation (DAIDA) is proposed. The main contributions
of this paper are highlighted as follows:

• Leveraging the power of the Inception module, we incorporated parallel convolutional
kernels of different sizes to enhance the feature-capturing capability of the model. This
ensures the model’s ability to discern nuanced details crucial for upper arm motion
recognition. Meanwhile, our algorithmic framework facilitates the seamless execution
of two training phases without modifying any structures. These two training phases
can eliminate heterogeneous features to ensure good motion recognition performance
at the new arm position.

• To validate the effectiveness of our proposed model, we conducted experiments involv-
ing both able-bodied subjects and transhumeral amputees. This result showcases the
model’s motion recognition accuracy and stability at different arm elevation positions,
providing prospects for the advancement of myoelectric interfaces.

2. Methods

This section describes the proposed algorithmic framework to address the problem of
accurate upper arm movement recognition and position change stability in transhumeral
amputees. First, an experimental protocol was developed to acquire sEMG signals of upper
arm movements in common arm positions, and the acquired signals were preprocessed
as inputs to the model. Subsequently, the CNN model was determined by evaluating the
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performance of the parallel convolutional structure through several evaluation metrics.
Finally, by combining domain adaptation and adversarial training, the DAIDA framework
is proposed and evaluated under several training scenarios to solve the domain shift
problem due to arm position changes.

2.1. Data Acquisition

A total of 12 subjects were recruited for the experiment, including 10 able-bodied sub-
jects and 2 transhumeral amputees. Subjects gave consent to participate in the experiment,
which was conducted in accordance with the Declaration of Helsinki and its subsequent
amendments. The able-bodied subjects were adults with no musculoskeletal disorders or
other serious health problems and who have good physical functioning. The eligibility
criteria for the amputee subjects were preservation of the major muscles of the upper arm
after the cutoff, good control in moving the phantom arm as well as repeatable phantom
arm movements with a minimum amplitude of greater than 20 degrees, and absence of
phantom arm pain. Based the joint project of the National Key Research and Development
Program of China, the experiment has been approved by the Ethics Committee of Shen-
zhen Institute of Advanced Technology, Chinese Academy of Sciences (YSB-2022-Y07026).
Participants provided written informed consent to participate in this study. Information on
the able-bodied and amputee subjects is shown in Tables 1 and 2, respectively.

Table 1. Information on the able-bodied subjects.

No. Gender Age Dominant Hand Upper Arm Length (cm)

S1 female 21 right 35
S2 male 21 right 33
S3 male 22 right 36
S4 female 22 right 30
S5 female 22 right 28
S6 male 25 right 34
S7 male 24 right 35
S8 female 23 right 31
S9 male 24 right 29

S10 male 22 right 32

Table 2. Information on the amputee subjects.

No. Age Dominant
Hand

Amputation
Side

Amputation
Years

Amputation
Reason

Amputation Side
Length (cm)

Complete Upper
Arm Length (cm)

TH1 41 right left 9 industrial injury 23 cm 31 cm
TH2 39 right left 5 industrial injury 25 cm 33 cm

Eight sEMG electrodes were arranged equidistant and parallel from each other around
the upper arms of both types of subjects to ensure that the electrodes covered the major
muscles of the subjects’ biceps, triceps, and brachialis muscles while capturing as many
valid sEMG signals as possible [23,24]. The skin on the upper arm of the subjects was
treated with hair clipping, removal of dead skin and alcohol cleansing to ensure the stable
acquisition of the surface sEMG signals. The sEMG signals were acquired using a Noraxon
sEMG signal acquisition device with a sampling frequency of 1500 Hz.

During signal acquisition, subjects were asked to sit in front of the table and place
their upper arms at the most comfortable positions on the support platform by adjusting
the seat height and the tilt angle of the support platform. To prevent signal recordings
from being affected by tabletop compression, the sensors located in a slot in the center
of the support plate do not touch the support plate and remain suspended. Changes in
arm position can also lead to significant differences in sEMG signals, affecting recognition
performance. Three arm elevation positions were selected to complete sEMG acquisition
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experiments, as shown in Figure 1. Within these three arm elevation positions, subjects are
able to carry out most of the activities required for daily life, including the following:

• P1: upper arm parallel to the horizontal plane;
• P2: elevated upper arm to 45◦ from the horizontal plane;
• P3: elevated upper arm to 90◦ from the horizontal plane.

Figure 1. Global view of sEMG acquisition experiment. On the left is the actual photo of the sensors’
installation; in the middle is the schematic diagram of the multi-arm-position sEMG signal acquisition
experiment; and on the right are motion illustrations, the sEMG waveform graph and a schematic
diagram of the three arm elevation positions.

A video of the movements is displayed on the computer screen directly in front of
the subject as a guide, and the subjects are asked to imitate the movement in the video
synchronously with the guidance. The amputee subjects utilized their healthy arm as a
mirror image to aid the stumped arm in replicating phantom limb movements, as shown
in Figure 1. The phantom arm movements consisted of six movements of the hand, wrist
and elbow, which were Hand Close, Hand Open, Wrist Pronation, Wrist Supination, Elbow
Flexion and Elbow Extension, as shown in Figure 2.

Figure 2. Schematic of hand, wrist and elbow motions.

The sEMG data were obtained by regular exercise–rest cycles. Each movement was
acquired in ten repetitions. For each repetition, the subject held the muscle contraction for
5 s and then rested for 2 s. It was required that the amount of force with which the subject
held the movement and the posture in which the movement was performed should be as
consistent as possible. After the acquisition of ten repetitions of a gesture, a 1-minute rest
was taken to avoid muscle fatigue.
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sEMG signals were acquired from subjects for each set of movements at each arm
position, with a 2 min rest after the end of the signal acquisition at each arm position.
The guiding principle behind the adoption of the above procedure was the need to limit
the recording time and fatigue, while avoiding possible stress effects of fully continuous
movements or prolonged acquisitions. A total of 180 sets (3 arm positions × 6 motions ×
10 repetitions) of experimental data were ultimately collected for each subject.

2.2. DAIDA Framework
2.2.1. Preprocessing

The sEMG signals are stochastic non-stationary signals and therefore need to be
preprocessed before they can be used for subsequent classification. The preprocessing
process of the data in this study consisted of filtering and noise reduction, normalization
and active segment extraction.

According to the spectral energy distribution of the sEMG signal, the motion artifacts
were removed using 4th-order 20–500 Hz Butterworth bandpass filtering, and the industrial
frequency noise was removed using 50 Hz notch filtering. Because different subjects’
anatomical tissues, physiological states and other factors make the multichannel sEMG
signals show large individual differences [25], in order to reduce the impact of individual
differences on pattern recognition classification, it is necessary to standardize them by
transforming sEMG signals from different subjects. The standardization method used in
this article is Z-Score standardization. The transformation formula is (x − µ)/σ [26]. In this
formula, µ is the mean and σ is the standard deviation. It converts data of different orders
of magnitude into unitless values [27].

In order to obtain effective motion information, the determination of active segments
is essential [28,29]. Therefore, in this study, an adaptive dual-thresholding method was
used for the detection of active segments of sEMG signals [27]. According to studies, the
optimal window length for sEMG-based pattern recognition (PR) falls within the range of
100 ms to 250 ms [30]. To ensure classification accuracy while taking into account Noraxon’s
sampling rate, a window of 300 sample points in length was used, sliding over the data in
incremental lengths of 150 sample points.

Eventually, the sEMG signals were converted into a suitable data format for input to
the network, i.e., batch size × 1 × number of channels × window length.

2.2.2. The CNN Model

This section describes in detail the domain adaptive technique used to solve the
problem of spatial inconsistency of features at different arm positions. Then, the architecture
and training process of the proposed method are described.

In the practical application of myoelectric prosthetic hands, the effectiveness of pattern
recognition may be greatly reduced due to changes in the distribution of signal features
caused by changes in arm position. Different arm positions result in different muscle
activations, leading to different data distributions [21]. This is one of the reasons why
traditional models are unstable in action prediction under different arm positions. To
address this problem, the DAIDA algorithmic framework proposed in this paper recognizes
the sEMG signals of the upper arm under different arm positions. The idea of domain
adaptation is utilized to make the feature learning distribution of the source domain close
to the target domain.

The DAIDA structure was constructed from two networks with almost identical CNN
structure. The CNN model used serves as the baseline model in the study. The CNN
is composed of two modules, a feature extraction module and a classification module,
as shown in Figure 3. The feature extraction module consists of two blocks, each of
which encapsulates a convolutional layer, followed by a batch normalization layer (BN), a
Parametric Rectified Linear Unit (PReLU) layer, a dropout layer (p = 0.5) and a max-pooling
layer. Inspired by the success of excellent models like Xception, which perform well in
classification tasks and demonstrate good generalization ability on new datasets through
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transfer learning with approaches such as feature extraction and fine-tuning, we adopt the
inception structure to replace regular convolution in order to efficiently capture the features
of various scales of the input data [27,29]. This structure employs multiple parallel branches
with different convolution and pooling operations to extract multi-scale information from
the input feature map. Among them, branch one uses 1 × 1 convolution for channel
transformation of the input, branch two performs spatial dimensionality reduction through
3 × 3 max-pooling and 1 × 1 convolution and branches three and four use 5 × 1 convolution
and 7 × 1 convolution with different dimensions, respectively, to extract features at different
scales. The outputs of these branches are spliced in the channel dimension to generate the
final feature map. The classification module also comprises two blocks, each consisting of
a fully connected layer, a batch normalization layer, a PReLU layer and a dropout layer
(p = 0.5). The number of neurons in the fully connected layer is 1000 and 500, respectively.
Adaptive moment estimation (ADAM) is employed to optimize the CNN with an initial
learning rate of 0.001.

Figure 3. Overview of the baseline model. (a) is the macroscopic diagram of the model. (b) is the
architecture of the Stem Block. (c) is the architecture of the Inception Block. (d) shows the architectures
of Inception A, the Inception B and the Inception C module, which are used to replace the Inception
Block in (c), respectively.

In order to compare the effectiveness of feature extraction with score-parallel convolu-
tion, we compared various structures, as shown in Figure 3.

2.2.3. DAIDA Framework

The DAIDA framework we used, shown in Figure 4, has a similar structure to the
baseline model, sharing the same convolutional module for feature extraction. The model
then generates branches, one of which is a labeled classifier for the motion classification
trained in the source and target domains. The second branch is a domain classifier using a
Gradient Reversal Layer (GRL), which is set between the domain classifier and the feature
extractor to determine whether the collected feature distributions are from the source or
target domain. The GRL layer that maximizes the loss of the classifier forces the feature
extraction block to learn features that are not related to the domain, i.e., domain-invariant
features. Ultimately, the model learns features with better generalization performance. This
operation takes place during the backpropagation phase and consists of multiplying the
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gradient by a negative value (−λ) while, during forward propagation, the gradient acts as
an identity transform. The GRL can be easily implemented to any feed-forward network
without any additional parameters.

Figure 4. The process of domain adversarial training.

Consider a classification problem with the input feature vector space X and Y = {1,
2, 3, 4, 5, 6} as the set of labels in the output space. Let {Xs, Ys} and {Xt, Yt} be unknown
joint distributions defined over X × Y, referred to as the source and target distributions,
respectively. The unsupervised domain adaptation algorithm requires input as the labeled
source domain data, sampled from {Xs, Ys}, and unlabeled target domain data, sampled
from the marginal distribution {Xt}. The data from the source and target domains are fed
into the feature extractor, and the features are classified by the domain classifier.

The architecture has two networks, and each network consists of a feature extractor
and a classifier. The feature extractor G f , shown in Figure 4, is a parallel convolution
network and takes the preprocessed sEMG input vector xi and generates a feature vector
fi, i.e.,

fi = G f

(
xi; θ f

)
(1)

The feature vector fi extracted from G f is mapped to a class label by the label classifier
Gy and to a domain label by the domain classifier Gd, i.e.,

yi = Gy
(

fi; θy
)

(2)

di = Gd( fi; θd) (3)

Both the label classifier and the domain classifier are multilayer feed-forward neural
networks whose parameters are referred to as θy and θd, respectively. During training, the
goal of the feature extractor is to minimize the classification error while making the domain
classifier unable to accurately distinguish between the feature representations of the source
and target domains. In this way, the feature extractor is able to learn feature representations
that have good generalization ability to both the source and target domains.

In the proposed DAIDA scheme, we utilize parallel convolution to extract effective
motion features, and employ adversarial training to simultaneously minimize the classifi-
cation loss and maximize the diversity of domain distribution. This enables us to eventu-
ally achieve a position-invariant model. The complete DAIDA algorithm is described in
Algorithm 1.

2.2.4. Training Scheme

The section aims to validate DAIDA’s performance in adapting to arm positions
from multiple perspectives. We collected data from different arm positions to use as
the source domain, target domain and testing datasets to validate the generalization
performance of DAIDA. For each subject, data from one single arm position contain-
ing 6 motions × 10 repetitions were collected as an acquisition. These experiments were
designed to test the arm position stability of DAIDA, with a CNN as the baseline for
without-domain adaption. When testing the CNN, an odd number of repetitions was used
for training and an even number of repetitions was used for testing. And when testing
DAIDA, the 1st and 2nd repetitions were used for retraining as the target domain, and the
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remaining eight repetitions were used for testing. The pre-training datasets of DAIDA un-
der each strategy comprised the same data as the CNN training sets as the source domain,
and the testing set was different.

Algorithm 1 Proposed DAIDA Algorithm

Input:
(1) Training data: Labeled source DS and unlabeled target DT .
(2) learning rate η, Tmax and iteration Nmax;
(3) Initialized parameters: θ f of feature extractors, θy of label classifier, θd of domain classifier,
weighting hyper-parameter λ.
Output: Optimized parameters θ f , θy and θd.
for T = 1,2, . . ., Tmax do

for N = 1,2, . . ., Nmax do
Select mini batch: dS, dT from DS, DT
Calculate weights: θ f , θy and θd
Calculate the losses:

Lossy

(
θ f , θy

)
= 1

n ∑
(x,y)∈ds

yT logGy

(
G f

(
xi; θ f

)
; θy )

Lossd

(
θ f , θd

)
= 1

m ∑
(x,y)∈dT

yT logGd

(
G f

(
xi; θ f

)
; θd)

Calculate the final loss:
Loss = Lossy − λLossd

Update the parameters:

θ f = θ f − η∇Loss
(

θ f

)
θy = θy − η∇Loss

(
θy
)

θd = θd − η∇Loss(θd)
End for

End for

The purpose of the baseline model is to verify the feasibility of the CNN model for
upper arm motion recognition and the separability of arm positions. The data used as input
came from the sEMG signals obtained from a single subject’s upper arm position when
completing a movement at a single position as a set. There were 10 healthy subjects and
2 transhumeral amputees, and each subject completed six motions in 3 arm positions, i.e.,
18 sets of data in total. The experimental data for arm position separability came from a
single action for all subjects, with a total of six sets of motions i.e., six sets of data to validate
the variability in the same action between different arm positions.

The datasets used for training and testing for both types of experiments are from the
same set of experimental data, and both types of experiments use only the source network
for recognition.

The DAIDA model is proposed to address the performance degradation of models
at different arm elevation positions. In this study, this problem is regarded as a transfer
learning problem. To achieve the desired transfer learning effect, the model needs to extract
similar deep features from sEMG signals belonging to both the source domain and the
target domain. The distributions of the source domain and the target domain can be used
to assess the similarity of the extracted deep features.

To validate the recognition performance of the model at different arm elevation po-
sitions, the specific validation program is described as follows, and six model testing
scenarios are designed, as shown in Table 3:

• Without domain adaptation, training is solely based on labeled source domain data;
i.e., the training data are labeled motion data from all positions and the test data are
labeled data from one single position (No. 1).

• Domain adaptation is performed on source domain data; i.e., the test data come from
the source domain and do not overlap with the retraining data (No. 2).



Appl. Sci. 2024, 14, 3417 9 of 16

• Domain adaptation is performed on data from the target domain; i.e., the test data are
from the target domain and from the same domain as the retraining data (No. 3).

• The ability to generalize the model after domain adaptation is determined; i.e., test
data are not derived from the source nor the target domain (No. 4).

• The performance of the domain adaptation effect on the total dataset is determined;
i.e., the source domain data from the sum of all arm position data, the target domain
from data of one single arm position and the test data from a single arm position that
are identical to (No. 5) or distinct from (No. 6) the target data.

Table 3. Arm position domain adaptation training scheme.

No. Labeled Source
Domain Data

Unlabeled Target
Domain Data Testing Data

1 x, y, z \ x
2 x y x
3 x y y
4 x y z
5 x, y, z y y
6 x, y, z y NOT y

The characters x, y, z each represent one arm position, respectively (x, y, z ∈ (1,2,3) and x ̸= y ̸= z).

2.3. Statistical Analysis

The performance of the models was represented using the most common evaluation
measures, such as accuracy, precision, recall, specificity and F1 score. These metrics were
defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (4)

Recall =
TP

TP + FN
× 100% (5)

Precision =
TP

TP + FP
× 100% (6)

Specificity =
TN

TN + FP
× 100% (7)

F1score =
(precision × recall)
(precision + recall)

× 100% (8)

where TP is the true positive rate, TN is the true negative rate, FN is false negatives
and FP is false positives. Accuracy represents the ratio of correct predictions over total
predictions. Recall measures the proportion of true positive predictions among all actual
positive instances. Specificity calculates the proportion of true negative predictions among
all actual negative instances. Precision quantifies the proportion of true positive predictions
among all positive predictions. Finally, the F1 score combines precision and recall into
a single metric. The error represents the standard deviation of the accuracy for different
gesture classes. Both metrics and error information are expressed as percentages.

To quantify the effectiveness of the proposed approach, we conducted statistical anal-
ysis via the t-test and the Wilcoxon rank sum test. The significance level was set at p < 0.05.
In Section 3.1, we statistically analyze the various metrics of different feature extraction
modules. In Section 3.2, we compare the performance differences of different training
schemes for statistical tests. In Section 3.3, we only compare the accuracy numerically due
to the small number of amputees.

3. Results
3.1. CNN Model Recognition Performance

Since the proposed DAIDA was an improved version of the Inception network, we
justified improving the model by using different Inception blocks, namely, Inception A,
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Inception B and Inception C. The block architecture is presented in Figure 3d. The average
recognition accuracy, precision, recall, specificity and F1 score of the different Inception
blocks used under a single arm position are shown in Table 4. As illustrated in Table 4, the
Inception C block outperforms the rest of the blocks in all parameter comparisons (p < 0.05).
Meanwhile, the Inception structure outperforms conventional convolutional layers.

Table 4. Recognition performance of different feature extraction modules.

Module Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 Score (%)

Stem 88.71 ± 9.43 * 91.53 ± 7.85 * 91.85 ± 7.15 * 97.82 ± 1.54 * 91.72 ± 7.45 *
Inception A 90.24 ± 3.55 * 93.58 ± 6.29 * 91.82 ± 6.14 * 97.82 ± 1.57 * 92.62 ± 6.98 *
Inception B 90.07 ± 5.71 * 93.68 ± 6.85 * 91.91 ± 6.97 * 96.87 ± 1.64 * 92.71 ± 5.14 *
Inception C 95.70 ± 1.27 94.34 ± 4.04 92.81 ± 6.35 97.94 ± 1.55 93.57 ± 6.19

* p < 0.05, bold indicates the best results.

Figure 5 presents the performance of the CNN model at a single arm position, showing
a confusion matrix with an average accuracy of 95.70 ± 1.27%.

Figure 5. Confusion matrix for a single upper arm position at P1.

The baseline model discriminates the separability of arm positions, and the recog-
nition results are shown in Figure 6. The average recognition accuracy at position P1 is
94.83% ± 1.35%; at position P2, it is 93.59% ± 2.97%; and at position P3, it is 97.12% ± 3.59%.
Recognition accuracy was highest at position P3 and lowest at position P1. The recognition
accuracy at all positions was 92.00% ± 5.70%.

Figure 6. Arm position recognition performance.

Similarly, the baseline model was used to determine the variability in the data for the
six categories of motions with respect to arm position, with an average identification result
of 96.32% ± 2.77%. The confusion matrices are shown in Figure 7.
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Figure 7. Performance of position separability. Each confusion matrix represents the classification
performance of three arm positions for one motion.

3.2. Position Recalibration

We trained the source network using labeled data from three different arm positions
as inputs and achieved an average accuracy of 95.70% ± 1.27%. Additionally, the average
recognition accuracy at different arm elevation positions was 92.00% ± 5.70%, as shown in
Figure 6.

As shown in Table 3, the sEMG signals at position x and position y are used as the
pre-training inputs in the source domain and the retraining inputs in the target domain,
respectively. The model test results unfold in three scenarios, and the test data are position
x, position y and position z (x, y, z ∈ (1,2,3) and x ̸= y ̸= z), respectively.

Recognition accuracies of 15.01% ± 3.08%, 15.54% ± 3.29% and 15.91% ± 2.42% were
tested using the CNN directly, i.e., using only the pretrained source network without
retraining at the positions x, y, or z, respectively (No. 1).

However, significant improvements were observed when utilizing DAIDA. The
accuracy testing at positions x, y and z yielded results of 44.03% ± 12.26% (No. 2),
92.01% ± 7.37% (No. 3) and 41.99% ± 10.98% (No. 4), respectively. Moreover, when
employing all arm positions as the source domain data for pretraining, the accuracies
achieved were 54.60% ± 12.86% (No. 6), 92.15% ± 8.47% (No. 5) and 49.60% ± 8.86%
(No. 6) for positions x, y and z, respectively.

3.3. The Recognition Performance of Transhumeral Subjects

Table 5 shows the recognition performance of DAIDA for transhumeral amputees
under different training schemes. The recognition accuracy tested directly after pretraining
the model using only sEMG signals under all arm positions is 42.08% ± 8.21%. The
recognition accuracies are 43.61% ± 8.77%, 94.93% ± 3.21% and 40.60% ± 9.68% when
using data from a single arm position to pretrain and test the performance of the domain
adaptation in the source and target domain data as well as the generalization performance
of the models corresponding to scenarios 2 to 4, respectively. When pretraining using
data from all arm positions to detect the performance of domain adaptation effects on
the total dataset, the recognition accuracies were 94.06% ± 4.18% and 58.43% ± 8.38%,
corresponding to schemes 5 and 6, respectively.

Table 5. Recognition results of different training programs for the transhumeral amputees.

No. Labeled Source
Domain Data

Unlabeled Target
Domain Data Testing Data Accuracy (%)

1 x, y, z \ x 42.08 ± 8.21
2 x y x 43.61 ± 8.77
3 x y y 94.93±3.21
4 x y z 40.60 ± 9.68
5 x, y, z y y 94.06±4.18
6 x, y, z y NOT y 58.43 ± 8.38

The characters x, y, z each represent one arm position, respectively (x, y, z ∈ (1,2,3) and x ̸= y ̸= z). Bold indicates
the best results.
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4. Discussion

In order to achieve accurate recognition of upper arm motions and to mitigate the
impact of arm position effects on the performance of myoelectric interfaces during real-
world use, we propose a network framework with an Inception feature extraction structure
that combines the techniques of adversarial training in the domain adaptation domain.
In this paper, we design the DAIDA to effectively extract and classify domain-invariant
features across domains. Specifically, by optimizing the three components of the adversarial
network, namely the feature extractor, label predictor and domain discriminator, the
network can learn arm-position-specific features by aligning the feature distributions of
different arm positions to reduce the impact of domain migration due to changes in arm
position. The feature extractor learns discriminative features of sEMG signals through the
deep network. The label predictor is used to distinguish between different tasks, while the
domain discriminator is used to reduce the inter-domain variation in features. Thus, this
framework effectively achieves better accuracy and adaptability in the recognition of upper
arm motions.

This study first demonstrates that the classification performance of the parallel struc-
tured network outperforms a network using ordinary convolutional layers in upper arm
motion recognition (Table 4). The network structure proposed in this paper combines the
feature maps output from the parallel convolutional kernels with different kernel sizes
to construct feature maps with more comprehensive semantic information in order to
improve the model’s ability to recognize upper arm movements. More complex parallel
structures look to exhibit better model performance while ensuring that the network size is
appropriate. Therefore, in this study, the Inception C structure was chosen as the feature
extraction module of the baseline model.

The model performs well in recognizing upper arm motions under the three commonly
used arm positions, as can be seen in Figure 6, with recognition accuracies greater than 88%
for all of them. The average recognition accuracy was also greater than 90% when using
all arm positions as inputs. There is a distinction between the recognition results at the
three arm positions, which may be due to the different characteristics of the corresponding
EMG data.

In comparison to previous studies, Gaudet et al. found that it was possible to clas-
sify eight upper-limb phantom limb movements and one no-movement category in tran-
shumeral amputees with an average accuracy of 81.1% [31]. The inclusion of kinematic
features increased the accuracy by an average of 4.8%. Jarrassé et al. successfully classified
up to 14 phantom arm movements, achieving an average recognition accuracy of more
than 80% when only six hand, wrist and elbow movements were considered [3]. In contrast
to previous work, Huang et al. successfully improved the identification accuracy of 15 mo-
tions of humeral amputation patients to more than 85% by using a higher-order spatial
filter to obtain more informative high-density sEMG signals [32]. Li et al. found that the
classification performance of fused sEMG and EEG signals was significantly better than
that of single sEMG or electroencephalogram (EEG) signal sources [33]. The accuracy of
this fusion method was as high as 87%. Nsugbe et al. found that eight discrete gestures of
the upper arm could be recognized with a best classification accuracy of 81% [34]. While
the number of movements recognized in previous studies is different from ours, it is worth
noting that these works required the use of either high-density electrodes or information
fusion as inputs to the classifier, which means that more complexity is introduced in practi-
cal use. Our study achieves effective recognition of commonly used motions while using
routine EMG electrodes as input.

Previous studies show that the arm position has a significant impact on gesture
recognition [35]. As shown in Figure 7, the average recognition accuracy for classifying
arm positions using the baseline model is over 95%. This indicates that there is great
variability in the motion signals for different arm positions, which is consistent with existing
research [21,36–38]. It is also illustrated that different arm elevation position recognition
results are not obtained due to the dissimilarities in the EMG signals under each arm
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position. Therefore, we adopt DAIDA to alleviate this impact; i.e., after pre-training with
data from a single arm position, migration can be completed following a simple calibration
to make the EMG interface applicable to another arm position.

From Figure 8, it can be observed that when a recognition model pretrained on the
source domain arm position is retrained with target domain data (different from the source
domain arm position) and tested on the source domain arm position (the same arm position
as the source domain), the variation caused by different arm positions results in a maximum
recognition accuracy of 44.03% ± 12.26%. As can be observed from the first column of
Figure 8, the recognition accuracy is improved by 29.02% ± 9.18% compared to the direct
use of CNN when tested on the source domain data (p < 0.05).

Figure 8. Comparison of results using one single position for pretraining data under CNN and
DAIDA. ‘DAIDA all positions’ means data from all positions were used for pretraining. Horizontal
coordinates indicate test data for different arm positions. The characters x, y and z each represent one
arm position, respectively (x, y, z ∈ (1, 2, 3) and x ̸= y ̸= z). * represents p < 0.05.

When the recognition model pretrained on the source domain position is tested on
the target domain arm position, the recognition accuracy can reach up to 91.25% ± 6.59%
at the test arm position. As can be observed from the second column of Figure 8, this is
an improvement of 75.76% ± 2.30% over the result obtained from testing using the CNN
directly (p < 0.05). Using the whole dataset (three arm positions) as the source domain,
the best recognition results were achieved when testing on the target domain data, with
a recognition accuracy of 93.33% ± 6.86%. When not tested on the target domain data,
the recognition results declined significantly, with the highest recognition accuracy being
54.60% ± 12.86%, which was still significantly higher than the direct use of CNNs. This
meets the expected results while using only a small amount of data for retraining to achieve
a performance that approximates the source domain model, meets the expected results and
achieves the goal of recognizing different arm elevation positions [21].

When the recognition model trained on the source domain position is tested on data
that are different from the source and target domains, the highest arm position recognition
accuracy can be 41.99% ± 10.98% in the test. As can be observed from the third column of
Figure 8, this is an improvement of 29.08% ± 8.56% over the result obtained from testing
with the CNN directly (p < 0.05). This demonstrates the weak generalization ability of the
provided domain adaptation model.

A similar distribution of results was demonstrated in the experimental results for
the transhumeral amputees. Regardless of whether the source domain data comprised a
single arm position or all arm position data, better recognition results with a recognition
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accuracy greater than 90% were only shown when tested on the target domain. When not
tested on the target domain, the recognition accuracy was less than 60%. This fits well with
the use scenario of pattern recognition based on sEMG signals, i.e., motion recognition
of transhumeral amputees controlling a myoelectric prosthesis in different arm positions.
The modeling framework proposed in this study meets the needs of myoelectric prosthesis
motion recognition for transhumeral amputees and solves the problem of performance
degradation caused by arm position changes.

In previous studies addressing position effects, Fougner et al. used sEMG and ac-
celerometer sensors attached to 10 subjects with normal arms to reduce the average clas-
sification error from 18% to 5% [21]. Khushaba et al. presented their proposed spectral
moments to achieve significant reductions in the classification error rates of up to 10%
on average across subjects and five different limb positions [22]. Geng et al. proposed a
cascade classification scheme using a position classifier and multiple motion classifiers
responsible for different arm positions using multichannel EMG signals and tri-axial ac-
celerometer mechanomyography signals to reduce the interpositional classification error
of amputees by up to 10.8% [19]. Mukhopadhyay et al. used time domain power spectral
descriptors as the feature set to train a Deep Neural Network classifier, obtaining 98.88%
recognition accuracy on five limb positions [36]. The aim of our study was to address TH
amputees’ problem of decreased recognition performance due to arm position changes, and
few studies have focused on this group. However, TH amputees similarly and inevitably
need to make arm position changes while using their prostheses to complete daily activi-
ties [39]. Our proposed algorithm, which does not require the introduction of other inputs
or computation of features, simply uses two action repetitions for retraining to achieve
stable recognition at different arm elevation positions, which is in line with the actual usage
scenario of myoelectric prostheses.

Our proposed DAIDA is able to achieve accurate upper arm movement recognition
while realizing adaptation at different arm elevation positions, which is useful in practical
applications, by improving the model performance from the source domain to the target
domain through knowledge migration. Second, the deep domain adaptation network is
able to capture the shared features between the source and target domains, thus achieving
better model generalization capabilities. Therefore, DAIDA is uniquely suited to address
motion recognition at different arm elevation positions.

Although the DAIDA presented in this paper enables the stable detection of multiple
limb positions in transhumeral amputees, we have only covered the most common limb
positions in daily life and not all degrees of freedom of the upper arm. At the same time,
we were able to achieve a limited number of movement patterns. Practical prosthesis use
may also involve factors such as electrode displacement and muscle fatigue, which will be
a direction for future refinement.

5. Conclusions

The DAIDA algorithmic framework proposed in this paper first applies a parallel
feature module, which significantly improves action recognition for transhumeral amputees.
At the same time, this study and existing studies have shown significant variability in
the sEMG patterns of the upper arm due to changes in arm position, which adversely
affect the performance of models trained in a domain-independent environment. The
DAIDA proposed in this paper utilizes a domain adversarial neural network to learn
unsupervised domain-invariant features directly from the source arm position signal.
By using a small amount of unlabeled arm position sEMG data for adversarial training
based on domain adaptation, the domain shift problem present in changing arm position
scenarios shows promising performance. Due to its satisfactory classification performance
and reduced training burden, the proposed DAIDA framework is a promising practical
myoelectric interface technique. Therefore, further work will be carried out to include more
transhumeral amputees and to access the model in complex real-life scenarios to realize
real-time usability.
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