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Abstract: Knowledge tracing plays a crucial role in effectively representing learners’ understanding
and predicting their future learning progress. However, existing deep knowledge tracing methods,
reliant on the forgetting model and Rasch model, often fail to account for the varying rates at which
learners forget different knowledge concepts and the variations in question embedding covering
the same concept. To address these limitations, this paper introduces an enhanced deep knowledge
tracing model that combines the transformer network model with two innovative components. The
first component is a multiband attention mechanism, which comprehensively summarizes a learner’s
past response history across various temporal scales. By computing attention weights using different
decay rates, this mechanism adaptively captures both long-term and short-term interactions for
different knowledge concepts. The second component utilizes a quantized question embedding
module to effectively capture variations among questions addressing the same knowledge concept.
This module represents these differences in a rich embedding space, avoiding overparameterization or
overfitting issues. The proposed model is evaluated on popular benchmark datasets, demonstrating
its superiority over existing knowledge tracing methods in accuracy. This enhancement holds
potential for improving personalized learning systems by providing more precise insights into
learners’ progress.

Keywords: knowledge tracing; deep learning; transformer; self-attention; multiband attention;
quantized question embedding

1. Introduction

Knowledge tracing (KT) is an innovative technique that has revolutionized the field
of educational technology [1,2]. By leveraging data from learners’ interactions with ed-
ucational materials, knowledge tracing algorithms can accurately measure and predict
their knowledge and skills over time. This approach enables educators and educational
platforms to provide personalized and adaptive learning experiences for students, where
the instruction is tailored to their individual needs and abilities. Through the analysis of
patterns in learner responses, knowledge tracing algorithms can determine their current
knowledge state, identify areas of strength and weakness, and make targeted recommenda-
tions for instruction. This personalized approach to learning not only enhances engagement
and motivation but also leads to improved academic performance [3–6].

Inspired by the success of deep learning, recent studies on knowledge tracing have
applied deep learning techniques. Deep knowledge tracing (DKT) [7] leverages recurrent
neural networks (RNNs) [8] or long short-term memory neural networks (LSTMs) [9]
to capture the temporal dependencies in learners’ interactions. It takes into account the
sequence of learners’ responses along with additional factors such as the time spent on
each task to predict their future performance accurately, and it has also demonstrated great
potential for solving the knowledge tracing problem.

Several studies [10–14] have been conducted on transformer architecture, and re-
searchers have explored the incorporation of attention mechanisms into knowledge tracing
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models. These approaches address a drawback of the DKT model, which treats all questions
within a sequence as equally important. While the specific attention mechanisms may
differ, they share a common goal: to learn the attention weights for questions within a
sequence of interactions. By doing so, these models aim to capture the relative importance
of each question in predicting the likelihood of correctly answering the next question.

To better capture the dynamics of student knowledge and address the challenge
of data sparsity in knowledge tracing tasks, existing transformer approaches essentially
integrate two models based on prior knowledge: temporal decay attention and Rasch-
model-based embedding.

Temporal decay attention: Psychological studies have shown that the consideration of
forgetting is crucial for accurately estimating a student’s knowledge state. This is because
a student’s mastery of knowledge tends to decline exponentially over time since their
last practice with related questions [15]. Therefore, the standard attention function in
a transformer is replaced by an attention function with a fixed-range temporal decay
model [13,16].

Rasch-model-based embedding: In knowledge tracing tasks, the number of questions
is often much larger than the number of knowledge concepts. To avoid data sparsity, and
instead of directly embedding each question, an embedding representation that considers a
parameter controlling the deviation of a question from the knowledge concept it involves
is proposed by following the Rasch model [13,17,18].

Although the two models mentioned above can accurately characterize certain features
of the learning process, we argue that there is still room for improvement in both of these
models. First, because learners have different forgetting rates for various knowledge
concepts, a fixed-range temporal decay attention model may not adequately accommodate
these differences. Second, the Rasch model fixes the variation in the questions as a linear
combination of two embedding vectors related to the knowledge concept covering them.
Although it reduces the number of parameters, it also weakens the representative power
of the model. Therefore, we propose an enhanced deep knowledge tracing model that
operates via multiband attention and quantized question embedding. We summarize the
main innovations of our work as follows:

• We introduce a multiband attention model that integrates multiple temporal scales
to account for forgetting patterns at varying rates. This multiband model seamlessly
aligns with the multihead attention mechanism in transformer models, wherein differ-
ent heads employ distinct bands.

• To address the overfitting issue caused by having too many question tokens, we de-
signed a quantized question embedding method to cluster the question embeddings
during the training process, which effectively reduces the number of different embed-
dings. At the same time, this model does not impose limitations on its representation
capacity in the embedding space.

• We conducted comprehensive experiments to assess the performance of our proposed
model on four publicly available knowledge tracing datasets. The results clearly
establish the effectiveness of our model.

The structure of this paper is outlined as follows: Section 2 provides a review of the
literature related to our study. Section 3 enumerates the critical problem definitions and
notations utilized in this research. Section 4 describes the knowledge tracing model we
propose. Section 5 outlines the experimental design. Section 6 reports on the findings of
our experiments and engages in discussions. Section 7 presents our conclusions.

2. Related Works

This section offers a snapshot of the existing research landscape in knowledge tracing.

2.1. Knowledge Tracing

Knowledge tracing [1] is a method used in educational technology to model and
predict student knowledge and learning progress over time. It involves the analysis of
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student data to infer their mastery of specific concepts or skills. The goal of knowledge
tracing is to provide personalized feedback and support to students, thereby helping them
to improve their learning outcomes.

Traditionally, knowledge tracing has been based on statistical models that use ob-
served student responses to questions or tasks to estimate their current knowledge level.
Bayesian knowledge tracing (BKT) [1,19] is a probabilistic modeling technique that uses
Bayesian inference to estimate students’ knowledge states. BKT assumes that students
have a latent knowledge state that evolves over time and can be influenced by observables,
such as their responses to learning tasks or assessment items. By capturing the probability
of students mastering specific concepts, BKT helps in identifying their knowledge gaps
and predicting their performance on future tasks. The Bayesian framework allows for
updating the knowledge estimates as new information becomes available, thereby resulting
in increasingly accurate predictions. The factor analysis model (FAM) [20,21] is a statistical
technique that aims to identify the underlying latent factors responsible for student perfor-
mance on learning tasks. It assumes that learners’ knowledge and skills can be represented
by a set of unobservable factors. FAM uses factor analysis to estimate the relationships
between these factors and observable variables, such as student responses to assessment
items or tasks. By capturing these latent factors, FAM helps in understanding the structure
of students’ knowledge and predicting their performance on future tasks.

Despite being a nascent field of research, knowledge tracing has already found di-
verse applications across various scenarios, such as learning resource recommendations
and adaptive learning. Desmarais et al. [22] propose two extensions to the knowledge
tracing model. The first extension takes into account the difficulty levels of exercises, while
the second extension considers students’ multiple attempts at solving exercises. These
extensions are integrated into the knowledge tracing algorithm, which is used to recom-
mend exercises based on students’ knowledge states. Concretely, the algorithm begins by
determining the expected range of scores for each exercise. It then calculates an expected
score that the student should achieve in order to attain mastery, taking into account their
current knowledge state. Then, the algorithm suggests the exercise with a predicted score
closest to the expected score. As the knowledge state for a specific concept improves, the
algorithm recommends more challenging exercises. Huang et al. [23] propose three addi-
tional objectives that are beneficial and specific for education. The first objective, “review
and explore”, aims to enhance students’ understanding of nonmastered concepts through
timely reviews and provide opportunities for exploring new knowledge. The second ob-
jective, “smoothness of difficulty level”, suggests that the difficulty levels of consecutive
exercises should be within a narrow range as students gradually learn new material. The
third objective, “student engagement”, focuses on recommending exercises that align with
students’ preferences, thereby promoting their enthusiasm during the learning process. To
support online intelligent education with these specific objectives, the researchers devel-
oped a more advanced framework called multiobjective deep reinforcement learning. This
framework incorporates three novel reward functions that capture and quantify the effects
of the above objectives via knowledge tracing technology. Pardos et al. [19] implement
knowledge tracing on the edX MOOC platform, specifically focusing on a 14-week online
course that consists of weekly video lectures and accompanying lecture problems. The
researchers utilize knowledge tracing to analyze students’ learning behavior and improve
their learning experience in the course. They accomplish this by creating effective learning
strategies and dynamic learning paths that organize learning resources based on specific
knowledge structures for the students. To maximize the utilization of cognitive structure
for adaptive learning, Liu et al. [24] propose the Cognitive Structure Enhanced framework
for adaptive Learning (CSEAL). CSEAL conceptualizes adaptive learning as a Markov
decision process. The framework utilizes deep knowledge tracing to track the evolving
knowledge states of students at each learning step. Furthermore, the authors develop a
navigation algorithm that takes into account the knowledge structure, ensuring logical and
reasonable learning paths in adaptive learning. This algorithm also reduces the search space
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in the decision-making process. Finally, the CSEAL employs the actor–critic algorithm to
dynamically determine the most appropriate learning resources for individual students,
enabling sequential identification of the optimal resources for their learning progression.

2.2. Deep Knowledge Tracing

With the advancements in machine learning and natural language processing, more
complex models have been developed, e.g., deep learning networks such as RNNs [8],
LSTMs [9], and transformer-based [25] knowledge tracing frameworks.

Deep knowledge tracing (DKT) [7] has pioneered the use of deep learning for knowl-
edge tracing. It uses RNNs and LSTMs to capture the sequential patterns in student
responses and predict their mastery of concepts over time. DKT+ [10] introduces reg-
ularization terms for reconstruction and waviness into DKT’s loss function in order to
reconstruct observed inputs and keep consistency in predicting knowledge concept perfor-
mance over time. DKT has been shown to outperform probabilistic and logistic models in
terms of performance. However, it does have certain limitations that cannot be avoided.
For example, it is challenging to understand how the hidden states can accurately represent
student knowledge levels, and it cannot explicitly determine a student’s level of knowledge
mastery from the hidden state [26,27].

In order to enhance the interpretability of DKT, memory-aware knowledge tracing
methods have been proposed. The dynamic key–value memory network (DKVMN) [11]
approach uses a memory-augmented neural network to capture the relationship between
student knowledge and learning materials. It maintains a memory matrix with key–value
pairs, where the keys represent the exercise concepts and the values represent the students’
knowledge levels. This method allows for more complex interactions between students
and concepts, thus leading to better knowledge predictions. Abdelrahman et al. [28]
highlighted a limitation of DKVMN, wherein they emphasized its inability to capture
long-term dependencies in the learning process. To address this issue, they proposed a
solution called the sequential key–value memory network (SKVMN). The SKVMN model
combines the recurrent modeling capacity of DKT with the memory capacity of DKVMN,
thereby aiming to overcome the shortcomings of both models.

2.3. Attentive Knowledge Tracing

The transformer model was initially introduced for neural machine translation [25].
Unlike traditional deep learning models that rely on recurrence, the transformer model
completely relies on the self-attention mechanism to capture global dependencies within a
sequence. This approach has demonstrated exceptional abilities in feature extraction and
dependency capture while maintaining high computational efficiency. Several noteworthy
pretraining models based on the transformer architecture, such as BERT [29] and GPT [30],
have achieved state-of-the-art performance on various natural language processing tasks.

Pandey et al. [12] introduced a self-attentive model called SAKT (self-attentive knowl-
edge tracing), which incorporates the transformer architecture to effectively capture the
long-term dependencies in student learning interactions. This application of the trans-
former model directly contributes to achieving impressive performance in knowledge
tracing. Wang et al. [31] introduced an adaptive sparse self-attention network, which not
only generates the missing features but also provides detailed predictions of student perfor-
mance. Zhu et al. [32] identified a vibration issue in DKT and proposed an attention-based
KT model to address it. They also incorporated the use of finite state automaton for a
comprehensive understanding of knowledge state transitions. Choi et al. [33] proposed an
approach called separated self-attentive neural knowledge tracing (SAINT) to enhance the
self-attentive computation for facilitating knowledge tracing adaptation. The SAINT model
utilizes an encoder–decoder structure, where the embeddings of exercises and answers are
independently encoded and decoded using self-attention layers. Shin et al. [34] introduced
the SAINT+ model, which integrates two temporal features into SAINT. These features
include the response time for each exercise and the duration between consecutive learning
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interactions. Ghosh et al. [13] proposed a context-aware attentive knowledge tracing (AKT)
model that combines the self-attention mechanism with psychometric models. The unique
aspect of AKT is its implementation of a novel monotonic attention mechanism, which
operates under the assumptions that the learning process is influenced by forgetting and
that student knowledge tends to diminish over time. Wonsung Lee et al. [14] introduced
a contrastive learning framework for knowledge tracing (CL4T) that focuses on reveal-
ing semantically similar or dissimilar examples of learning history to better understand
their relationships.

Compared with other knowledge tracing methods, the attentive knowledge tracing
or transformer framework has shown promising results in terms of predicting the future
answers of learners.

Overall, knowledge tracing plays a crucial role in adaptive learning systems, offering
insights into student progress and enabling personalized interventions. The transformer-
based knowledge tracing framework, with its self-adaptive nature and enhanced modeling
capabilities, has the potential to revolutionize the field of educational technology and
improve student learning experiences.

3. Preliminaries

This section formalizes the research problem of knowledge tracing in this paper. For
easy reference, Table A1 summarizes the symbols used throughout the paper.

3.1. Problem Definition

In knowledge tracing systems, a learner’s learning activities consist of a sequence
of questions and the corresponding responses. For learner i at time step t, they answer a
question qt drawn from a knowledge concept ct and obtain response rt ∈ {0, 1}, which
denotes whether the learner correctly answers the question. Therefore, for each learner, we
have their responses as a sequence

{(q1, c1, r1), . . . , (qt, ct, rt), . . . , (qt, cT , rT)}, t ∈ 1, 2, . . . , T, qt ∈ P, ct ∈ C, (1)

where T is the length of the learning sequence, P is the set of all questions, and C is the set
of all knowledge concepts.

Definition 1 (Knowledge Tracing). Given the previous responses of a learner before time step t
as a sequence {(q1, c1, r1), . . . , (qt, ct, rt)}, as well as the question (qt+1, ct+1) at time step t + 1,
the objective of knowledge tracing is to predict the response r̂t+1.

3.2. Knowledge Concept Embedding

We tokenize and embed the knowledge concepts of the questions and answers in a
similar way to Word2Vec [35]. Specifically, for exercise recording (qt, ct, rt), ct is converted
into a one-hot vector c̃t of dimension ||C|| based on the index of the knowledge concept
present in the question. As for the answer to the question, in order to distinguish the
different impacts on a learner’s knowledge state between correct and incorrect answers, the
response knowledge state is extended to a 2||C||-dimensional one-hot vector r̃t as follows:

r̃t =

{
c̃t ⊕ 0 if rt = 1
0 ⊕ c̃t if rt = 0,

(2)

where the feature vector 0 = (0, 0, . . . , 0) has the same dimensions as c̃t, and ⊕ denotes the
concatenation operation.

Then, the one-hot vector c̃ts and r̃ts are passed through an embedding layer to convert
them into embedding features for the knowledge concept of question and answer, respectively.

3.3. Temporal Decay Attention

Forgetting is a crucial factor in accurately assessing a student’s knowledge, as their
mastery of a subject tends to decline over time since their last practice [15]. The field of
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attentive knowledge tracing has made efforts to model this forgetting effect. The most
popular method is exponential temporal decay attention [13,16].

Let Qt denote the query corresponding to the question the learner responds to at time
step t, and let Kτ denote the key for the knowledge state at time step τ, then the standard
attention function in the transformer network [25] is computed as follows:

at,τ = Softmax
(

QT
t Kτ√

D

)
, (3)

where D is the dimension of the query and key matrix.
The forgetting theory suggests that, when a learner encounters a new question, past

experiences that are unrelated or from a long time ago are unlikely to be highly relevant.
Therefore, the exponential decay attention is computed as follows:

ât,τ = Softmax
(

QT
t Kτ · exp(−θ · d(t, τ))√

D

)
, (4)

where θ > 0 is a decay rate parameter, and d(t, τ) is temporal distance measure between
time steps t and τ.

3.4. Rasch-Model-Based Embedding

In real-world datasets, the number of knowledge concepts is often much smaller
than the number of questions. To avoid overparameterization and overfitting when using
deep learning methods to model the relationship between the questions and a learner’s
knowledge states, it is common to use the knowledge concepts included in the questions as
tokens. Apparently, by doing this, the differences between different questions that contain
the same knowledge concepts can be overlooked.

To this end, the Rasch model [13,18] has been widely applied to construct the variance
of the questions. The Rasch model characterizes the probability that a learner answers
a question correctly using two scalars: the question’s difficulty and the learner’s ability.
Specifically, it constructs the embedding of the question qt from knowledge concept ct at
time step t as

xt = ect + µqt · dct , (5)

where ect is the embedding of the concept this question covers, dct is a vector that summa-
rizes the variation in questions covering this concept, and µqt is a scalar difficulty parameter
that controls how far this question deviates from the knowledge concept it covers. Since
the embedding vectors ect and dct are entirely based on the knowledge concept ct, and as
the scalar µqt is based on the question qt, it can greatly reduce the number of parameters so
as to avoid overfitting.

4. Methodology

In this section, we introduce our proposed model in detail, which mainly consists
of two novel modules: the quantized question embedding module and the multiband
attention module.

4.1. Overall Architecture

The overall architecture of the adaptive transformer is shown in Figure 1.
The proposed network primarily consists of n layers of stacked encoder and de-

coder [25]. The question data go through knowledge concept embedding (KC embedding)
and quantized question embedding (QQE), respectively. The results are summed and fed
into the encoder, which is composed of multiband attention (MBA) and feed-forward layers,
to learn the interactions between the questions. The output is then combined with the
embedding of the response data and fed into the decoder. The decoder, which is composed
of masked multiband attention and feed-forward layers, learns the relationship between the
question and the learner’s knowledge state. The output of the decoder is passed through
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linear and Softmax layers to obtain the learner’s response. The final loss of the network is
a weighted sum binary cross entropy loss of the prediction and mean square loss of the
features of the quantized question embedding codebook. We provide a detailed explanation
of these modules later.

Figure 1. Overall architecture of the proposed network. The model consists of stacked encoder
and decoder layers. It incorporates the knowledge concept and quantized question embeddings for
question data, which are then processed through multiband attention and feed-forward layers in the
encoder to capture question interactions. The resulting output is combined with response data and
fed into the decoder, which learns the relationship between the question and knowledge state. The
decoder’s output undergoes linear and Softmax layers to predict the learner’s response.

4.2. Quantized Question Embedding

Knowledge concepts describe the main characteristics of a question, but regarding
them as completely equivalent overlooks the subtle variation between different questions
that share the same knowledge concept. In real-world data, the number of questions is
often much larger than the number of knowledge concepts, thereby resulting in a data
sparsity problem—in other words, directly tokenizing and embedding the questions can
lead to overparameterization and overfitting issues.

To address this, we employed quantized question embedding to tackle this problem.
As shown in Figure 2, a codebook was created to store the quantized question embedding
features, where the number of features in the codebook was much smaller than the number
of questions. For each question qt, we first used an embedding layer to obtain its embedding
feature zt, Then, the model searches for the most similar feature xt in the codebook and
sums it up with the knowledge concept embedding, which serves as the input to the
encoder and decoder. Intuitively, the features stored in the codebook can be seen as several
cluster centers of the questions’ variations. Instead of directly using the embedding features
of the questions, these quantized cluster center features help to avoid overparameterization
and overfitting.
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Figure 2. The process of quantized question embedding. We implemented quantized question
embedding by creating a codebook to store quantized features. For each question embedding zt,
the model searched for the most similar feature xt in the codebook. A stop gradient operation was
introduced to solve the nondifferentiable process from zt to xt. For this module, during forward
propagation, we replaced zt with xt. During backward propagation, we replaced xt with zt.

The transfer process from zt to xt is nondifferentiable. Consequentially, we introduced
the stop gradient [36] operation as follows:

sg(x) =
{

x (in f orward propagation)
0 (in backward propagation).

(6)

During forward propagation, the value inside the stop gradient operation remains
unchanged. During backward propagation, the gradient of the stop gradient operation is
set to zero, indicating that this calculation has no gradient. With this operation, we can
incorporate the output of the quantized question embedding module into the network
as follows:

OuputQQE(xt, zt) = zt + sg(xt − zt), (7)

where it forward propagates xt to the next layer of the framework and backpropagates the
gradient of zt to the previous layer.

4.3. Multiband Attention Model

The forgetting mechanism effectively constrains interactions within a relatively narrow
range, thereby allowing the current knowledge concept to consider more recent exercise re-
sults. However, due to the varying forgetting rates for different knowledge concepts among
learners, a fixed-parameter forgetting model may not necessarily fit it well. Therefore, we
propose a multiband attention model, which possesses multiple effective temporal ranges
of interaction to accommodate forgetting patterns with different rates. This multiband
attention model naturally adapts to the multihead attention mechanism of transformer
models, where different heads utilize different bands.

The original input is, respectively, processed through a knowledge concept embedding
layer and quantized question embedding layer, and it is then summed up to obtain the
question representation feature x̂t and the response representation feature ŷt. Next, we
used a multiband attention model and masked multiband attention layers to capture the
interactions between features.

We obtained the query, key, and value for the question embeddings {x̂1, . . . , x̂t} with
the following equations:

Q = X̂Wq, K = X̂Wk, V = X̂Wv, (8)

where X̂ is the question feature matrix that is composed of vectors {x̂1, . . . , x̂t}, and Wq,
Wk, and Wv are the linear projection matrices for query, key, and value, respectively.
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The relevance of each of the previous interactions with the current question is deter-
mined by the mth band attention weights, which are defined as follows:

Attentionm(Q, K, V) = Softmax
(

QKTexp(−mθd(∆t))√
D

)
V, (9)

where d(∆t) denotes the distance between the temporal interval ∆t, and the parameters θ
control the decay rate of the distance.

To effectively attend to the information from various representative subspaces, we
utilized the projection matrices Wqs, Wks, and Wvs to linearly project the queries, keys,
and values with different ms. Figure 3 illustrates the combination of multiband attention
matrices with different ms from 1 to 8.

Multiband(x) = (band1 ⊕ . . . ⊕ bandh)Wo, (10)

where bandm = Attentionm(X̂W(m)
q , X̂W(m)

k , X̂W(m)
v ), and Wo is a linear projection matrix.

Figure 3. The combination of multiband attention matrices with different ms. Blue areas represent
the effective attention weights that can be obtained. The greater the depth of blue, the less the degree
of forgetting. Different bands captured the attention information within different time step ranges.

Similarly, the query, key, and value for the response embeddings {0, ŷ1, . . . , ŷt−1} were
expressed with the following equations:

Q = ŶW̃q, K = ŶW̃k, V = X̂W̃v, (11)

where Ŷ is the response feature matrix composed of vectors {0, ŷ1, . . . , ŷt−1}.
The masked attention operation was adopted to prevent the model from seeing

future answers.

MaskedAttentionm(Q, K, V) = Softmax
(

QKTexp(−mθd(∆t))⊙ M√
D

)
V, (12)

where M is a lower triangular unit matrix, and ⊙ denotes element-wise multiplication.

4.4. Encoder and Decoder

The main components of the proposed network were the n encoders and decoders.
The encoders were responsible for learning the interactions between the different questions
and converting input question embeddings into intermediate representations, which can
be seen as the question’s knowledge requirement. Meanwhile, the decoder learns the
relationship between the intermediate question representations and response embeddings,
as well as converting the response embeddings into high-level representations, which can
be seen as a learner’s knowledge state.
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As shown in Figure 1, both the encoder and decoder adopted a similar residual
connection network structure. For the encoder, the input question embedding serves as the
query, key, and value. It goes through a multiband attention layer, a layer-normalization
layer, a feed-forward layer, and another layer-normalization layer to obtain the intermediate
representations of the questions. For the decoder, it takes the response embedding as the
query and key, and the output of the encoder is taken as the value. It goes through a
masked multiband attention layer, a layer-normalization layer, a feed-forward layer, and
another layer-normalization layer to obtain the high-level representations of the answers.
Both the encoder and decoder are stacked with n layers, where the output of the previous
layer serves as the input to the next layer.

The output of the last decoder obtained above is passed through the fully connected
layer with Sigmoid activation to predict the response of the learner.

st = Sigmoid(wT
f dt + b f ), (13)

where st is a scalar representing the probability of the learner providing the correct response
to question t, and w f and b f are the parameters of the fully connected layer.

The main objective of the training was to minimize the negative log-likelihood of the
observed sequence of learner responses under the model. The parameters were learned by
minimizing the binary cross entropy (BCE) loss between st and rt.

LBCE = −∑
t

rtlog(st) + (1 − rt)log(1 − st). (14)

As for regularization, we hope that the embedding features of all the questions related
to the same knowledge concept were close to the embedding of the knowledge concept
itself. In other words, the sum of the norms of all the features in the codebook, i.e.,

LReg = ∑
i∈B

∥xi∥2, (15)

where xis are all the embedding features in codebook B, which should be as small as possible.
The final loss function was a weighted sum of LBCE and LReg.

L = λLBCE + (1 − λ)LReg, (16)

where λ is the hyperparameter to govern the influence of question embedding variance.

5. Experiments

In this section, we present the experimental settings aimed at evaluating our proposed
model. This evaluation is conducted by addressing the following crucial research questions:

• Does our proposed model outperform other knowledge transfer models?
• How do the multiband attention and quantized question embedding components

within our model contribute to its overall performance?
• What is the explanation for the impact of these components on the model’s effectiveness?

5.1. Datasets

We conducted experiments on four popular datasets to evaluate the effectiveness of
the proposed transformer in various learning scenarios. Table 1 presents the statistical
details of these datasets. We briefly introduce these datasets as follows:
• Algebra05 (https://www.kdd.org/kdd-cup/view/kdd-cup-2010-student-performance-

evaluation/Data, accessed on 10 March 2024) was introduced during the KDDcup 2010
Educational Data Mining challenge [37]. It comprises student responses to algebra
questions from 2005 to 2006.

• Bridge06 (https://www.kdd.org/kdd-cup/view/kdd-cup-2010-student-performance-
evaluation/Data, accessed on 10 March 2024) is similar to Algebra05, but it includes
more learners, questions, and interactions from 2006 to 2007 [37].

https://www.kdd.org/kdd-cup/view/kdd-cup-2010-student-performance-evaluation/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2010-student-performance-evaluation/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2010-student-performance-evaluation/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2010-student-performance-evaluation/Data


Appl. Sci. 2024, 14, 3425 11 of 20

• Assist09 (https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-
data, accessed on 10 March 2024) is a dataset collected from ASSISTment, an online
tutoring system for grade school math exercises, which contains student responses
to different types of questions, such as multiple choice, text, and open-ended ques-
tions [38].

• Assist17 (https://sites.google.com/view/assistmentsdatamining/dataset, accessed
on 10 March, 2024) is another collection from ASSISTment for a data mining competi-
tion in 2017, with learners having significantly longer learning sequences [39]. This
dataset allows learners to attempt a single question multiple times until they reach
the correct answer. Therefore, it becomes crucial for models to take into account the
cumulative effect throughout the learning process.

Table 1. The statistics of the datasets.

Dataset Learners Questions Skills Interactions

Algebra05 571 173,113 271 607,014
Bridge06 1138 129,263 550 1,817,450
Assist09 4163 17,751 123 338,001
Assist17 1709 3162 102 942,816

5.2. Evaluation Metrics

The goal of knowledge tracing is to predict learner performances by combining classi-
fication and regression methods. This research utilizes two evaluation metrics to measure
the accuracy of the prediction models: the area under the curve (AUC) and the root mean
square error (RMSE). These metrics provide a comprehensive assessment of the models’
effectiveness in predicting learner outcomes.

The AUC is a commonly used evaluation metric in binary classification tasks. In
knowledge tracing research, the AUC metric is utilized to assess the ability of prediction
models to correctly classify learner outcomes and discriminate between correct and in-
correct responses. Higher AUC values indicate a more accurate and reliable model in
predicting learner performance.

The RMSE is a commonly used evaluation metric in regression tasks. It measures
the average deviation between the predicted values of a model and the actual values. In
the context of knowledge tracing, a smaller RMSE value signifies improved prediction
performance, as values closer to 0 indicate a higher accuracy in predictions.

5.3. Baseline Methods

To evaluate the overall performance of the proposed model, we conducted a compari-
son between our method and the various established KT methods. In order to ensure a fair
comparison, we utilized the optimal parameter settings for each method. An overview of
the baseline methods is provided below:

• DKT [7] was the first approach to incorporate deep learning techniques into knowledge
tracing. It employs either an RNN or LSTM to represent the knowledge state as a
multidimensional hidden state during the learning process.

• DKT+ [10] enhances the DKT method by introducing regularization terms into its loss
function. These terms focus on reconstruction and waviness to ensure an accurate
reconstruction of observed inputs, and they maintain consistency in predicting the
performance of knowledge concepts over time.

• DKVMN [11] enhances the hidden variable representation of DKT by incorporating a
memory network. This memory structure comprises two matrices: a key matrix to
store all the concepts in a static manner and a value matrix for the dynamic storage and
retrieval of the mastery levels of each concept through reading and writing operations.

• SAKT [12] is the initial knowledge tracing model that utilizes the transformer ar-
chitecture with an attention mechanism. This attention mechanism evaluates the

https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
https://sites.google.com/view/assistmentsdatamining/dataset
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significance of prior questions in relation to the entire learning sequence, thereby
enabling the prediction of learning performances with respect to the current question.

• AKT [13] employs a context-aware attention mechanism to acquire context-aware
representations of exercises and answers. Unlike SAKT’s scaled dot-product attention,
AKT introduces a modified monotonic attention approach to mimic the forgetting
effect through the exponential decay of attention weights.

• CL4KT [14] presents a framework for knowledge tracing that utilizes contrastive
learning to highlight the similarities or differences between examples of learning
history in order to gain deeper insights into their relationships.

5.4. Ablation Study

We conducted an ablation study in order to examine the influence of different com-
ponents on the overall performance prediction in DCKT. This study included numerous
variants of our proposed model, which allowed us to assess the impact of the multiband
attention module and the quantized question embedding module.

5.5. Visualization

To gain a better understanding of the effects of the multiband attention and quantized
question embedding modules, as well as the overall performance of the framework, we
conducted an experiment to visualize the output of the real data processed through these
modules and the framework.

For the MBA module, we compared the attention maps generated using the MBA
module with the ones generated directly from the temporal distance decay methods. We
then observed the differences between these two approaches.

Regarding the QQE module, we obtained embedding features for knowledge con-
cepts and questions with and without QQE. We then employed the t-SNE [40] method
to map these features into three-dimensional space and observed the differences in their
distributions. The t-SNE (t-distributed stochastic neighbor embedding) approach is a di-
mensionality reduction technique commonly used for visualizing high-dimensional data in
a lower-dimensional space. It aims to preserve the local relationships between data points
while simultaneously spreading them out to reveal global patterns.

To evaluate the overall performance of the framework, we randomly selected 10,
20, 50, and 100 concepts from the dataset and calculated the embedding features for all
the questions associated with these concepts. We then mapped these features onto a
two-dimensional space using t-SNE to observe whether they were adequately separated.

5.6. Experimental Setup and Implementation Details

We followed the standard detailed in [41] to preprocess the datasets. We filtered out
learners with less than five interactions and removed interactions not associated with the
named concepts. For quantitative evaluation, we employed a five-fold cross-validation
approach, with the folds being based on individual learners. We implemented the proposed
model in PyTorch 2.0 [42] with an NVIDIA (Santa Clara, CA, USA) GeForce RTX 2080Ti
GPU card. The models were optimized by the Adam optimizer [43] with a batch size of
64 and an initial learning rate of 0.001. The layers of the encoder and decoder are both set
to 3. The size of the embedding and hidden features was set to 256, and the number of
bands was set to 8. The number of the QQE codebook was set to 1024. The regularization
parameter λ was set to 0.01.

6. Results and Discussion

In this section, we present the experimental results and discuss the findings from
our experiments.
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6.1. Overall Performance

To evaluate the overall performance of our model, we compared our model with the
state-of-the-art knowledge tracing models, such as DKT, DKT+, DKVMN, SAKT, AKT, and
CL4KT, on all four of the datasets mentioned above. As shown in Table 2, we compared
our model with all the baseline methods under RMSE and AUC. Figures 4 and 5 visualize
the RMSE and AUC values, respectively, with bar plots. They show that our model
outperformed the other models in both metrics, especially Assist17. In the Assist17 dataset,
the method with the best performance apart from ours is the CL4KT method. The RMSE
and AUC values of our method are 37.36% and 85.75%, respectively, while the CL4KT
method has RMSE and AUC values of 42.27% and 78.06%. Compared with the CL4KT
method, our method improved the RMSE and AUC values by 4.9% and 7.7%, respectively.
Although Assist17 has fewer learners and questions compared with Assist09, the average
number of interactions per learner is significantly higher in Assist17 than in Assist09. Our
approach achieved a more significant performance on Assist17, which demonstrates that
our model excels at learning patterns from long-term sequence data and that it can also
adapt to short-term sequence data. Additionally, the proposed model shows only marginal
improvements on Algebra05 and Bridge06 datasets, primarily due to the intricate nature
of the latent knowledge structure within the datasets. Both datasets entail a significantly
higher number of questions, posing a significant challenge for knowledge tracing.

Figure 4. The RMSE values of all the KT methods over four datasets.

Figure 5. The AUC values of all the KT methods over four datasets.
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Table 2. The overall performance comparison of the four datasets. Our model outperformed other
baseline models (especially the assist17 dataset).

Dataset Metric DKT DKT+ DKVMN SAKT AKT CL4KT Ours

Algebra05 RMSE 37.85 36.42 34.63 34.57 34.91 38.65 34.12
AUC 75.14 71.63 78.37 78.48 77.61 78.49 79.26

Bridge06 RMSE 40.91 39.56 39.01 39.77 36.26 36.10 34.27
AUC 71.82 74.07 74.65 74.43 76.18 76.65 77.41

Assist09 RMSE 43.27 41.19 41.53 41.71 41.86 41.59 40.25
AUC 79.25 78.16 78.64 77.52 78.81 79.30 81.82

Assist17 RMSE 45.06 46.71 45.38 46.62 43.48 42.27 37.36
AUC 68.98 65.37 70.29 67.21 74.95 78.06 85.75

6.2. Ablation Studies

In this section, we present the ablation studies for the proposed model.
To verify the effects of the multiband attention and quantized question embedding, we

conducted comparative experiments with and without them on the Assist09 and Assist17
datasets. As shown in Table 3, the network equipped with multiband attention and
quantized question embedding outperformed the one without them, thereby indicating the
effectiveness of the proposed embedding modules.

Table 3. The performance comparison of our framework with and without MBA, as well as of the
QQE modules on the Assist09 and Assist17 datasets.

Dataset Metric Baseline +MBA +MBA + QQE

Assist09 RMSE 42.84 41.13 40.25
AUC 78.75 80.58 81.82

Assist17 RMSE 43.62 41.15 37.36
AUC 74.80 78.26 85.75

We conducted experiments to optimize the hyperparameters of the proposed model,
such as the number of the bands and the size of the codebook, on the Assist09 and Assist17
datasets. Using various hyperparameters, we trained and tested multiple neural network
models. For each model, we evaluated its performance using RMSE and AUC. Table 4
demonstrates the impact of selecting varying numbers of bands in the multiband attention
module on the final performance, while keeping all other settings the same. Table 5 exhibits
the effect of choosing different codebook sizes in the quantized question embedding module
on the overall performance, while maintaining consistent settings in all other aspects. From
Tables 4 and 5, it can be observed that different hyperparameter selections have minimal
impact on the overall performance of the model, indicating that our model is relatively
stable. The hyperparameters yielding optimal performance are the band set to 8 and the
codebook size set to 1024.

Table 4. The performance comparison of the proposed model with 4, 8, 16, and 32 bands on the
Assist09 and Assist17 datasets.

Dataset Metric 4 8 16 32

Assist09 RMSE 40.71 40.25 40.32 40.98
AUC 81.26 81.82 81.63 80.91

Assist17 RMSE 37.79 37.36 37.44 37.96
AUC 85.21 85.75 85.62 85.03
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Table 5. The performance comparison of the proposed model with 256, 512, 1024, and 2048 codebook
sizes on the Assist09 and Assist17 datasets.

Dataset Metric 256 512 1024 2048

Assist09 RMSE 40.91 40.37 40.25 40.32
AUC 81.33 81.64 81.82 81.76

Assist17 RMSE 37.92 37.68 37.36 37.44
AUC 84.91 85.32 85.75 85.61

6.3. Visualization

Figure 6 shows the distribution of the questions belonging to a knowledge concept in
the embedding space. For the sake of visualization, we used the t-SNE technique to map
the original space to a 3D space. Figure 6a represents the Rasch model, while Figure 6b
represents our QQE model.

(a) (b)

Figure 6. The distribution of a knowledge concept’s questions in the embedding space: (a) The
questions of a knowledge concept in the Rasch model. (b) The questions of a knowledge concept in
the QQE model.

The deep knowledge tracing algorithms based on the Rasch model [13,14,16] assume
that all the questions belonging to a knowledge concept can be expressed as a linear
combination of two vectors, which are entirely determined by the knowledge concept.
Therefore, in the original embedding space, the data points representing these questions
are distributed along a line segment. When mapped to the 3D space, they are squeezed into
a particularly narrow manifold. On the other hand, after learning with the QQE model, the
embedding points of the questions were distributed in a spherical space that resembled a
Gaussian distribution. This distribution can more naturally reflect the relationship between
the questions and the knowledge concept. This difference shows that our model alleviates
the overparameterization problem without introducing overly strong prior assumptions,
resulting in better representations and better predictions.

Figure 7 illustrates the hotmaps of using and not using the multiband attention
obtained from the query and key multiplication. Both Figure 7a and Figure 7b utilize eight
individual heads. In Figure 7a, the eight heads adopt the same temporal decay, while in
Figure 7b, each of the eight heads employs different temporal decay.

It can be observed that different bands can capture attention within different time
interval ranges, which enables a better adaptive fusion of features from different bands.
Whether or not the multiband strategy is used, the attention model requires the multihead
attention mechanism. Each head employing a different band will not increase computa-
tional overhead, thus leaving the computational complexity unchanged.
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Figure 8 shows the distribution of the knowledge concepts and questions on the
Assist09 dataset in the embedding space, which are mapped to a two-dimensional space
using t-SNE. Each dot represents a question, and each plus sign represents a concept, with
different colors distinguishing the questions belonging to different concepts. Figure 8a–d
shows the distribution of 10 knowledge concepts, 20 knowledge concepts, 50 knowledge
concepts, and 100 knowledge concepts that were randomly selected, as well as their
associated questions, respectively. It indicates that our model has successfully extracted
meaningful, discriminative embedding features from the raw one-hot encoding vectors.
These features capture essential differences between different knowledge concepts such
that the questions containing the same knowledge concept are clustered together in the low-
dimensional embedding space, while distinct knowledge concepts maintain appreciable
distances from one another. Even in the reduced-dimensional view, the model is able to
effectively identify and distinguish among knowledge concepts. The good separation of the
questions and knowledge concepts also indicates that the model has learned embeddings
that preserve the inherent knowledge structure of the data.

(a)

(b)

Figure 7. The hotmaps of the different heads’ attention weight matrices: (a) The attention weight
matrix where the heads adopt the same temporal decay. (b) The attention weight matrix of the
multiband attention model.
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(a) (b)

(c) (d)

Figure 8. The distribution of 10 knowledge concepts (a), 20 knowledge concepts (b), 50 knowledge
concepts (c), and 100 knowledge concepts (d) that were randomly selected, as well as their associated
questions on the Assist09 dataset, respectively.

7. Conclusions

In this paper, we introduced an enhanced deep knowledge tracing method that lever-
ages transformer networks. The proposed model incorporates knowledge concepts and
quantized question embeddings for question data, which are then processed through multi-
band attention and feed-forward layers in the encoder to capture question interactions.
The resulting output is combined with response data and fed into the decoder, which
learns the relationship between the question and knowledge state. This method enhances
existing knowledge tracing techniques through the employment of a multiband attention
mechanism. This mechanism effectively summarizes the past response history of learners
across various temporal scales. Different bands capture attention within different time
interval ranges, which enables a better adaptive fusion of features. Additionally, we utilized
quantized question embedding to adaptively capture the subtleties among the questions
addressing the same knowledge concept. Compared with the Rasch model, the distribution
of the question embedding more naturally reflects the relationship between the questions
and the knowledge concept. Our experimental findings on the benchmark datasets revealed
that our method surpasses the state-of-the-art knowledge tracing methods.

Despite the promising results achieved by the proposed models, limitations still exist
that need to be addressed. As an illustration, the model requires complete annotations of
the knowledge concepts contained in all questions. Moreover, the current model relies on
abstract format data, consisting of one-hot encoding of questions, knowledge concepts, and
learners’ responses, without taking into account their textual content. With the development
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of large language models, further exploration of the connections within the textual content
itself is warranted.

In our future research, we plan to explore various opportunities for better utilization of
multimodal information. One avenue we will explore is the integration of textual content to
enhance the embedding representations for questions, knowledge concepts, and responses.
We will also explore automatically annotating knowledge concepts for questions through
this textual content, thereby reducing the workload of manual annotation and obtaining
more training data.
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Appendix A

Table A1. A list of important notations.

Variable Description

qt The question at time step t
ct The knowledge concept in qt
rt The learner’s response to qt
c̃t The one-hot vector for the knowledge concept embedding representation

in question qt
r̃t The one-hot vector for the knowledge concept embedding representation

in response rt
q̃t The one-hot vector for qt embedding representation
zt The embedding representation of qt
xt The quantized embedding representation of qt
x̂t The fused embedding representation of qt and ct
ŷt The embedding representation of rt
X̂ The matrix composed of {x̂1, . . . , x̂t}
Ŷ The matrix composed of {ŷ1, . . . , ŷt}
Q The query matrix in attention function
K The key matrix in attention function
V The value matrix in attention function
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