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Abstract: The exponential growth in data generation has become a ubiquitous phenomenon in today’s
rapidly growing digital technology. Technological advances and the number of connected devices
are the main drivers of this expansion. However, the exponential growth of data presents challenges
across different architectures, particularly in terms of inefficient energy consumption, suboptimal
bandwidth utilization, and the rapid increase in data stored in cloud environments. Therefore, data
reduction techniques are crucial to reduce the amount of data transferred and stored. This paper
provides a comprehensive review of various data reduction techniques and introduces a taxonomy
to classify these methods based on the type of data loss. The experiments conducted in this study
include distinct data types, assessing the performance and applicability of these techniques across
different datasets.
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1. Introduction

The International Data Corporation (mentioned in [1]) estimates that the number of
interconnected devices worldwide will exceed 50 billion by 2025. This vast network of
devices will generate an impressive volume of approximately 79.4 zettabytes (ZB) of data.
As the world becomes increasingly interconnected and data-driven, exploiting the potential
of this vast amount of data will play a critical role in driving innovation and enabling
progress across multiple sectors.

The proliferation of the Internet of Things (IoT) and a significant increase in Internet-
connected devices have resulted in massive amounts of data, commonly known as “Big
Data”. Big Data describes heterogeneous and massive datasets that are difficult to analyze
and store due to their nature. These datasets contain valuable information that can give com-
panies and organizations a competitive edge. Until 2003, humans had produced 5 exabytes
of data; today, the same amount is generated in two days [2]. Big Data poses significant
data management challenges, leading recent research to introduce the fundamental “3Vs
of Big Data” [3]: volume, velocity, and variety. This paper focuses on the first V, volume,
which refers to the massive data size. At the heart of Big Data is the challenge of dealing
with massive datasets. These datasets routinely exceed the capacity of traditional databases.
The challenge is, therefore, twofold: to effectively manage and store these massive amounts
of data while developing efficient processing methods to extract meaningful insights.

Data reduction techniques are essential for optimizing storage, processing, bandwidth
consumption, and analysis in Big Data environments. Data reduction involves reducing
the size or complexity of data while preserving its essential characteristics and minimizing
information loss [4].

Strategically employing data reduction techniques streamlines data transfer and stor-
age processes. The most effective way to perform this task is to implement these techniques
in middle servers or gateways, where data can be compressed or aggregated before being
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sent to the cloud. This approach significantly reduces bandwidth usage and improves
efficiency. Alternatively, if energy and computation power are not an issue, data reduction
should be applied directly at the sensor level using techniques such as compression or
filtering. These techniques offer valuable ways to optimize data handling and improve
overall performance.

This paper presents a study and experimental evaluation of various data reduction
techniques using different types of datasets to analyze their performance. As part of this
research, we also introduce a new taxonomy for data reduction techniques, including
lossy and lossless types. By categorizing them based on the data loss characteristics, we
provide insights into the trade-offs between data reduction efficiency and the preservation
of critical data features. Our experimental evaluation aims to provide a comprehensive
understanding of the strengths and limitations of each technique. The main contributions
of this work are the following:

• New data reduction techniques’ taxonomies.
• Comparison of different data reduction techniques.
• Experimental evaluation of data reduction techniques.

The rest of this paper is organized as follows: Section 2 provides some background
information. Section 3 discusses related work and compares data reduction techniques.
Section 4 presents the proposed taxonomy. Section 5 presents the datasets, and the metrics
used in the experiments are discussed in Section 6. The data reduction techniques are
presented in Section 7, and the experimental evaluation of these techniques is provided in
Section 8. Section 9 presents the discussion of the results. Finally, Section 10 focuses on the
main conclusions of this study and proposes future work.

2. Background

This section introduces the data reduction concept and the metrics used to evaluate
different data reduction techniques.

Data reduction techniques are critical to managing information overload, providing
strategic approaches to distill critical insights from massive datasets while containing
storage costs [5]. Employing data reduction methodologies such as sampling, aggregation,
and dimensionality reduction enables organizations to streamline data analysis processes,
making information more accessible in a resource-efficient way. Beyond enhancing scalabil-
ity, data reduction techniques play a critical role in machine learning, particularly through
feature selection, which enables the identification of influential variables, streamlining
predictive models for more efficient and accurate decision making. Moreover, reducing
data volume addresses the challenge of handling large datasets and directly cuts cloud
storage costs. Efficient data management leads to substantial savings, making operations
more cost-effective in cloud-based storage solutions.

The following metrics are used in the related work section to study and compare the
different data reduction techniques:

• Data size reduction is a percentage-based size comparison of the original and reduced
data after applying the reduction techniques.

• Data accuracy quantifies the fidelity of the reduced data to the original dataset, typi-
cally expressed as a percentage. This metric measures the integrity and reliability of
the reduced dataset, providing insight into the accuracy and fidelity of the information
retained by the reduction process.

3. Related Work

Data reduction is a major topic of research in a variety of areas, including Big Data
and the Internet of Things (IoT). The fundamental purpose of data reduction strategies is to
reduce the storage footprint of a dataset, and this section discusses and summarizes some
of the existing work in this area.

Obaise, Salman, and Lafta [6] explored a solution in the IoT gateways that converts
time series domains to frequency domains to extract patterns or trends in the streamed
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data. The solution presented in the paper could reduce cloud storage and bandwidth
consumption and prevent I/O bottlenecks. However, the paper did not present the accuracy
and reduction percentage, and there is not enough data to calculate it.

Mahmoud, Moussa, and Badr [7] introduced a domain-independent IoT-based spa-
tiotemporal data reduction approach for IoT-structured data, which consists of treating
spatial data with the K-Means algorithm to preserve location information and using a data
similarity technique on a time basis to preserve temporal data information. The presented
solution achieves an average data reduction of 54% with an average accuracy of 95%.

Fathy, Barnaghi, and Tafazolli [8] presented a data reduction technique based on data
compression. To reduce the energy consumption when transmitting data to the gateway,
the authors proposed an approach in the sensor nodes. The proposed approach consists
of two stages: the first stage involves a lossy symbolic aggregate approximation (SAX)
quantization stage to minimize the dynamic range of the sensor readings. The final stage is
a lossless LZW compression to compress the output of the first stage. The results obtained
are a reduction of more than 90% of the produced data, with only 4.74% not reaching the
gateway in the worst case. It remains an open possibility to propose a dynamic compression
algorithm that can convert from lossless to lossy-based parameters.

Habib et al. [9] present a set of algorithms and techniques to reduce high-volume and
high-velocity data in Big Data environments. This survey shows some dimension-reduction
approaches to reduce the heterogeneity and massively variable data into manageable data
and indicates deduplication techniques and redundancy techniques. It presents a taxonomy
of the best and most-used data compression algorithms in terms of decompression over-
head. The authors conclude that many efficient data reduction techniques achieve good
performance in reduction and accuracy, but they still need more focus from researchers.

Dias, Bellalta, and Oechsner [10] analyzed several prediction-based data reduction
approaches to decide which technique is the best to reduce energy consumption in wireless
sensor networks. The main contribution was to emphasize not only the introduction of the
prediction techniques, but also the methods used in data reduction solutions for WSNs. The
authors conclude that the IoT path will depend on the scalability of the sensor networks and
their ability to self-access the wireless medium. In addition, the reduction in transmissions
based on prediction-based data reduction algorithms depends on the sensed phenomena,
the user requirements, and the architecture used to make the predictions.

Chhikara et al. [11] proposed a taxonomy to show the different data dimensionality re-
duction techniques. The results gathered by the authors with feature extraction techniques
show that the best algorithm may vary from data singularities. Principal Component Anal-
ysis (PCA), spectral embedding (SE), and uniform manifold approximation and projection
(UMAP) were the extraction techniques that gathered the best results in more than one
dataset. Among the feature selection techniques, Random Forest and backward feature
elimination achieved a reduction percentage of 60%, and the best feature selection tech-
nique is forward feature selection, with a reduction percentage of 68%. It was possible to
conclude that data dimensionality reduction techniques make it much easier and faster to
process and analyze data by machine learning algorithms and human input.

Azar et al. [12] proposed an energy-efficient approach for IoT data collection and
analysis. The proposed technique consists of a data compression technique based on
a fast error-bounded lossy compressor conducted on the collected data before sending
them to the edge layer. Then, after sending the data to the edge, a supervised machine
learning technique is applied. The authors’ results proved that the data can be reduced
up to 103 times without affecting the data quality. Energy savings are up to 27% after
4 h, and the data accuracy is 98%. The algorithm is better suited for multisensory reading
compression. It remains open to try to increase the energy reduction to increase the lifetime
of the IoT network.

Papageorgiou, Cheng, and Kovacs [13] created a solution that addresses the two main
bottlenecks of the analyzed solutions. The first bottleneck is the inability of time series
network-reduction data reduction techniques to make decisions on an item-by-item basis.
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The other bottleneck is the lack of systems that can apply any data reduction method
without heavy reconfiguration or significant delays. Despite the ability of the proposed
solution to handle streamed data, it has inferior results when compared to other a posteriori
data reduction techniques. Its accuracy may depend on the domain in which it is applied.
It remains to further investigate the “streamification” of data reduction techniques and
adaptation of data reduction techniques to specific use cases. In addition, the authors do
not present the original size of the studied data in the paper.

Hanumanthaiah et al. [14] gather information about compression techniques and
design a solution within a node that compresses data using two lossless compression
techniques. The author’s concern in designing the method was to create a system that
can compress data at a minimal energy cost in low-power devices. The system achieved a
compression ratio of 52.67% and a maximum space saving (free space after compression) of
46.1%. However, the paper does not provide detailed information on the type, size, and
accuracy of the data examined.

Table 1 summarizes the comparison between the different data reduction algorithms
according to the references.

Table 1. Related work data reduction techniques: comparison.

Algorithm Accuracy Dataset Size Reduction
Percentage Reference

Subtractive Clustering Algorithm NA 1 NA 1 ~97% [6]

Spatiotemporal Data Reduction 95% 843 KB,
960 KB ~54% [7]

Perceptually Important Points,
Sampling, Piecewise

Approximation

76.3% to
93.8% NA 1 ~66% [13]

Run Length Encoding and Delta
lossless compression NA 1 NA 1 ~52% [14]

Pattern System NA 1 2880 lines NA 1 [15]
DCT and mixing operation of

scrambled image 100% NA 1 44.16% [16]

CCSDS and Scalable encryption
scheme 100% NA 1 12.19% [17]

JPEG XR compression and Block
Scrambling 100% NA 1 60.77% [18]

1 Not Available—information not available in the referenced work.

4. Proposed Taxonomy

Data reduction techniques cover a range of approaches that can vary in their data loss
characteristics. For some organizations, the amount of data loss can be a critical factor in
their algorithm selection and decision-making processes.

We believe that the taxonomy we present in this section fills a gap in the reviewed
literature, namely the lack of a taxonomy that explicitly considers data loss in data reduction
strategies [19,20].

The proposed taxonomy, illustrated in Figure 1, provides a structured framework for
categorizing data reduction techniques. There are two fundamental levels: the first level
focuses on the existence of data loss after the application of data reduction algorithms, and
the second level focuses on algorithmic properties. This taxonomy provides a methodologi-
cal approach to organize and understand the various data reduction techniques. The visual
representation of the taxonomy makes it easier for researchers and practitioners to navigate
and understand the techniques’ different categories and subcategories. Ultimately, this
taxonomy improves the clarity and accessibility of data reduction techniques, facilitating
their evaluation and selection for specific data management and analysis purposes.
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In the proposed taxonomy, data reduction approaches are divided into two main
categories:

• Lossless data reduction techniques [14,21,22]: these focus on identifying redun-
dancies, patterns, and other inherent characteristics within the data to eliminate or
minimize unnecessary and repetitive information. Reducing the data size without
any loss is remarkable. However, these algorithms often depend on the type of data
they are analyzing. These perform better on repetitive single-sensor data, such as
temperature readings. For large-scale datasets, these techniques tend to require a
significant processing time to complete the compression, which can be challenging in
real-time environments. When time is a primary feature and the workload is enormous
and complex, using lossy data reduction algorithms is a viable option. These algo-
rithms include various methods for reducing the data size by selectively discarding or
approximating information from the original dataset. Their main advantages include
faster processing speeds and the ability to handle a variety of data formats. All these
lossless algorithms compress data and can decode the reduced algorithm back to its
original size. Some examples of lossless algorithms include Delta Encoding, LZ77,
LZ78, Huffman coding, and Run Length Encoding [23,24].

• Lossy data reduction techniques [10,25–27]: these focus on reducing data by discard-
ing some details considered less relevant to the analysis or less noticeable to human
perception, and thus achieve higher compression ratios than other methods. Some
examples of these techniques are transform encoding, Discrete Cosine Transform, Ran-
dom Projection, Bzip2, or Fractal Compression [28–30]. Numerosity data reduction
techniques [10,25,26] reduce the amount of data by capturing the overall trend or
patterns of the data. These techniques aim to represent concise and summarized data
while preserving its essential characteristics and patterns. Unlike lossy compression,
numerosity data reduction techniques do not intentionally discard data details but
summarize them to make them more manageable and efficient. There are two main
types of numerosity data reduction techniques: parametric and non-parametric.

# Parametric techniques [31] rely on pre-existing data models, such as Linear
Regression and Log–Linear, to estimate the data and reduce its quantity.

# Non-parametric techniques [32,33], on the other hand, focus on creating com-
pressed versions of the data while preserving essential characteristics and
patterns. Examples of non-parametric algorithms include Simple Random
Sampling, K-Means, and data aggregation [9,25,26,32].
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The choice between lossy compression and numerosity data reduction techniques
depends on the desired trade-off between data size reduction and retained accuracy, and
the nature of the data. If accuracy is crucial, a lossy data compression algorithm such as
Random Projection might be the best choice. It attempts to preserve the pairwise distances
or similarities between data points as much as possible during the dimensionality reduction
process. A numerosity data reduction technique such as Linear Regression may be the best
choice when the final size is the selection criteria.

Table 2 provides examples of different data reduction algorithms classified using
our proposed taxonomy. The data reduction algorithms in bold are those used in the
experimental evaluation.

Table 2. Examples of data reduction algorithms by taxonomic category.

Data Reduction Techniques Categories Examples of Data Reduction Algorithms

Lossless Data Compression Algorithms
Delta Encoding 1, BZip2 1, Huffman Encoding,
Run-Length Encoding, Lempel-Ziv Compression
(LZ77, LZ78, LZW)

Lossy Data Compression Algorithms
Random Projection 1, Quantization 1, Discrete
Cosine Transform, Wavelet Compression, Cartesian
Perceptual Compression, Fractal Compression

Parametric Numerosity Data Reduction
Algorithms

Linear Regression 1, Principal Component
Analysis 1, Random Forest, Support Vector
Machines, Gaussian Regression, Log–Linear Models

Non-Parametric Numerosity Data
Reduction Algorithms

K-Means 1, Simple Random Sampling 1, DBSCAN,
Mean-Shift, OPTICS

1 Algorithm used in the experimental evaluation.

5. Datasets

We used different datasets to identify which data reduction algorithms are most
appropriate and efficient for each data type. The collected datasets were downloaded
from Kaggle (https://www.kaggle.com/datasets, accessed on 11 November 2023) and
encompass distinct data types, such as temporal, numeric, and text. Table 3 summarizes
the main characteristics of the selected datasets.

Table 3. Overview of dataset characteristics.

Data Type Name Size (MB) Number of
Lines

Number of
Columns

Temporal,
Numeric

Daily Minimum
Temperatures in Melbourne 0.0558 3650 2

Electric Production 0.0730 397 2
Monthly Beer Production

in Austria 0.0690 476 2

Numeric
Accelerometer 3.7000 153,000 5

Smoke Detection 5.8000 62,631 15

Temporal, Text IoT Temperatures 6.7000 97,606 5

6. Experimental Evaluation Metrics

In the experimental evaluation, we used the following metrics to assess the perfor-
mance of each algorithm on each dataset: original size, final size, percentage variance,
execution time, and processing time per megabyte (MB). Besides these metrics, we also used
mean squared error to evaluate the K-Means algorithm. These metrics are presented below.

https://www.kaggle.com/datasets
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To evaluate the performance, we measured the execution time that the algorithm took
to process the data. The execution time is the subtraction of the end time from the start time
and registered in milliseconds (ms):

Execution time (ms) = end time (ms)− start time (ms) (1)

To evaluate effectiveness, we used several measures depending on the type of algo-
rithm we were using. For the numerosity data reduction algorithms, we used the mean
squared error (MSE), a frequent metric used to evaluate the accuracy of a predictive model,
by measuring the average squared differences between the predicted values and actual
values. The formula for calculating the mean squared error is as follows:

MSE =
1
n∑n

i=1

(
Yi − Ŷi

)2 (2)

where n is the number of data points, Yi represents the actual value for the ith data point,
and Ŷi represents the predicted value for the ith data point. To calculate the MSE, we
take the squared difference between each predicted and actual value, sum these squared
differences for all data points, and then divide by the total number of data points. The
result provides the average squared error between the predicted and actual values, with
lower values indicating better model performance.

To evaluate effectiveness, we also calculated the percentage variance, which is the
percentage difference between the final data size and the original data size:

Percentage Variance(%) =
f inal data size − original data size

original data size
× 100 (3)

Processing time per MB normalizes the time the algorithm spends reducing the data.
This allows algorithm efficiency to be compared across datasets of different sizes, providing
a standardized measure of performance, where a lower result indicates better efficiency.
The formula for calculating the processing time per MB is as follows:

Processing time per MB (ms/MB) =
execution time

original data size
(4)

7. Data Reduction Techniques

The experimental evaluation used all the different data reduction techniques identified
in the taxonomy illustrated in Figure 1. From the examples in Table 2, we selected: Random
Projection, Quantization, Linear Regression, Principal Component Analysis, K-Means,
Simple Random Sampling, Delta Encoding, and BZip2. The foundation for this choice was
their popularity and implementation simplicity.

7.1. Lossy Data Reduction Algorithms

We evaluated two types of lossy data reduction algorithms: lossy data compres-
sion techniques (Random Projection and Quantization) and numerosity data reduction
algorithms. Numerosity data reduction algorithms are divided into parametric (Linear
Regression and Principal Component Analysis) and non-parametric (K-Means and Simple
Random Sampling).

The Random Projection algorithm is a dimensionality reduction technique that
uses random matrices to transform high-dimensional data into a lower-dimensional
space [34,35]. Unlike deterministic methods, Random Projection selects matrix elements
from probability distributions, often Gaussian or Rademacher distributions. Despite its
seemingly arbitrary nature, Random Projections can, under certain conditions, preserve
pairwise distances between data points with high probability. This method is particularly
advantageous for efficiently handling large datasets. By sacrificing the need for exact dis-
tance preservation, Random Projection provides a computationally advantageous approach
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to reducing dimensionality while preserving relative distances, making it applicable in
various fields, including machine learning and signal processing.

Quantization is another studied lossy data compression algorithm, used in signal pro-
cessing and data compression to reduce the precision of numerical data representation [36].
In signal processing, the algorithm involves mapping continuous values to discrete levels,
typically by dividing a range into intervals and assigning specific values to each interval.
This results in a representation with a slightly lower depth. In data compression, Quantiza-
tion reduces the number of bits needed to represent numerical values, thereby reducing
storage or transmission requirements. However, this reduction introduces quantization
error as an approximation to the original values. Achieving a balance between efficient
data representation and minimizing quantization error is critical in several applications,
including image and audio compression, where optimization is essential to maintain an
acceptable level of quality.

Linear Regression is a statistical technique that models the relationship between a
dependent variable and one or more independent variables using a linear equation [37].
The goal is to find coefficients that minimize the difference between predicted and actual
values. This model identifies significant variables and their impact on the dependent
variable. In data reduction, the technique helps simplify and represent the underlying
patterns in the data by highlighting the most influential variables. Setting the coefficients
allows researchers to determine whether independent variables contribute significantly
to the variability of the dependent variable, and if not, dimensionality can be reduced by
removing or merging these less influential variables.

Principal Component Analysis (PCA) is a data reduction technique that is used to
simplify high-dimensional datasets while preserving the most significant information. It
achieves this by identifying the principal components, which are the eigenvectors of the
covariance matrix sorted by their corresponding eigenvalues. These principal components
represent the directions of maximum variance in the original dataset. By selecting a subset
of these components, it is possible to project the data into a lower-dimensional subspace,
effectively reducing the dimensionality of the dataset [38]. This process preserves as much
of the original variance as possible, allowing for a more concise representation of the
data. PCA is valuable for several tasks, such as feature extraction, noise reduction, and
visualization of complex datasets, allowing for more efficient analysis and modeling.

K-Means is a clustering algorithm that focuses on grouping similar observations or
data points into distinct clusters, thereby simplifying the complexity of the dataset [39]. This
technique organizes data based on inherent patterns or similarities to reveal underlying
structures. By grouping related data points, clustering provides a condensed representation
of the original dataset, highlighting commonalities and reducing the need to analyze
each data point separately. K-Means algorithm assigns data points to clusters based
on features or distances, providing manageable and interpretable representation of the
data. This condensed form facilitates exploratory data analysis, pattern recognition, and
insights into the inherent structure of the dataset, contributing to efficient data reduction
and simplification.

Simple Random Sampling is a data reduction technique that selects a subset of data
points from a larger population to create a representative sample that preserves the essential
characteristics of the entire dataset [40]. By working with a fraction of the original data,
this algorithm allows for more efficient analysis, reduced computational requirements, and
faster processing times. While sacrificing some granularity, a well-designed sample can
still provide meaningful insights and conclusions about the population, making sampling
a valuable data reduction strategy where analyzing the entire dataset is impractical or
resource-intensive.

The main use cases and applications for each algorithm are listed in Table 4.
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Table 4. Lossy data reduction algorithms: main use cases and applications.

Algorithm Use Case Application

Random
Projection

High-
dimensional
data reduction

Random Projection can be used in scenarios where the
dataset has a high dimensionality, such as text data, image
data, or genomic data. It efficiently reduces the
dimensionality of the data while preserving as much of the
structure as possible. Applications include dimensionality
reduction for machine learning tasks, data visualization,
and speeding up computation in high-dimensional spaces.

Quantization

Image and
audio
compression,
signal
processing

Quantization is commonly used in image and audio
compression algorithms such as JPEG and MP3. It involves
reducing the precision of the data representation by
mapping continuous values to a finite set of discrete values.
This results in lossy compression, where some information
is lost, but for many applications it allows a significant
reduction in file size with no noticeable loss in quality.

Linear
Regression

Predictive
modeling,
trend analysis

Linear Regression is widely used in various fields to predict
continuous outcomes based on one or more predictor
variables. Applications include forecasting sales, predicting
housing prices, analyzing relationships between variables in
scientific research, and assessing the impact of marketing
campaigns.

Principal
Component
Analysis

Dimensionality
reduction,
feature
extraction

PCA is commonly used to reduce the dimensionality of
high-dimensional data while preserving the most important
information. It finds a set of orthogonal axes (principal
components) that maximize the variance of the data.
Applications include image and face recognition, data
compression, noise reduction in data, and visualization of
high-dimensional data.

Clustering

Data
segmentation,
pattern
recognition

Clustering algorithms, such as K-means, hierarchical
clustering, and DBSCAN, are used to group similar data
points together based on their characteristics. Applications
include customer segmentation for targeted marketing,
anomaly detection in network traffic, grouping genes with
similar expression patterns in bioinformatics, and
organizing documents in information retrieval.

Sampling

Large-scale
data analysis,
data
summarization

Sampling is the process of selecting a subset of data points
from a larger population for analysis. It is often used in
situations where processing the entire dataset is impractical
or costly. Applications include opinion polling,
manufacturing quality control, real-time data stream
analysis, and estimating population parameters from
sample statistics.

7.2. Lossless Data Reduction Algorithms

We evaluated two algorithms for lossless data compression techniques: Delta Encoding
and BZip2.

Delta Encoding is a technique used in data compression to represent or transmit
data more efficiently by encoding the differences (or deltas) between values rather than
the actual values themselves [41]. The basic idea is to store or transmit only the changes
between successive data elements, which is particularly useful in scenarios of similarity
between adjacent elements. This method is appropriate in scenarios where sequential data
has some degree of correlation or where redundancy is present. By subtracting each data
element from its predecessor, Delta Encoding reduces the amount of information that must
be stored or transmitted, resulting in more efficient data representation and compression.
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BZip2 is the acronym for Burrows–Wheeler Block Sorting Huffman Coding, a widely
used lossless data compression algorithm [42]. BZip2, developed by Julian Seward, com-
bines Burrows–Wheeler Transform (BWT), Run-Length Encoding (RLE), and Huffman
coding to achieve efficient compression. The Burrows–Wheeler Transform rearranges the
input data to increase redundancy and make it more amenable to subsequent compression
techniques. Run-length encoding is then applied to compress repeated sequences. Finally,
Huffman coding assigns variable-length codes to different symbols based on their frequen-
cies. Known for its high compression ratios, BZip2 is often used to compress large files or
archives, providing a balance between compression speed and efficiency.

The primary use cases and applications for Delta Encoding and BZip2 algorithms are
listed in Table 5.

Table 5. Lossless data reduction key use cases and applications.

Algorithm Use Case Application

Delta
Encoding

Data storage
optimization,
version control
systems

Delta Encoding is commonly used in scenarios where data
changes over time, such as in version control systems like
Git. Instead of storing entire files, only the differences
(delta) between versions are stored. It is also used in data
compression techniques to reduce redundancy.
Applications include minimizing storage requirements for
historical versions of files, efficient data transfer over
network protocols, and optimizing database storage for
incremental backups.

BZip2

File
compression,
data
transmission
over networks

BZip2 is used to compress files and data streams. It
provides a high compression ratio and is particularly
effective for compressing text files, XML, and large datasets.
Applications include compressing software distributions for
faster downloads, reducing storage requirements for
archival data, and optimizing data transmission over
limited bandwidth networks. It is often used in conjunction
with formats such as TAR to create compressed archives
(tar.bz2 files).

8. Experimental Evaluation

This section presents the experimental evaluation, explains the methodology used,
and presents the results obtained for each algorithm used in the experiments.

The experiments used algorithms implemented in Python language chosen for its
extensive collection of libraries designed for efficient data processing. The algorithms’
execution was on a system running Ubuntu 22.04.3 LTS, equipped with an Intel(R) Core
(TM) i7-8565U CPU @ 1.80GHz and 8 GB of RAM. This setup provided a robust computing
environment for the experimental process.

The categorization of the data reduction algorithms is according to the proposed
taxonomy. The selected lossy data reduction algorithms are Random Projection, Quanti-
zation, Linear Regression, Principal Component Analysis, K-Means, and Simple Random
Sampling. The selected lossless data reduction algorithms are Delta Encoding and BZip2.

The best results for each algorithm are shown in bold, selected from those that ef-
fectively reduced the original size. In the processing time per MB column, datasets that
increased in size are shown in italics.

8.1. Lossy Data Reduction Algorithms

In this subsection, we explain the implementation of the algorithms and provide
an analysis of the results. We also present a detailed analysis of our findings through
tabulated metrics.
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8.1.1. Random Projection

We used the Gaussian Random Projection from the scikit-learn 1.4.2 library in Python
3.12.0 [43]. The methodology involved loading the dataset and performing the necessary
conversions, particularly in the handling date formats for consistency across datasets. We
then initiated the processing using the Random Projection algorithm. To ensure repro-
ducibility, we set a random state seed of 42, increasing the reliability and consistency of
the results.

The results indicate that Random Projection is better for complex datasets with nu-
merous columns and distinct data types. In Table 6, the Random Projection algorithm
underperforms on almost all datasets, especially when dealing with a reduced number of
columns, where it consistently produces results opposite to expectations due to several
factors, including the nature of the dataset, the parameters chosen for Random Projection,
and the characteristics of the Random Projection algorithm itself. These issues indicate
the unsuitability of this algorithm for datasets with minimal columns and simple struc-
tures. The best compression result achieved was on the numeric data type. The algorithm
reduced the Accelerometer dataset by −20.27% of its original size in 0.007 ms, meaning it
processes 1 MB in 0.0019 ms. Regarding processing time per MB, the fastest dataset to be
processed and reduced the original dataset size was Smoke Detection, a numeric dataset.
The algorithm took 0.0012 ms to process 1 MB.

Table 6. Random Projection results.

Data Type Name
Original

Size
(MB)

Final
Size
(MB)

Percentage
Variance

Execution
Time
(ms)

Processing
Time per

MB
(ms/MB) 2

Temporal,
Numeric

Daily Minimum
Temperatures in

Melbourne
0.0558 0.0600 +7.53% 0.002 0.0358

Electric
Production 0.0730 0.0732 +0.27% 0.001 0.0137

Monthly Beer
Production in

Austria
0.0690 0.0800 +15.94% 0.001 0.0145

Numeric
Accelerometer 3.7000 2.9501 −20.27% 1 0.007 0.0019

Smoke Detection 5.8000 4.8203 −16.89% 0.007 0.0012

Temporal,
Text

IoT
Temperatures 6.7000 6.7202 +0.30% 0.002 0.0003

1 The best result for percentage variance. 2 The best result is in bold and italics are used for algorithms that
increased the size of the dataset.

8.1.2. Quantization

To evaluate the efficacy of the Quantization algorithm in data reduction, our method-
ology involved truncating the decimal cases in numeric datasets to two decimal places,
thereby reducing the number of bits in the final dataset. It is worth noting, however, that
the decimal case Quantization algorithm was not applied across all datasets due to the
variable number of decimals. Thus, we opted for a consistent reduction to two decimal
places. As a result, we omitted “The Daily Minimum Temperatures in Melbourne”, “The
Monthly Beer Production in Austria”, and “The IoT Temperatures” from Table 7 because
the numeric columns of these datasets already have two decimal places. Applying our
Quantization methodology to these datasets would not change the original data, and
reducing the truncation to one decimal place might oversimplify or lose critical details,
potentially distorting the nuanced characteristics of the data. Because the Quantization
algorithm requires processing all datasets to reduce numeric fields to two decimal places,
it may not be the most efficient option for processing performance for all datasets, as our
results illustrate.
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Table 7. Quantization algorithm results.

Data Type Name
Original

Size
(MB)

Final
Size
(MB)

Percentage
Variance

Execution
Time
(ms)

Processing
Time per

MB
(ms/MB) 2

Temporal,
Numeric

Electric
Production 0.0730 0.0600 −17.81% 1 0.0006 0.0082

Numeric
Accelerometer 3.7000 3.2100 −13.24% 0.2240 0.0605

Smoke Detection 5.8000 5.6780 −2.10% 0.0680 0.0117
1 The best result for percentage variance. 2 The best result is in bold.

Table 7 shows that the Quantization algorithm achieved the best result with the Electric
Production dataset from the temporal and numeric data types, reducing −17.81% of the
original dataset size in 0.0006 ms, meaning it processes 1 MB each 0.0082 ms.

8.1.3. Linear Regression

The goal of using Linear Regression was to gain insights into data patterns and build a
new model based on these insights. Linear Regression implementation from the scikit-learn
library in Python [44] unfolds in three key steps. The first divides the dataset into training
and testing. Then, the model was fitted to the training data, capturing relationships within
the dataset. Finally, the trained model was used to reconstruct the dataset using its learned
patterns. It is important to note that Linear Regression is effective when working with
pre-processed data, underscoring the importance of a well-organized and digested dataset
for optimal results.

Table 8 shows promising results for the Linear Regression algorithm. However, it is
crucial to clarify that these results are based on data generated from a predictive model,
highlighting the context-specific nature of this approach. It is critical to recognize that
Linear Regression may not be appropriate for all solutions, particularly in scenarios without
predictive modeling. Observations indicate that the model achieves impressive results but
also exhibits remarkable efficiency in data reduction, further underscoring its potential
applicability in some contexts. However, the algorithm loses information in string-based
data, which may impact execution time.

Table 8. Linear Regression results.

Data Type Name
Original

Size
(MB)

Final
Size
(MB)

Percentage
Variance

Execution
Time
(ms)

Processing
Time per

MB
(ms/MB) 2

Temporal,
Numeric

Daily Minimum
Temperatures in

Melbourne
0.0558 0.0118 −78.78% 0.003 0.0538

Electric
Production 0.0730 0.0144 −80.27% 0.006 0.0822

Monthly Beer
Production in

Austria
0.0690 0.0170 −75.36% 0.004 0.0580

Numeric
Accelerometer 3.7000 0.7670 −79.27% 0.040 0.0108

Smoke Detection 5.8000 1.3140 −77.34% 0.050 0.0086

Temporal,
Text

IoT
Temperatures 6.7000 1.2977 −80.63% 1 0.008 0.0012

1 The best result for percentage variance. 2 The best result is in bold.
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Analyzing Table 8, we can see that the Linear Regression algorithm was more efficient
with the IoT Temperatures dataset, reducing −80.63% of the original dataset data size in
0.008 ms. The algorithm took 0.0012 ms to process 1 MB.

8.1.4. Principal Component Analysis

In our evaluation of PCA, we integrated the sci-kit learn PCA component [45] into our
dataset processing workflow. A critical aspect of this integration was to adjust the temporal
structure of the data to improve compatibility with the algorithm. Our preprocessing
involved converting different date formats into a universal timestamp to streamline data
ingestion. We then determined the number of dimensions for the PCA algorithm using
the elbow method, a simple approach to determining the optimal number of principal
components (PCs) to retain. By plotting the explained variance ratios against the number
of PCs, we search for the mark where the explained variance stabilizes, forming an elbow
shape. This point indicates the optimal number of PCs to retain. More sophisticated
implementations would require a careful evaluation of the intrinsic characteristics of the
dataset to identify and prioritize the most influential data for dimensionality reduction.

After selecting the dimensionality, we applied the PCA fit_transform function to derive
the PCs, effectively transforming the original dataset. We reverted the temporal changes
from the universal timestamp to the original date formats to ease its interpretation. This
approach ensures the successful application of PCA but also recognizes the importance
of nuanced dimensionality selection for meaningful analysis, providing a comprehensive
solution to our experiments.

Table 9 shows the performance of the algorithm on datasets of different sizes. The
algorithm showed a robust performance on larger datasets, demonstrating its scalability and
efficiency, having the opposite effect when applied to simpler datasets. Understanding and
addressing such nuances in the algorithm’s behavior across different dataset complexities
is critical to its applicability and to ensure consistent performance across distinct scenarios.
In terms of performance, this algorithm performed relatively well. The algorithm took less
time to process 1 MB on the Smoke Detection dataset, which contains numeric data, taking
0.0276 ms to process 1 MB. Considering percentage variation, the best result is a reduction
of −20.81% of the Accelerometer original dataset in 0.160 ms.

Table 9. Principal Component Analysis results.

Data Type Name
Original

Size
(MB)

Final
Size
(MB)

Percentage
Variation

Execution
Time
(ms)

Processing
time per

MB
(ms/MB) 2

Temporal,
Numeric

Daily Minimum
Temperatures in

Melbourne
0.0558 0.0680 +21.86% 0.002 0.0358

Electric
Production 0.0730 0.0750 +2.74% 0.001 0.0137

Monthly Beer
Production in

Austria
0.0690 0.0890 +28.99% 0.001 0.0145

Numeric
Accelerometer 3.7000 2.9300 −20.81% 1 0.160 0.0432

Smoke Detection 5.8000 4.7500 −18.10% 0.160 0.0276

Temporal,
Text

IoT
Temperatures 6.7000 6.7600 +0.90% 0.050 0.0075

1 The best result for percentage variance. 2 The best result is in bold and italics are used for algorithms that
increased the size of the dataset.

8.1.5. K-Means

For the clustering algorithms, we used the K-Means implementation from the popular
Python library scikit-learn [46]. The first steps involved preprocessing the time data,
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converting them to a timestamp format, and then determining the optimal number of
clusters using the elbow point technique in the graph. We then constructed our K-Means
model and trained it on the dataset. Using the information from the trained model, we
created a new dataset that reflected the inherent characteristics of the original dataset.
This comprehensive process allowed us to harness the power of K-Means clustering for a
nuanced understanding of the underlying patterns in the data. Our solution is a simplified
approach to this algorithm. Its implementation depends on the needs of the solution. For
all the datasets, the optimal k was “2”, which means that all datasets used 2 as the number
of clusters for the K-Means algorithm.

Table 10 provides a comprehensive overview of the results derived from the study of
the K-Means algorithm. The algorithm unexpectedly affected the accelerometer dataset
because it was the only dataset that incremented the original size. While K-Means may
not be the most capable algorithm, its effectiveness strongly correlates its features to the
characteristics of the dataset at hand. These results highlight the importance of a tailored
algorithmic adaptation to achieve optimal results in different solution data scenarios. The
Electric Production dataset, which contains temporal and numeric data, was the dataset
where K-Means performed better, reducing −41.10% of the original dataset size in 0.160
ms. As for the time taken to process the data, the algorithm had better results with the IoT
Temperatures dataset, processing 1 MB in 2.0773 ms.

Table 10. K-Means results.

Data Type Name Original
Size (MB)

Final Size
(MB)

Percentage
Variance

Execution
Time (ms)

Processing
Time per

MB
(ms/MB) 2

MSE

Temporal,
Numeric

Daily Minimum
Temperatures in

Melbourne
0.0558 0.0401 −28.14% 0.370 6.6308 0.623

Electric Production 0.0730 0.0430 −41.10% 1 0.160 2.1918 0.315
Monthly Beer Production

in Austria 0.0690 0.0502 −27.24% 0.170 2.4638 0.328

Numeric
Accelerometer 3.7000 3.7700 +1.90% 24.404 6.5957 0.849

Smoke Detection 5.8000 5.5090 −5.02% 16.107 2.7771 0.674

Temporal,
Text IoT Temperatures 6.7000 5.9060 −11.85% 13.918 2.0773 0.574

1 The best result for percentage variance. 2 The best result is in bold and italics are used for algorithms that
increased the size of the dataset.

8.1.6. Simple Random Sampling

We took a straightforward approach to using the sampling algorithm. The solution
was based on column weights, using a random projection to compress the original dataset
and generate a representative sample. It is worth noting that our current implementa-
tion involves grouping by the primary column, which may not be the most optimized
application of this technique. The effectiveness of the Simple Random Sampling algorithm
focuses on well-distributed data, making it particularly powerful in scenarios where the
data distribution is uniform across the dataset. A more refined approach that considers
alternative grouping strategies and optimizes the application of column weights could
improve the performance of the algorithm, ensuring its efficiency across diverse datasets
and contributing to a more robust data sampling methodology.

In Table 11, the Simple Random Sampling algorithm demonstrates its effectiveness
on a variety of datasets. While it does not produce dramatic reductions, its fast processing
makes it a promising choice, especially when tailored to specific data types. By adapting
to specific data characteristics, the sampling technique becomes an attractive solution for
scenarios in which maintaining a compact yet representative dataset is critical. Its ability



Appl. Sci. 2024, 14, 3436 15 of 21

to balance speed and reduction makes it a compelling option in the landscape of efficient
data reduction strategies. The algorithm reduced more data, in percentage, on the Monthly
Beer Production in Austria dataset, composed of temporal and numeric data, reducing the
original dataset size by −13.04% in just 0.002 ms. When analyzing the time taken to process
1 MB per ms, the algorithm performed better in the Smoke Detection dataset, containing
numerical data, processing 1 MB of data in 0.0093 ms.

Table 11. Simple Random Sampling results.

Data Type Name
Original

Size
(MB)

Final
Size
(MB)

Percentage
Variance

Execution
Time
(ms)

Processing
Time per

MB
(ms/MB) 2

Temporal,
Numeric

Daily Minimum
Temperatures in

Melbourne
0.0558 0.0530 −5.02% 0.003 0.0538

Electric
Production 0.0730 0.0692 −5.21% 0.001 0.0137

Monthly Beer
Production in

Austria
0.0690 0.0600 −13.04% 1 0.002 0.0290

Numeric
Accelerometer 3.7000 3.6740 −0.70% 0.160 0.0432

Smoke Detection 5.8000 5.7710 −0.5% 0.054 0.0093

Temporal,
Text

IoT
Temperatures 6.7000 6.6000 −1.49% 0.068 0.0101

1 The best result for percentage variance. 2 The best result is in bold.

8.2. Lossless Data Reduction Algorithms

The next subsections will present an explanation of the lossless algorithms, in addition
to showing the tabulated metrics with the experimental results.

8.2.1. Delta Encoding

The implementation of Delta Encoding faced the challenge of handling the diverse data
forms within our dataset. To address this, we categorized the data into numeric and non-
numeric types, allowing an adaptive approach to accommodate different structures. When
processing string data, the algorithm carefully identified similarities between consecutive
strings, recording different characters as delta strings and using a placeholder character
(‘\0’) for unchanged positions. This analysis provided an understanding of string variations
and ensured robust Delta Encoding.

Regarding numeric values, the algorithm began the process by storing the first numeric
value and continued with iterative subtraction between successive values, storing the result
as the current subtractor. This systematic approach continued until the last value, providing
a seamless Delta Encoding solution for numeric data. The adaptability of our method
shines through, highlighting a tailored and comprehensive approach capable of handling
the intricacies inherent in the diverse data structures and characteristics of our dataset.

Table 12 shows the results of Delta Encoding, highlighting the algorithm trade-offs.
Despite its slower processing speed, Delta Encoding stands out for its impeccable data
persistence, and the ability to faithfully reproduce the original data in its raw form after
decoding is an advantage in applications where data integrity is a priority. The algorithm
efficiency is most pronounced in datasets characterized by temporal and numeric content.
The algorithm reduced more data, −46.06% in the Daily Minimum Temperatures in Mel-
bourne dataset, and achieved a better processing time of 4.1370 ms per MB in the Electric
Production dataset, with both temporal and numeric data.
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Table 12. Delta Encoding results.

Data Type Name
Original

Size
(MB)

Final
Size
(MB)

Percentage
Variance

Execution
Time
(ms)

Processing
Time per

MB
(ms/MB) 2

Temporal,
Numeric

Daily Minimum
Temperatures in

Melbourne
0.0558 0.0301 −46.06% 1 2.030 36.3799

Electric
Production 0.0730 0.0401 −45.07% 0.302 4.1370

Monthly Beer
Production in

Austria
0.0690 0.0620 −10.14% 0.330 4.7826

Numeric
Accelerometer 3.7000 3.6885 −0.31% 285.220 77.0865

Smoke Detection 5.8000 4.7600 −17.93% 422.130 72.7810

Temporal,
Text

IoT
Temperatures 6.7000 5.4600 −18.51% 693.040 103.4388

1 The best result for percentage variance. 2 The best result is in bold.

8.2.2. BZip2

The BZip2 algorithm, implemented using the bz2 Python library [47], encapsulates
the underlying logic, consistent with usual practices in the Python ecosystem. This encap-
sulation simplifies reproduction and provides an accessible and user-friendly approach. In
particular, the BZip2 algorithm excels in preserving data value after compression, ensuring
complete data integrity. While it has a relatively slower compression speed, potentially
less suitable for real-time data transfers, the algorithm’s ability to maintain data integrity
compensates for this trade-off. In addition, its data type agnosticism proves beneficial,
making it a versatile choice for various applications. Table 13 summarizes the key metrics
from our implementation and study, revealing the algorithm’s performance. BZip2 took
less time to compress the Electric Production dataset, a temporal and numeric dataset,
taking 0.001 ms to reduce −98.63% of the original dataset, processing 1 MB in 0.0137 ms.

Table 13. BZip2 results.

Data Type Name
Original

Size
(MB)

Final
Size
(MB)

Percentage
Variance

Execution
Time
(ms)

Processing
Time per

MB
(ms/MB) 2

Temporal,
Numeric

Daily Minimum
Temperatures in

Melbourne
0.0558 0.0093 −83.33% 0.010 0.1792

Electric
Production 0.0730 0.0010 −98.63%

1 0.001 0.0137

Monthly Beer
Production in

Austria
0.0690 0.0010 −98.55% 0.010 0.1449

Numeric
Accelerometer 3.7000 0.5682 −84.64% 0.340 0.0919

Smoke Detection 5.8000 1.1703 −79.82% 0.399 0.0688

Temporal,
Text IoT Temperatures 6.7000 0.8702 −87.01% 0.640 0.0955

1 The best result for percentage variance. 2 The best result is in bold.

9. Discussion

Having presented the results, we now focus on the interpretation and implications
of the results. Before the analysis, it is critical to address some of the limitations of our
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research. One limitation is the variable size of the datasets used in this study. Despite
our research, we were unable to find publicly available datasets that met the desired size
and specific requirements. This limitation required working with datasets of different
sizes, which can introduce variability and potentially affect the comparison of results.
However, we mitigated these challenges by normalizing the data (Equation (4)), enabling
a more concise comparison despite the different dataset sizes. Also, the accuracy of the
reduced data, when compared to the original set, may not be sufficient for all scenarios or
applications, emphasizing the need for careful selection of the data reduction technique to
be used, considering the specific requirements of the final application. In addition, the test
environment, which uses a general-purpose Ubuntu operating system, may introduce some
noise into the results. Despite these limitations, our research provides valuable insights
into the field and sets a foundation for future studies.

Since the algorithms have different characteristics, we split this section into two
subsections, one for the lossy data reduction algorithms and the other for the lossless
data reduction algorithms. For the analysis, we only consider the results that reduced the
original size of the datasets.

9.1. Lossy Data Reduction Algorithms

When examining the results of the lossy data reduction algorithms, a tangible trend
appeared in the “Percentage Variation” column. Linear Regression was the algorithm that
had the best results in percentage variation across all the data types, with the percentage
variation ranging from −75.36% to −80.63%.

Regarding the processing time, the algorithm efficiency varied across the datasets. For
Daily Minimum Temperatures in Melbourne (temporal and numeric), Linear Regression
and Simple Random Sampling were the algorithms that took less time to process data,
each taking 0.0538 to process 1 MB. As for the Electric Production dataset (temporal and
numeric), the algorithm that could process data in less time was Quantization, taking
0.0082 ms to process 1 MB. For the Monthly Beer Production in Austria dataset (temporal
and numeric), the algorithm with the best processing time per MB was Simple Random
Sampling, taking 0.0290 ms to process 1 MB. As for the Accelerometer and the Smoke
Detection datasets, Random Projection was the algorithm that took less time to process
1 MB, taking 0.0019 ms and 0.0012 ms, respectively. The faster algorithm for the IoT
Temperatures dataset was Linear Regression, taking 0.0012 ms to process 1 MB.

When we look at the data type results in our study (see Table 14), the algorithm that
reduced more data across the different data types was Linear Regression. But when looking
at the best processing time per MB column, we can see that, for the temporal and numeric
data types, the algorithm that appears the most is Simple Random Sampling. Random
Projection was the algorithm that performed faster in numeric data type datasets, and
Linear Regression performed faster in the temporal- and text-type datasets.

Table 14. Best lossy data reduction algorithms.

Data Type Dataset Name
Algorithm with the Best

Percentage
Variance

Algorithm with the Best
Processing Time per MB

Temporal,
Numeric

Daily Minimum
Temperatures in

Melbourne
Linear Regression

Linear
Regression/Simple
Random Sampling

Electric Production Linear Regression Quantization
Monthly Beer
Production in

Austria
Linear Regression Simple Random

Sampling
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Table 14. Cont.

Data Type Dataset Name
Algorithm with the Best

Percentage
Variance

Algorithm with the Best
Processing Time per MB

Numeric
Accelerometer Linear Regression Random Projection

Smoke Detection Linear Regression Random Projection

Temporal, Text IoT Temperatures Linear Regression Linear Regression

This distinctive research highlights the algorithms’ effectiveness and dataset-dependent
nuances in achieving optimal tradeoffs between data reduction and processing times.

9.2. Lossless Data Reduction Algorithms

In the lossless data reduction algorithms, BZip2 demonstrated respectable compres-
sion speeds and significant percentage variation, outperforming all the other lossless data
reduction algorithms in both metrics. Notably, BZip2 showed better percentage variations
than some lossy data reduction techniques, such as Principal Component Analysis, Quan-
tization, or Random Projection, indicating BZip2 as a good choice for minimizing data
volume while preserving data integrity, highlighting its effectiveness as a lossless data
reduction algorithm across the different data types studied in our research.

10. Conclusions and Future Work

This study addresses the requirements for data reduction techniques within the current
data production landscape. The proposed taxonomy is a valuable tool for identifying the
categories of the evaluated algorithms.

This work provides researchers with a foundation for further exploration by covering
multiple data reduction techniques and specific use cases and applications. In addition
to the state of the art, this study allows the categorization of different data reduction
techniques while providing an overview of their main characteristics and experimental
results for distinct data types.

The evaluation of the data reduction algorithms was based on specific criteria such
as the amount of data reduced, the processing speed of the algorithm, and the integrity of
data. Regarding numeric data, where processing speed is a priority, Random Projection is a
good choice, while BZip2 is preferable for data reduction and integrity. Thus, the algorithm
selection must consider the specific data type.

It is crucial to carefully evaluate the specific needs and trade-offs of the dataset, and
the requirements of the final application, to select the most appropriate algorithm to achieve
optimal results. Linear regression stood out as the best-performing lossy data reduction
algorithm, with the highest percentage variance reaching a maximum of 80.63%. On the
other hand, the best lossless compression algorithm was BZip2, with a percentage variance
of −98.63%.

The detailed analysis and discussion within each algorithm class reveals the perfor-
mance of different techniques on different data types, providing a deep understanding of
their capabilities and limitations. This research contributes to the field by providing deci-
sion makers with insights into the appropriate selection of data reduction strategies. Finally,
this research highlights key considerations for data reduction algorithms, especially in IoT
environments, where performance requirements necessitate careful curation of algorithms
to meet application-specific needs and comply with device constraints.

In future work, we intend to investigate additional data reduction techniques, such as
autoencoders and other supervised methods. We also plan to explore additional domains,
such as audio, image, and video, to promote a comprehensive understanding of the multiple
dimensions of the data.
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