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Abstract: Accurate water demand forecasting is crucial for optimizing the strategies across multiple
water sources. This paper proposes the Ensemble Empirical Mode Decomposition Granger causality
test Dynamic Graph Attention Transformer Network (EG-DGATN) for multi-sensor cross-temporal
granularity water demand forecasting, which combines the Transformer and Graph Neural Networks.
It employs the EEMD–Granger test to delineate the interconnections among sensors and extracts the
spatiotemporal features within the causal domain by stacking dynamical graph spatiotemporal atten-
tion layers. The experimental results demonstrate that compared to baseline models, the EG-DGATN
improves the MAPE metrics by 2.12%, 4.33%, and 6.32% in forecasting intervals of 15 min, 45 min,
and 90 min, respectively. The model achieves an R2 score of 0.97, indicating outstanding predic-
tive accuracy and exceptional explanatory power for the target variable. This research highlights
significant potential applications in predictive tasks within smart water management systems.

Keywords: Granger causality test; graph neural networks; transformer; time series data; water
demand forecasting

1. Introduction

As urbanization accelerates, establishing intelligent water demand forecasting sys-
tems has become a crucial component of smart city development. The precision of water
demand forecasting plays a fundamental role in constructing such intelligent systems,
as it enables minimizing resource wastage caused by redundant water supply, guiding
efficient water distribution across different geographic units, and providing valuable data
for leak detection [1,2]. These applications require developing a method for water demand
forecasting that is efficient, accurate, and capable of integrating multi-sensor data across
varying temporal granularities.

In recent decades, predicting water demand in urban areas has become a major topic
of interest in academic research. In early research, statistical methods were widely applied
to water demand forecasting due to their simplicity and interpretability. Oliveira et al.
applied the harmony search algorithm to optimize the ARIMA model for forecasting in a
specific area [3]. Meanwhile, Guo et al. employed VAR to incorporate factors affecting the
forecast outcomes, particularly for short-term agricultural irrigation water forecasting [4].
In contrast to these statistical-based methods, machine learning approaches handle complex
nonlinear relationships inherent in data and have demonstrated substantial advancements
in forecasting. For instance, Li et al. combined the RandomForest model with linear
regression to achieve water consumption forecasting at fixed time intervals [5]. Candelieri
et al. designed parallel global optimization algorithms to optimize SVM parameters to
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solve complex water demand forecasting [6]. While these methods can depict nonlinear
relationships, their models rely on intricate feature engineering.

Deep learning models exhibit greater versatility than machine learning models as they
can autonomously learn the relationships between features. Consequently, more researchers
are considering deep learning for water demand forecasting applications. Mu et al. utilized
the LSTM model for short-term urban water demand forecasting [7]. In contrast, Zanfei et al.
designed an ensemble model incorporating simple recurrent networks (SRNNs), LSTM,
and gated recurrent unit networks (GRU), applied to water demand forecasting at 1 h and
24 h intervals [8]. These methods mainly focus on analyzing the temporal autocorrelation
within individual series. This practice significantly diverges from the reality of multiple
sensors contributing to complex multivariate time series in real water supply networks.
Researchers have aggregated sensor data for synchronous prediction to align with practical
water network scenarios. For instance, Hu et al. combined two-dimensional convolution
with Bi-LSTM models for synchronous forecasting across various sensor data over time and
space, thereby improving the model accuracy [9]. However, this modeling approach relies
on processed grid data, reducing the model’s versatility. Due to the excellent performance
of graphical convolutional neural networks (GCN) in handling tasks involving correlations
among multiple sensors, researchers have applied them to water demand forecasting. For
instance, Lin et al. utilized the GraphWave network to effectively enhance the accuracy
of short-term water demand forecasting in water supply networks by optimizing the
topological features of objects and extracting spatiotemporal features [10]. These methods
achieve spatial information aggregation using graph convolutional neural networks and
still rely on RNN models stacking multiple predictions in time to attain multi-granularity
prediction; this inevitably creates the problem of error stacking and gradient explosion.

The Transformer model utilizes self-attention mechanisms to capture temporal rela-
tionships between different time steps, avoiding the error propagation issues associated
with sequential processing. This has led to its widespread application in various scenarios
of time series prediction tasks [11]. For instance, Nie et al. applied the Transformer model
to the field of traffic flow prediction, and the independence of location coding is utilized to
improve long-time series prediction performance [12]. Combining the Transformer model
with graph convolutional neural networks for spatiotemporal prediction has gradually
become the focus of academic research. For example, Xu et al. combined Transformer
with GCN, utilizing attention mechanisms to learn multiple sensors’ temporal and spatial
dependencies separately, thereby improving the accuracy and efficiency of predictions at
different time granularities [13]. To further enhance the accuracy of spatiotemporal predic-
tions, many scholars propose utilizing adjacency matrices containing richer information to
assist the model. For example, Fang et al. introduced the Dynamic Time Warping (DTW)
method to generate similarity matrices to help extract information, thereby improving the
model’s predictive performance [14]. Jin et al. summarized the performance enhancement
of GCN-based spatiotemporal prediction models based on predefined adjacency matrices
calculated with different similarities [15]. However, these methods do not jump over the
limitations of existing spatiotemporal relations. In statistics, the Granger causality test
method is widely applied to analyze the relationship between two-time series. For instance,
Tian et al. utilized the Granger causality test method to investigate the correlation between
different sectors of Chinese and American stocks, thereby forming a causal relationship
network [16]. This facilitates a transition in the analysis of sensor network relationships
from a spatial perspective to a causal domain.

Although these methods extend the approach to modeling spatiotemporal sequences,
almost all methods use historical and predictive windows for model training, so enhancing
the density of information encapsulated within an individual window has been identi-
fied as a potent strategy to augment the model’s predictive capabilities. Some scholars
proposed decomposing series at the frequency level, employing techniques like Empirical
Mode Decomposition (EMD). Combining Empirical Mode Decomposition (EMD) with
deep learning models enables the extraction of time patterns across different frequency
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components in time series data, which may be challenging for models to learn directly from
raw data. This method has been applied in various fields. For example, Zhu et al. combined
EMD with LSTM to refine the accuracy of long-term deformation prediction for tailings
dams, achieving this by aggregating the results from various LSTM model components [17].
Hou et al. designed an EMD-Particle Swarm Optimization-Gaussian process regression
combination model, achieving accurate stress forecasting in ultra-high arch dams [18]. The
application of EEMD methods in water demand forecasting has been relatively limited.

Overall, despite the good predictive results achieved by existing methods, the follow-
ing challenges still need to be overcome:

1. Existing models that analyze spatiotemporal data often treat spatial and temporal
relationships as separate entities. This separation can lead to significant information
loss, subsequently diminishing the accuracy of the model’s predictions.

2. Furthermore, when dealing with natural scenes, the spatial relationships between
sensors might not always be apparent or accessible, complicating the model’s learn-
ing process. Consequently, there is a pressing need for innovative graph-building
techniques that can facilitate adequate information flow among sensor nodes without
relying on predefined spatial relationships.

3. Additionally, assigning a distinct time series model to each series decomposed us-
ing the Empirical Mode Decomposition (EMD) method has proven inefficient. A
more streamlined approach is required to fully capitalize on the insights from the
decomposed series fully, enhancing the overall model efficiency.

Addressing these challenges, we introduce the Ensemble EMD (EEMD) Granger causal-
ity test Dynamic Graph Attention Transformer Network (EG-DGATN) model, intending to
improve the accuracy of water demand forecasting tasks for multiple regional geographic
units without relying on prior graph structures. Different from other methods, this model
imposes no specific constraints on data input and offers the following contributions:

1. Enhanced Temporal Information Fusion and Causal Relationship Exploration in Sen-
sor Networks. We utilize EEMD–Granger causality testing to integrate additional
temporal information within a fixed time dimension, circumventing the need for
model stacking inherent in traditional approaches and facilitating a deeper investiga-
tion into the causal interplay among sensor networks.

2. Optimized Spatial-Temporal Encoding and Synchronized Modeling. By incorporating
causal spatiotemporal embeddings into the Transformer architecture, we have refined
positional encoding, enabling the EG-DGATN model to synchronize the treatment
of spatiotemporal relationships among water demand sensors. This enhancement
outperforms traditional models segregating spatial and temporal data, yielding a
more comprehensive and precise predictive framework.

3. Innovative Dynamic Graph-Optimized Multi-Head Attention Mechanism. We pro-
pose a novel dynamic graph multi-head attention mechanism, which regulates the
flow of information in the water supply sensor network and achieves efficient infor-
mation aggregation. Unlike traditional attention mechanisms, it dynamically adjusts
attention weights based on real-time data and changes in the sensor network, better
capturing and utilizing the temporal-spatial dependencies within water demand data.

The rest of the article is organized as follows. Section 2 provides an overview of
the EG-DGATN’s architecture, detailing the EEMD–Granger causal test and the roles of
the model’s components. Section 3 reports on the experimental evaluation, where the
proposed method is benchmarked against various baseline models to demonstrate its
superiority. The final section, Section 4, concludes the paper with a summary of findings
and explores several promising applications of the EG-DGATN framework in smart water
management systems.
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2. Methods
2.1. Objective Description

Given historical water demand monitoring data, the water demand forecasting task
involves forecasting the future water demand for each N geographical unit. In this paper,
the relationships between the N geographical units are defined as a graph G = (V, E, A),
where V represents the sensors corresponding to geographical units, i.e., |V| = N, E is the
set of edges, and A ∈ RN×N is the adjacency matrix. The historical water demand records
of graph G at time t are represented as a graph signal X(t) ∈ RN×1. The EG-DGATN aims
to predict P future graph signals using T historical graph signals, as shown in Equation (1):[

X(t−T+1), X(t−T+2), ..., X(t)

] f (·)⇒
[

´X(t+1), ´X(t+2), ..., ´X(t+P)

]
(1)

2.2. Data Preprocessing

The time series is first obtained from different sensors, as shown in Figure 1. To avoid
interference from outliers, the series is subjected to Hampel filtering. Subsequently, the
filtered data are separately processed to construct the causality matrix and the DTW [14]
matrix. The construction process of the causality matrix includes EEMD decomposition,
the merging of Intrinsic Mode Functions (IMFs), an Augmented Dickey-Fuller (ADF)
stationarity testing, and Granger causality testing [19], resulting in the final causality
matrix. Similarly, DTW is applied to compute the similarity matrix for the data. Combining
these matrices forms a water demand sensors causal graph, which serves as the output of
the data preprocessing process and is fed into the model for computation. The details of
this chapter will describe the data preprocessing process.
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2.2.1. EEMD and ADFuller Stationarity Test

EMD is an adaptive and efficient technique used to handle time series. Its main
contribution is that any complex series can be decomposed into a finite and typically
small number of IMF im f and residual r(t), which are nearly non-overlapping orthogonal
components in the frequency domain. The process of EMD is shown in Equation (2):

x(t) = ∑k
i im fi + r(t) (2)

To enhance the reductions in mode mixing and improve the noise robustness of the
decomposition process, EEMD performs multiple iterations of EMD on a given signal x(t),
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introducing different random noises into the signal each time. The im f s obtained from each
iteration are then averaged to reduce the randomness introduced in a single run, resulting
in the final im f s.

After EEMD, the original time series is decomposed into IMFs from high to low
frequency. This implies that these im f s contain information ranging from short-time scale
to long-timescale [16]. Subsequently, the decomposed im f s are reconstructed into three
relatively independent components, each carrying different time-scale information. The
reconstruction process is illustrated in Equation (3):

I1(t) = ∑ im fi,
li
ni

≤ 288

I2(t) = ∑ im fi, 288 < li
ni

≤ 2016

I3(t) = ∑ im fi,
li
ni

> 2016

(3)

where I1(t) represents the short-term component, I2(t) represents the middle-term compo-
nent, and I3(t) represents the long-term component. ni is the total number of local extrema
detected for each im fi, and li is the length of im fi.

Since the sensor recordings are taken every 5 min, each day consists of 288 time
granularities. If the ratio of li to ni is below 288, it can be deemed a daily periodicity,
suggesting a short-term component. This principle applies to other term components
as well.

Since the Granger causality test is only applicable to stationary series, the reconstructed
time series components need to undergo the Augmented Dickey–Fuller test for stationarity
testing. The process is illustrated in Equation (4):

∆yt = ρyt−1 + γ + β1∆yt−1 + β2∆yt−2 + · · ·+ βp∆yt−p + ϵt (4)

where ∆ represents the first-order difference, yt is the value of the time series, ρ is the test
statistic, γ is the intercept, β1, β2, . . . , βp are the coefficients of the difference terms, and ϵt
is the introduced white noise. The null hypothesis of the ADF test is that the time series has
a unit root, indicating non-stationarity, while the alternative hypothesis is that the series
is stationary. During the ADF test, attention is focused on whether the test statistic ρ is is
significant. If the null hypothesis is significantly rejected, it can be concluded that the time
series is stationary.

2.2.2. Granger Causality Tests and DTW

According to the Granger causality test [19], given two variables x and y, variable x
can be considered to influence variable y in an appropriate statistical sense if the forecasting
of the value of y is based on the past values of y and the past values of x is better than
the forecasting of the value of y is based only on the past values of y. As in Equation (5),
one can test for Granger causality between the two series by constructing binary vector
autoregressive models: {

yt = α + ∑m
i=1 βiyt−i + ∑n

j=1 γjxt−j + ηt

yt = α + ∑m
i=1 βiyt−i + ηt

(5)

where xt and yt are elements of two time series on a uniform time scale. Two autoregressive
models are constructed for yt; model 1 includes the causal hypothesis, while model 2 does
not. In these models, α, β, and γ are the parameters to construct the autoregressive model,
and ηt represents the residual term. The values of m and n, determining the number of lag
terms, are selected based on the Bayesian Information Criterion, ultimately determining
the maximum lag order as n = 15.

After obtaining the two autoregressive models, the hypothesis that yt and xt are not
causally related is initially assumed, followed by conducting F-tests on both models [16]. If
the calculated p-value of the F-test is less than 0.05, the hypothesis is rejected, indicating
that x is the Granger cause of y. The Granger cause can help determine which sensor data
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can change in time ahead of other sensors’ data changes and impact them; further, it can
obtain information on how information flows and propagates through the sensor network,
which helps to understand the interconnections between sensors.

The causal network presented in this paper is directly constructed based on the results
of the Granger causality test. By setting the significance level of the F-test’s calculated
p-value (significance level) to be less than 0.01 as the threshold, a threshold network can be
constructed. At each time scale, series are considered nodes, with edges indicating their
Granger relationships.

For water demand recorded by different sensors, after undergoing EEMD, the three
temporal components, I1(t), I2(t), I3(t), are subjected to Granger causality tests separately
with the time series components of other sensors, and the causal matrices for short-term,
middle-term, and long-term components, Gs, GM, GL∈ RN×N , are constructed. A multi-
time scale network allows for the exploration of richer information than the original data
level and enables more detailed data analysis across multiple time scales. This way, utilizing
the decomposed time series avoids modeling each decomposed im f separately, thereby
reducing model complexity and allowing subsequent models to learn information from
causal spatial-temporal relationships.

The adjacency matrix GDTW generated using DTW can supplement the information
regarding the relationships between time series. Its generation process is illustrated in
Equations (6) and (7) as follows:

D(i, j) = Dist
(
xi, yj

)
+ min(D(i − 1), j), D(i, j − 1), D(i − 1, j − 1)) (6)

GDTW(i, j) =
{

1, D
(
Xi, X j) < ε

0, otherwise
(7)

where the Dist function represents the calculation of the Euclidean distance between two
times, D(i, j) denotes the shortest distance between the subsequent X = (x1, x2, x3, . . . , xi)
and Y =

(
y1, y2, y3, . . . , yj

)
, by which it better reflects the similarity between two time

series. Xi denotes the series of sensor i. If the DTW calculation of two sequences is less
than the threshold ε, they are considered to have a neighboring relationship.

2.3. EG-DGATN Model Framework

The framework of the EG-DGATN model is depicted in Figure 2. The model first
obtains causal spatiotemporal embeddings of different sensors in different time series. The
model stacks Dynamic Graph ST-attention layers to form an encoder and decoder; the
encoder generates training window time series representations, and the decoder decodes
these representations and populates the prediction window data through the output layer.
The detailed description of each component is shown in the following subsections.
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2.3.1. Causal Spatiotemporal Embedding

To avoid the accumulation of errors and error propagation commonly observed in
long-granularity forecasts in traditional models, the EG-DGATN utilizes the Transformer
architecture. The prediction process of Transformer is temporally synchronized, which
requires each sensor to be pre-position encoded at different time granularities. To accurately
capture the correlation information in the sensor network, we optimize the common posi-
tional encoding with causal spatial embedding, achieving synchronous modeling of sensor
nodes in both the causal spatial domain and temporal domain. Causal spatiotemporal
embedding STE includes both causal spatial embedding SE and temporal embedding TE.

To fully embed the sensor space feature in the causal domain, Node2Vec [20] is utilized
to perceive the causal space and generate embedding vectors. Node2Vec conducts random
walks on the causal-directed matrix and the DTW similarity matrix across three time spans,
producing a vector representation for each walk sequence. These vector representations
are then aggregated to obtain a comprehensive embedding for each sensor. Furthermore,
the embeddings of the causal structures between different sensor sequences learned by
Node2Vec on various graph structures are then aggregated. After passing through fully
connected (FC) layers. In this way, we enable SE to obtain the causal relationships in
the water demand sensor network under different time spans, enriching the information
contained therein, as shown in Equation (8).

SE = FC
(
concat(Node2VectorEncoding(Gs, GM, GL, GDTW))

)
∈ RN×(T+P)×D (8)

where TE represents the position of a variable in the entire time steps [12]. T represents the
length of the training window, while P represents the size of the prediction window.

Considering the daily, weekly, and seasonal periodicity of water usage, one-hot
encoding is performed for the position of the current time step within a day, the position
within a week, and the position within a month relative to the entire year, generating
Vtime ∈ R1×288, Vweek ∈ R1×7, Vmonth ∈ R1×12. The process of generating embedding is

shown in Equations (9) and (10).

TE = unsqueeze(FC(concat(Vtime, Vweek, Vmonth)) ∈ RN×(T+P)×D (9)

STE = TE + SE ∈ RN×(T+P)×D (10)

where the unsqueeze function is used to expand the dimensions, aligning the dimensions
of time encoding with those of causal space encoding.

By combining SE and TE, we enable the transformation of causal spatiotemporal
features into more actionable causal spatiotemporal embeddings. This process distinctly
identifies the unique position of specific time granularities within the causal spatiotemporal
graph across various periods. The STE is divided into two parts in training: the length
of the two parts is aligned with the training window T and the prediction window P,
respectively. The first part will be used as positional coding in the encoder, which is merged
with the sequence and then passes through the input layer to the coding stage, ultimately
generating the sequence representation. Subsequently, the latter segment is amalgamated
with the sequence representation and directed into the Decoder. This step will enable the
decoder to forecast the outcome associated with a specific location accurately.

2.3.2. Dynamic Graph ST-Attention Layer

The dynamic graph ST-attention layer is the core component of the EG-DGATN. It
dynamically learns the potential relationships in the sensor network by generating dynamic
graphs, thus enhancing the effectiveness of aggregating information [21]. While aggregating
information, this layer utilizes the multi-head attention mechanism from Transformer to
optimize the message-passing mechanism in GCNs to update sensor node information.
This layer mainly comprises the sensor network’s first-order neighborhood dynamic graph
generation and message-passing processes.
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The dynamic graph Ad generation process can be illustrated in Equation (11): Mk = tanh
(

βEkΓk
gc

)
, k ∈ 1, 2

Ad(i, j) = b·ReLU
(

tanh
(

β(M1
ij M

2
ij

T − M2
ij M

1
ij

T
)
)) (11)

where M1, M2 ∈ RN×D is described by two neural networks with randomly initialized
embedding matrices E1, E2 ∈ RN×D and trainable parameters Γ1

gc, Γ2
gc ∈ RN×D computed

via the Tanh activation function. β is a hyper-parameter that adjusts the saturation rate of
activation. To reduce the overhead required for computation, a mask b is generated based
on Ad ∈ RN×N and computed via the Gumbel-sigmoid trick [22] to sparsify the learned
adjacency matrix and to ensure the unidirectionality of the graph edge structure.

While updating the dynamic graph through training, this layer incorporates the
multi-head attention in Transformer, allocating Q, K, V for each edge generated in Ad and
computing the attention weights for each edge to obtain the attention score matrix Aapt.
Multiplying the value vectors of each sensor node by the corresponding attention matrix
and summing the results of all neighboring nodes along the direction of the dynamic graph
edges achieve message passing and updating of the hidden layer states of each sensor node.
This process can be described by Equations (12)–(14):

Q = Hl−1WQ, K = Hl−1WK, V = Hl−1WV (12)

Aapt(i, j) =
exp

(
Ki, Qj

)
∑n∈N(i) exp(Ki, Qn)

(13)

DGSA
(

Hi
l−1, Aapt

)
= ∑n∈N(i) Aapt(i, n)·Hn

l−1 (14)

where Hl−1 represents the hidden layer output of the l−1th layer. Hl−1 is first projected
to three matrices, WQ, WK ∈ RD×DQK , and WV ∈ RD×DV are the weight matrices for
calculating the Q, K, V, respectively. In practice, it is expected to set DQK = DV . i is a sensor
node, and N(i) is the set of first-order neighboring nodes of i in Ad.

Expanding from a single self-attention mechanism to a multi-head attention mecha-
nism enriches the information richness. Ultimately, the sensor information will be aggre-
gated across all attention heads. The update process of node information can be described
by Equation (15):

Hi
l = FC(concat

(
DGSA

(
Hl−1, Aapt

)
1, . . . , DGSA

(
Hl−1, Aapt

)
h

)
WO) ∈ RN×T×D (15)

where H0 = Concat(InputLayer(X), STE), WO is a learnable parameter, and h is the num-
ber of heads using the multi-head attention mechanism.

Relative to global ST-attention and local ST-attention mechanisms, the first-order
Neighbor Dynamic Graph ST-Attention can effectively regulate the flow of information
in the sensor network and adjust the aggregation scope of organized information, thereby
reducing the complexity of the model [23]. The process is shown in Figure 3.
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2.3.3. Input and Output Layers

The input and output layers are fully connected layers with ReLU activation combined
with a 1D convolutional layer to learn the representation of variable time intervals in the
temporal dimension through the 1D convolutional layer. The input layer maps the input
node features to higher dimensions D for better extraction of information in the node
history sequence. The output layer computation process is shown in Equation (16):

X̂t′ = Relu
(

FC(Conv(Hl))
)
∈ RN×P (16)

where Hl is the computational result obtained by stacking the spatiotemporal attention
layer, and the output layer maps the time dimension from the historical time step t to
the future time dimension t′prime point. The output results from the output layer are
subjected to MAE loss computation, the model’s loss function for end-to-end training via
backpropagation.

2.4. Model Evaluation Indicators

Facing forecasting multivariate time series, the model’s forecasting performance on
each time series needs to be considered as follows:

MAE =
1
T ∑T

t=1

∣∣X̂t − Xt
∣∣ (17)

RMSE =

√
1
T ∑T

t=1

(
X̂t − Xt

)2 (18)

MAPE =
1
T ∑T

t=1

∣∣X̂t − Xt
∣∣

|Xt|
× 100% (19)

R2 = 1 − ∑T
t=1

(
X̂t − Xt

)2

∑T
t=1

(
Xt − X

) (20)

where X̂t is the predicted value of all sensor series at t time steps in the spatiotemporal plot
of the model’s results, Xt represents the actual value of the tth time step, T is the number of
time steps, and X is the average of the actual values.

MAE, RMSE, and MAPE assess the predictive and stabilizing capabilities of the model,
and the lower the three metrics, the more numbered the model performance. It is worth
noting that the R2 score is a value between 0 and 1, which reflects the model’s ability to
interpret the information of the series, and the closer it is to 1, the stronger the model’s
ability to interpret this series.
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3. Experiments
3.1. Dataset Description

The experiment used a dataset from a real application scenario, which consisted of
historical water use records recorded by 25 flow sensors based on different principles in
several geographic units in a specific area of central China. The data span from 8 March
2023 to 26 December 2023, with a time granularity of 5 min. The dataset was divided into
a data set, validation set, and test set at a ratio of 7:1:2. In the comparative experiment
designed in this paper, the parameters were learned by the model on the training set to
the validation set for validation, the optimal model on the validation set was tested on the
test set, and the final experimental results were derived. Due to space limitations, only
five sensors were taken as examples to illustrate the construction process of the Granger
causal matrix. This experiment only performed the EEMD–Granger and graph construction
process on the training set to avoid potential data leakage risks.

3.2. ADF, Granger Test, and Adjacency Matrix Construction

For example, the EEMD and reconstruction process (outlined in Section 2.2) were
applied to the training set data of sensor #0 within the context of this study. Subsequently,
the results of this process were visualized, as shown in Figure 4, which illustrates the
decomposition and reconstruction outcomes for sensor #0.
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The three components after treatment showed significant differences, as shown in
Figure 4. The short-term component reflects non-linear fluctuations daily, indicating that the
daily water demand recorded by this sensor was unstable. The medium-term component
generally aligns with the ups and downs of the water demand record, suggesting that
the weekly demand remains relatively stable when observed weekly. Furthermore, the
long-term component exhibited a decreasing trend, possibly related to population decline
resulting from neighboring factories relocating.

The ADF test results for each sensor reconstruction decomposition are presented in
Table 1. The statistical significance of both the short-term time-series components and
the medium-term time-series components led to the rejection of the original hypothesis,
suggesting that these reconstruction series exhibit smooth characteristics. In contrast, the
results of the long-term time-series component, sensor #0 and sensor #2, aligned with the
original hypothesis, and therefore, they were non-stationary. They could not be involved in
subsequent Granger causality tests.
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Table 1. ADF test results.

Sensor ID Short-Term
Component

Middle-Term
Component

Long-Term
Component

#0 −21.734020 ** −20.205318 ** −1.163319
#1 −21.315542 ** −19.536680 ** −4.237318 *
#2 −21.614426 ** −21.591233 ** −2.414543
#3 −21.860299 ** −24.189444 ** −3.008508 *
#4 −28.556480 ** −18.525658 ** −17.241111 **

** Denotes rejection at 1% statistical significance level. * Denotes rejection at 5% statistical significance level.

The p-values obtained from the Granger causality test are detailed in Table 2. The
process of the neighbor matrix was constructed according to the results of the Granger
causality test, as shown in Figure 5. Following the experiment, the threshold for the p-value
was predominantly set at 0.01; values above this threshold indicate an insignificant causal
relationship, whereas values below it suggest a significant causal relationship between
two variables. When constructing Granger causality, only relationships that demonstrate
substantial causality, as determined by this threshold, are taken into account.

Table 2. Granger causality test results.

Short-Term Component

Sensor ID #0 #1 #2 #3 #4
#0 N/A 0.0063 0.0000 0.0005 0.7162
#1 0.0001 N/A 0.5182 0.0306 0.7539
#2 0.0000 0.2087 N/A 0.0000 0.6710
#3 0.0000 0.0009 0.0000 N/A 0.8560
#4 0.2399 0.1041 0.7045 0.7180 N/A

Middle-Term component
Sensor ID #0 #1 #2 #3 #4

#0 N/A 0.0000 0.1025 0.0000 0.0000
#1 0.0000 N/A 0.0000 0.0003 0.0014
#2 0.0000 0.0000 N/A 0.0006 0.0055
#3 0.0000 0.0000 0.0023 N/A 0.0037
#4 0.0000 0.2030 0.0003 0.0000 N/A

Long-Term component
Sensor ID #0 #1 #2 #3 #4

#0 N/A N/A N/A N/A N/A
#1 N/A N/A N/A N/A N/A
#2 N/A N/A N/A 0.0000 0.1523
#3 N/A 0.0033 N/A N/A 0.0064
#4 N/A 0.0021 N/A 0.0002 N/AAppl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 19 
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3.3. Baseline Models

To assess the efficacy of the EG-DGATN, several baselines were set up in this study,
including traditional statistical models and state-of-the-art deep learning models:

• ARIMA: A statistical-based time series forecasting method.
• STGCN [24]: Spatiotemporal graph convolutional network, which utilizes convolu-

tional structures to extract spatiotemporal correlations from time series.
• ASTGCN [25]: An attention-based spatiotemporal graph convolutional network with

attention mechanisms for traffic flow prediction, which is used to analyze the spa-
tiotemporal features of the time series.

• DCRNN [26]: Diffusion convolutional recurrent neural network employs diffusion
convolution to capture spatial correlations and combines Seq2Seq architecture to
capture temporal correlations.

• GNNLSTM [27]: Combines a graph neural network with the LSTM model to learn
latent time series patterns on spatiotemporal graphs and address the dependency
issues of time series.

• GraphWave [28]: Learns an adaptive adjacency matrix from data through end-to-
end supervised training, retaining hidden spatial correlations through this adaptive
adjacency matrix.

• R-DGATN: Replaces the Granger causality test graph-building process with a ran-
domly generated adjacency matrix.

• S-DGATN: Replaces the Granger causality test graph-building process using the
adjacency matrix of spatial adjacencies.

3.4. Comparative Experiments

A consistent training and testing method of equal granularity was adopted to test the
models’ performance across tasks with varying forecasting granularities. The test results
are shown in Table 3.

In the 15-min prediction scenario, the MAPE metric improves by 2.11% compared with
the optimal baseline model, ASTGCN, with an improvement of about 36.1%; in the 45-min
prediction scenario, the MAPE metric improves by 4.33% compared with the optimal
baseline model, ASTGCN, with an improvement of about 29.3%. In the 90-min prediction
scenario, the MAPE metric improves by 6.32% compared with the optimal baseline model.
In the 90 min prediction scenario, compared with the optimal baseline model, ASTGCN,
the MAPE index improves by 6.32%, about 35%. Compared to the 15-min forecasting
scenario, longer forecasting granularities resulted in the EG-DGATN model’s MAPE metrics
decreasing by 6.46% and 7.68%, respectively. In contrast, ASTGCN decreased by 8.68% and
12.74%, GraphWave decreased by 7.78% and 11.45%, and GNNLSTM decreased by 7.72%
and 9.75%, respectively. This result demonstrates the stability of the EG-DGATN model’s
performance across different forecasting granularities.

Table 3. Results of comparative experiments.

Model
15 min 45 min 90 min

Parameters
MAE RMSE MAPE R2 MAE RMSE MAPE R2 MAE RMSE MAPE R2

ARIMA 274.63 489 24.01% 0.78 458.36 769.68 36.78% 0.74 685.98 1284.34 48.69% 0.72 -
STGCN 204.45 350.68 8.42% 0.85 295.36 423.65 17.65% 0.84 320.87 440.84 19.89% 0.84 1.19M

ASTGCN 149.69 330.36 6.12% 0.94 250.34 396.51 14.80% 0.92 300.88 423.56 18.86% 0.90 1.35M
DCRNN 150.73 327.21 8.95% 0.92 260.85 401.35 16.24% 0.85 340.88 450.08 21.63% 0.85 1.46M

GNNLSTM 120.89 298.93 8.26% 0.93 263.45 398.24 15.98% 0.88 311.25 424.54 18.01% 0.92 2.03M
GraphWave 123.04 270.85 7.23% 0.93 258.36 411.98 15.01% 0.91 329.84 448.01 18.68% 0.89 1.16M
EG-DGATN 92.29 190.48 4.01% 0.97 218.63 298.64 10.47% 0.96 222.45 302.27 11.69% 0.94 1.22M
R-DGATN 129.68 311.26 8.64% 0.93 288.45 409.65 16.98% 0.88 330.98 432.59 18.92% 0.86 1.22M
S-DGATN 126.68 309.47 8.89% 0.93 283.95 403.84 16.03% 0.88 329.63 433.44 19.01% 0.86 1.22M

The EG-DGATN has excellent performance at different forecasting granularities be-
cause the periodicity of the time series over different periods is extracted in the modeling
using EEMD, and cross-temporal granularity modeling is achieved more efficiently through
causal domain graph construction. According to the results presented in Table 3, the ARIMA
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method based on statistics performed the poorest on the dataset due to the complexity of
the nonlinear relationships in the training data. However, during the 15 min granularity
test, both GraphWave and ASTGCN methods outperformed other spatiotemporal convolu-
tion models that rely on predefined adjacency matrices. This suggests that optimizing and
learning the connectivity of sensor nodes are crucial for improving predictive performance.
Compared with the denser matrix generated by ASTGCN and GraphWave, the dynamic
graph multi-head attention used by the EG-DGATN can effectively regularize the scope of
the information transfer, so that the information is transferred along the direction that is
beneficial to the model performance, which significantly improves the model’s performance.
Moreover, the LSTM-based GNNLSTM model effectively reduces gradient explosion and
error propagation through the forgetting mechanism, which significantly improves the
performance in long time series prediction tasks. The EG-DGATN model, employing the
Transformer architecture, does not rely on stacking prediction results to achieve predictions
at multiple levels of detail. Instead, its strength lies in the dynamic graph generation
module, which adeptly manages both long-term trends and local spatial correlations within
the time series data. This approach allows the model to quickly adapt to changes in local
sensor correlations, significantly enhancing its predictive accuracy compared to traditional
baseline models.

It is worth noting that, to validate the improvement in model performance resulting
from the Granger causality testing graph construction method, this experiment included
two special baselines: R-DGATN and S-DGATN. The effectiveness of the R-DGATN model
using randomly generated adjacency matrices decreased by 4.63%, 6.51%, and 7.23% at
various time granularities, while the effectiveness of the S-DGATN model using traditional
spatial adjacency matrices decreased by 4.88%, 5.56%, and 7.32% at various time granu-
larities. The final results demonstrate that the method based on EEMD–Granger causality
testing effectively improves the predictive performance of the model.

3.5. Visualization Experiments

In order to conduct a thorough performance comparison between the proposed
method and the baselines, this part visualizes the forecasting results alongside the ac-
tual results of the test set from the dataset [29]. This experiment focused explicitly on
different sensors and time spans of 24 h and 48 h, extracting and analyzing the forecasting
results for comparison. Please refer to Figure 6 for further details.

The results shown in Figure 6 indicate that both the baseline models and EG-DGATN
performed similarly in the 15-min forecasting task. A detailed analysis shows that the
EG-DGATN exhibits a stronger correlation with the Ground Truth. As the granularity of
the forecasting task increased, all models demonstrated a decrease in their ability to predict
the Ground Truth accurately. The baseline models, in particular, displayed significant
deviations from the local peaks, indicating a limited learning capacity for long-term de-
pendencies. In contrast, the EG-DGATN consistently and effectively fits the Ground Truth
curve at different forecasting granularities. This demonstrates its superior performance
compared to the baseline models.

To further validate the EG-DGATN model and elucidate the significance of R2 for
evaluating the model, this study carried out a visual analysis experiment on the R2. The
outcomes of this experiment are illustrated in Figure 7.

Figure 7a–c presents the predictive accuracy of three models, EG-DGATN, ASTGCN,
and STGCN, using data at 15-min intervals. Notably, the EG-DGATN outperformed the
others with an R2 score of 0.97, signifying its capability to explain 97% of the variance in
the prediction outcomes. This superiority is depicted in Figure 7a, where the discrete data
points cluster more closely together, as opposed to outliers that are significantly distanced
from the regression line. As we progress from Figure 7b,c, it is observable that the scatter
of data points broadens with the increase in the R2. Concurrently, outliers appear more
distant from the precise regression line, highlighting variations in model performance
and prediction accuracy. Figure 7d shows the results of dynamic graph generation for the
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five graph generation layers in the three prediction spans. Compared to GraphWave, which
also utilizes a self-learning adjacency matrix, the sparsified dynamics graph employed by
the EG-DGATN is better equipped to extract pertinent nodes efficiently. This can be seen
from the heatmap of neighbor matrices learned by the model before binarization, with
fewer highlighted color blocks. The model avoids redundant data by selectively extracting
information from a limited number of neighboring nodes.
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4. Results
4.1. Conclusions

This paper presents a novel approach called the EEMD Granger causality test Dy-
namic Graph Attention Transformer Network (EG-DGATN) to overcome the challenge
of water demand forecasting. Using more correlated sensor information, we used the
EEMD–Granger causality testing method to establish a causal graph that spans multiple
periods. Subsequently, we enhanced the position encoding of the Transformer model using
Node2Vec techniques to generate spatiotemporal embeddings across sensors and time
granularities, which aids in modeling spatiotemporal synchronization. The input layer
feeds water demand sensor data and is further used in the Encoder-Decoder architecture
that includes stacked dynamic graph spatiotemporal attention layers to capture the causal
spatiotemporal correlations between sequences.

The experimental results reveal that compared to baseline models, the EG-DGATN
improved the MAPE metrics by 2.12%, 4.33%, and 6.32% in forecasting intervals of 15 min,
45 min, and 90 min, respectively. Furthermore, compared to the 15-min forecasting scenario,
longer forecasting granularities decreased the EG-DGATN’s MAPE metrics by 6.46% and
7.68%, respectively. In contrast, ASTGCN decreased by 8.68% and 12.74%, GraphWave
decreased by 7.78% and 11.45%, and GNNLSTM decreased by 7.72% and 9.75%, respec-
tively. This demonstrates the stability of the EG-DGATN’s performance across different
prediction granularities.

Moreover, through regression visualization experiments, we illustrated the good
interpretability performance of the EG-DGATN in predicting results, further validating
the effectiveness of our proposed method. Additionally, we replaced the EG-DGATN’s
EEMD–Granger graph construction approach with a spatial adjacency matrix derived from
a random adjacency matrix. The effectiveness of the model using randomly generated
adjacency matrices decreased by 4.63%, 6.51%, and 7.23% at different time granularities,
while the model using traditional spatial adjacency matrices decreased by 4.88%, 5.56%,
and 7.32% at different time granularities. These findings demonstrate the effectiveness of
the EEMD–Granger causality testing method in boosting the model’s predictive accuracy.
Additionally, our method of shifting from the extraction of spatial information to that of
causal information has proven successful.
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4.2. Future Work

The stability of the EG-DGATN’s performance and predictive accuracy at different
granularities means that it has the potential to be used in multiple scenarios under smart
water management systems. For example, 5 to 15 min prediction results can enable sensor-
level prediction with real-value rapid anomaly detection for timely detection of leakage
incidents in WDNs. Predicting water demand accurately over extended periods, ranging
from 60 to 90 minutes, can significantly optimize the operating conditions of water transfer
pumping stations, ensuring cost-effective performance. This approach is especially advan-
tageous in cities with diverse water supply sources, such as Zhengzhou City, enhancing
the efficiency and economy of water distribution systems. In addition, the EG-DGATN
can be coupled with physical models such as EPANET in industrial application scenar-
ios [30], where more comprehensive and multi-dimensional information can be obtained
by combining physical simulation data with sensor data, especially in the field of leakage
detection where the physical properties of the pipeline itself have a considerable impact.
Since the EG-DGATN can effectively regularize the information flow within the model in
sensor networks, it can accurately predict head loss in pipelines. This allows for a broader
application of the model without relying on intricate hydrodynamic formulas.

Despite the advancements made with the EG-DGATN, numerous critical issues still
need to be resolved. As the number of sensors in the network increases, the effectiveness of
employing EEMD–Granger causality for constructing the graph structure may diminish. Al-
though we have introduced a multi-process optimization strategy to mitigate the overhead
associated with graph construction, the time required to construct a single graph has been
reduced to 568.79 s from an initial average of 2516.45 s. Consequently, the current iteration
of the EG-DGATN is best suited for sensor networks with a relatively small geographic
footprint. We aim to explore more efficient methods for extracting information from water
supply networks. Moreover, natural language processing could be repurposed to enhance
water demand predictions with the burgeoning adoption of artificial intelligence models.
For instance, the recently introduced TimeGPT model, which leverages the Transformer
architecture, amalgamates the spatiotemporal synchronization approach detailed in this
study with large-scale models, representing a promising direction for further research.
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