
Citation: Hu, L.; Wang, D. Research

and Application of an Improved

Sparrow Search Algorithm. Appl. Sci.

2024, 14, 3460. https://doi.org/

10.3390/app14083460

Academic Editor: Mirosław

Klinkowski

Received: 24 March 2024

Revised: 14 April 2024

Accepted: 15 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research and Application of an Improved Sparrow
Search Algorithm
Liwei Hu * and Denghui Wang

School of Information Engineering Department, East China Jiaotong University, Nanchang 330013, China
* Correspondence: 2021068085400004@ecjtu.edu.cn

Abstract: Association rule mining utilizing metaheuristic algorithms is a prominent area of study in
the field of data mining. However, when working with extensive data, conventional metaheuristic
algorithms exhibit limited search efficiency and face challenges in deriving high-quality rules in
multi-objective association rule mining. In order to tackle this issue, a novel approach called the
adaptive Weibull distribution sparrow search algorithm is introduced. This algorithm leverages the
adaptive Weibull distribution to improve the traditional sparrow search algorithm’s capability to
escape local optima and enhance convergence during different iterations. Secondly, an enhancement
search strategy and a multidirectional learning strategy are introduced to expand the search range
of the population. This paper empirically evaluates the proposed method under real datasets and
compares it with other leading methods by using three association rule metrics, namely, support,
confidence, and lift, as the fitness function. The experimental results show that the quality of the
obtained association rules is significantly improved when dealing with datasets of different sizes.

Keywords: association rules; multi-objective optimization; sparrow search algorithm; data mining

1. Introduction

Association rule mining (ARM) was originally utilized to suggest a solution to the
shopping basket issue and has grown to be one of the major fields of data mining [1].
Association rules are implicit formulae, such as X → Y, where X and Y are considered
the predecessor and successor of association rules, and X and Y represent separate sets
of entries in the database. ARM assists decision makers in numerous businesses to make
proper judgments to increase their competitiveness by finding possible dependencies be-
tween items in the transactional database and is presently employed in various domains,
such as traffic accidents [2], education [3], and medicine [4]. The Apriori method is the
most generally used association rule mining technique [5]. However, it regularly searches
the whole database and creates a huge number of candidate itemsets, which leads to a
considerable amount of I/O overheads. The FP-Growth minimizes the number of scans of
the database by compressing the data into the shape of a tree but creates a high number of
unordered tree nodes, which causes the complexity of the data structure to rise [6]. The
optimization of classic association rule mining algorithms is near the bottleneck, the mining
efficiency is too low in the face of larger-dimensional data, and it has to preset the support
and confidence criteria in advance, so it is less applicable in diverse circumstances. In recent
years, the major strategy to overcome this challenge has been to propose metaheuristic
algorithms [7,8]. This family of algorithms has been extensively employed in numerous
study fields and is a typical way of tackling combinatorial and hyperparametric optimiza-
tion issues [9]. Using this class of algorithms to handle association rule mining has more
reasonable time and resource overheads. However, when facing multiple high-dimensional
datasets, it is also a new challenge to obtain more comprehensive association rules in a
complex solution space [10].

Metaheuristic algorithms are frequently motivated by various natural occurrences and
human social behaviors [11], such as genetic algorithms [12], slime mold algorithms [13],
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ant lion algorithms [14], etc. Such algorithms are one of the efficient techniques for tackling
the association rule mining issue [8]. In [15,16], the particle swarm and genetic algorithm
were used for association rule mining; this strategy does not need one to provide a min-
imum support or confidence criterion, which improves the applicability of the scenario.
Sharmila et al.’s use of fuzzy logic and the whale optimization algorithm for association
rule mining in [17] reduced the number of scans of the database and the memory required
for computation. The use of metaheuristic algorithms effectively improves the mining effi-
ciency of association rule problems and saves resource overheads. Researchers have started
focusing on enhancing the quality of mining rules based on the optimization goals of asso-
ciation rules. These objectives may be categorized into single-objective and multi-objective
algorithms [18]. Typical single-objective algorithms are GAR [19] and GENAR [20], but
in order to pursue the accuracy and diversity of the rules in more scenarios, the associa-
tion rules are a multi-objective problem. For example, in [21] weighted combinations of
multiple performance indicators developed fitness functions that fulfilled the demands
of the decision makers, but for the setting of the weights it was difficult to determine the
appropriate value, and it was difficult to equalize between different indica tors. In [22], the
Pareto optimal method was used to optimize confidence, comprehensibility, and interest
simultaneously. This method does not need to set the objective weights; it will obtain a
series of Pareto optimal solutions. The set of these solutions makes up the Pareto frontiers
that show solutions with trade-offs under multiple objectives, providing a range of choices
for the decision maker [23].

More and more researchers and scholars consider association rule mining as a multi-
objective problem to evaluate the mined association rules with multiple objective functions.
However, many studies omit to consider how to further enhance the value of the set ob-
jective function, and it is a challenge for the optimization ability of heuristic algorithms
to simultaneously consider multiple objective functions for association rule mining under
large-scale datasets. To address this problem, this paper proposes the adaptive Weibull
distributed sparrow search algorithm (AWSSA) to enhance the performance of heuristic al-
gorithms. In order to verify the performance of the improved algorithm, we first conducted
experiments on 10 standard functions. The purpose of this was to evaluate the optimization
ability of the AWSSA. Finally, in order to test the actual performance of the AWSSA in
multi-objective association rule mining, five different-sized datasets were selected, and
experimental simulations were conducted with the objectives of support, confidence, and
enhancement, which aimed to evaluate the quality of the rules generated by the AWSSA
under different-sized datasets.

The main contributions of this paper are as follows: (1) We propose an adaptive Weibull
distribution sparrow search algorithm that improves the optimization and convergence
ability of the sparrow search algorithm by combining three strategies, namely, adaptive
Weibull distribution, augmented search, and multidirectional learning. (2) By applying
the improved algorithm to multi-objective association rule mining, there is a significant
improvement in the value of the objective function, which further improves the quality of
the mined rules and provides more accurate and excellent solutions for decision makers.

2. Related Work

Traditional association rule mining algorithm: The earliest algorithm to solve the
association rule mining problem was Apriori [5]. In the AprioriTid algorithm [24], proposed
later, the TID set is used in the process of each calculation to replace the frequent itemset,
reducing the number of scans of the transaction database and thus reducing the overheads
on computer memory. Subsequently, based on the Apriori algorithm, many new improved
versions have been proposed, such as the DHP [25] and DIC [26] algorithms, but it is
still difficult to change the nature of the original Apriori because it will be scanned many
times on the transaction database, resulting in a large amount of resource overheads.
Han et al. proposed the FP-Growth algorithm [6]. Compared with the Apriori algorithm,
it no longer needs to generate candidate frequent itemsets and uses a tree structure for
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storing compressed dataset information, called FP-tree, only needing to scan the transaction
database twice, thus greatly reducing the demand for computing resources. Aiming at
the traditional association rule mining algorithm optimization has been a bottleneck; it is
difficult to improve on the basis of the original algorithm. Research scholars have tried to
introduce heuristic algorithms into the association rule mining problem.

Association rule mining based on heuristic algorithms: The use of genetic algorithms
for association rule mining [19], compared with the traditional algorithms, greatly enhances
mining efficiency. However, this method only starts from a single-objective perspective
and lacks comprehensive consideration. Ye Z et al. [27] combined different intelligent
optimization algorithms based on the whale optimization algorithm into a hybrid whale
algorithm and linearly weighted the support, confidence, and accuracy factors into a new
adaptive function in order to pursue a new optimization function that is based on the whale
optimization algorithm. A new fitness function in pursuit of better rule quality: Linear
weighting of different objective functions is a simple and effective way, but it is difficult to
determine the appropriate value for the setting of weights, which requires a certain amount
of a priori knowledge of the decision maker. Different datasets have different emphasis,
which leads to the difficulty of striking a balance between the different indicators, and the
weights set by human beings have a certain degree of subjectivity. So, Beiranvand et al. [22]
used the Pareto optimal method to measure multi-objective association rules. Heraguemi
proposed a MOB-ARM algorithm [28] that uses four quality measures: support, confidence,
comprehensibility, and interest, aiming to mine more useful and understandable rules.
Minaei-Bidgoli used a multi-objective version of a genetic algorithm for association rule
mining [29], targeting support, comprehensibility, and interest, all three. On this basis, we
propose an improved sparrow search algorithm for multi-objective association rule mining,
aiming to enhance the heuristic algorithm’s ability to find the best and improve the value
of the objective function obtained.

3. Methods
3.1. Sparrow Search Algorithm

The sparrow search algorithm (SSA) [30] was proposed in 2020 and was inspired by
the predation and scouting warning behavior of sparrows in nature. Sparrow populations
are categorized into discoverers, followers, and scouts according to different classes. Dis-
coverers are dominant in the sparrow population as they have a better position in the
search space and usually provide information about the location of food for the population,
whereas the follower always monitors the finder: when the finder finds food, the follower
will immediately follow. And the scout is observing the situation around the food. Once
there is a danger, the monitor will immediately issue an alarm. When the alarm signal
reaches a certain threshold, the whole population will move under the leadership of the
finder. The discoverers update strategy is as in Equation (1):

xt+1
i,j =

xt
i,j · exp

(
−i

α·itermax

)
R2 < ST

xt
i,j + Q · L R2 ≥ ST

(1)

xt
i,j represents the position of the sparrow in the j-dimension at generation t, a is a

random number between [0, 1], Q is a normally distributed random number, L is a 1 × d
unit matrix. R2 is the warning threshold, ST is the safety threshold. When R2 < ST, it
means that the sparrow did not find the predator, and the individual sparrow carries out
a wide range of searching behaviors. When it is larger than ST, the discoverer needs to
lead the population to fly to a safe place to forage. The follower update strategy is as in
Equation (2):

xt+1
i,j =

Q · exp
(

xt
worst −Xt

i,j
i2

)
i > n

2

xt+1
P +

∣∣∣xt
i,j − xt+1

P

∣∣∣A+ · L i ≤ n
2

(2)
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where xt+1
P is the current discoverer’s optimal position, xt

worst is the globally worst position,
and A+ is a matrix where the elements are random values from 1 to −1.

Scouts are randomly generated from the population, which is about 10 to 20 percent
of the total population, and the scout position update formula is as follows:

xt+1
i,j =


xt

best + β ·
∣∣∣xt

i,j − xt
best

∣∣∣ fi > fg

xt
i,j + K ·

( ∣∣∣xt
i,j−xt

worst

∣∣∣)
( fi− fw)+ε

)
fi = fg

(3)

where β is a normal random number obeying a mean of 0 and a variance of 1, K is a random
number in the range [−1, 1], and ε is a normal number preventing the denominator from
being zero.

3.2. Adaptive Weibull Distributed Sparrow Search Algorithm
3.2.1. Adaptive Weibull Distribution Strategy

The original SSA utilizes normal distribution to update the population position, but
this does not take into consideration that the sparrow population’s individuals in various
iteration stages of the algorithm need to leap out of the present location of the varied
requirements. In order to further enhance the optimization abilities of the sparrow search
algorithm, this study brings forth a form of adaptive Weibull distribution [31] variation
to increase the chance of the program leaping out of the local optimum. The Weibull
distribution probability density function is as follows:

f (x; λ, k) =

{
k
λ

( x
λ

)k−1e−(x/λ)k
x ≥ 0

0 x < 0
(4)

where x is the value of the random variable, λ is the scale parameter, and k is the shape
parameter. Figure 1 illustrates the probability density function picture of the Weibull
distribution, from which it can be observed that the distribution is exponential when k is
equal to 1, and the distribution is right-skewed when k is more than 1.

Sparrow populations exhibit different behavioral traits during different predation
processes, so this study aims to make the sparrow search algorithm a better balance
between exploration and exploitation. Specifically, we anticipate that the algorithm favors
a vast search space in the early iterations, which has greater potential to leap out of the
local optimum solution and enhance the likelihood of discovering a superior solution.
In the latter rounds, it tends to be more towards a steady development state in order to
converge to the ideal solution quicker. Based on this goal, in this research, we leveraged the
Weibull distribution feature, as given in Equation (5), to develop a new shape parameter
called a mutation factor, with the number of iterations t as the independent variable and
k as the dependent variable. In the early stages of the method, the value of k is small,
and the random variable value x produced by Weibull has a wider range interval. And
when the iteration goes to a later stage, the value of k steadily grows, the peak of the
Weibull distribution gets steeper, and the variability subsequently reduces, meaning that
the values of the random variable will be more centrally distributed around λ . Therefore,
the variability factor we construct allows the algorithm to have a greater chance to enter
the exploration state in the early iterations, and as the iteration proceeds to the later stages,
the variability factor allows the sparrow individuals to develop near the optimal solution,
thus accelerating the algorithm’s convergence.

k = 1 +
5 · t

itermax
(5)

The formula for updating the strategy by applying the adaptive Weibull distribution
strategy is shown in Equations (9)–(11), where W is the random Weibull number, the value
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generated by the distribution, and σ is a random value of −1 or 1, used to change the
search direction.
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Figure 1. Image of the probability density function of the Weibull distribution.

3.2.2. Enhanced Search Strategy

Among the three roles of the sparrow algorithm, when R2 < ST, the position update
strategy of the discoverer is shown in Equation (1). Where the image of the function
f (x) = exp

(
−i

α·itermax

)
is shown in Figure 2, it can be seen that the range of values of the

function is gradually narrowed down from [0, 1] at the beginning to between [0, 0.4], which
means that the finder can easily fall into stagnation, and all the values are in the range of
[0, 1], which renders the finder unable to search extensively. In this paper, based on the
original formula, a new position-updating strategy is proposed by combining the oscillatory
property of the sinusoidal function as in Equation (6):

xt+1
i,j = xt

i,j ·
(

exp
(

−i · µ

α · itermax

)
· sin(i)

)
(6)

where µ represents random numbers of [0, 1]. The improved individual position update
process is shown in Figure 3, where the search becomes broader and goes in the opposite
direction compared to Figure 2.
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Figure 2. Original search strategy.
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Figure 3. Enhanced Search Strategy.

3.2.3. Multidirectional Learning Strategy

In Equation (3), when fi = fg, the scout is aware of the danger. If the scout itself
is in the current optimal position, it will choose to move to the neighborhood of itself,
and if it is not optimal, it will move to the neighborhood of the current optimal position,
which reduces the diversity of the population and increases the risk of local optimality in
the previous period. In order to overcome this issue, we introduced a multi-directional
learning strategy [32] to improve the scout’s learning process, increase the algorithm’s
exploration ability in the search space. As shown in Equation (8) fa, fb, and fc are the
fitness of sparrows at three different points and different weights; τa, τb, τc are calculated
for this purpose. The sparrows with better adaptations occupy a larger proportion, and
the comprehensive consideration of the position information of the three sparrows is more
conducive for the follower to have a greater chance of exploring the unknown region. The
new updated measurements are as in Equation (7):
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Xt+1
i,j =

τa · Xt
a,j + τb · Xt

b.j + τc · Xt
c,j

τa + τb + τc
(7)


τa =

fa+ fb+ fc
fa

τb = fa+ fb+ fc
fb

τc =
fa+ fb+ fc

fc

(8)

After using the above three improvement strategies, the position-update strategy for
individual sparrows is as follows (Algorithm 1):

xt+1
i,j =

xt
i,j ·
(

exp
(

−i·µ
α· iter max

)
· sin(i)

)
R2 < ST

xt
i,j + W · σ · L R2 ≥ ST

(9)

xt+1
i,j =

W · σ · exp
(

xt
worst −Xt

i,j
i2

)
i > n

2

xt+1
P +

∣∣∣xt
i,j − xt+1

P

∣∣∣A+ · L i ≤ n
2

(10)

xt+1
i,j =

xt
best + W · σ ·

∣∣∣xt
i,j − xt

best

∣∣∣ fi > fg
τa ·Xt

a,j+τb ·Xt
b.j+τc ·Xt

c,j
τa+τb+τc

fi = fg

(11)

Algorithm 1 Adaptive Weibull Distributed Sparrow Search Algorithm.

1: Input: N, PD, SD, ST
2: Output: Fitness, Xbest , Xworst
3: Initialize population
4: t = 1;
5: while t < itermax do
6: Calculate the initial fitness values and sort them to find the current location of the

sparrows with the best and worst fitness values.
7: for i= 1 : PD·N do
8: Update the position of discoverer based on Equation (9)
9: end for

10: for i = (PD·N) : N do
11: Update the position of followers based on Equation (10)
12: end for
13: for j = 1 : SD·N do
14: Update the position of scout based on Equation (11)
15: end for
16: t = t + 1;
17: end while
18: return Fitness, Xbest , Xworst

3.3. Algorithm Performance Testing
3.3.1. Selection of Test Functions

In order to verify the optimization performance of the AWSSA, 10 groups of benchmark
test functions of different categories were selected for an optimization comparison test,
among which F1∼F7 were unimodal test functions and F8∼F10 were multimodal test
functions. The information about the functions is shown in Table 1.
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Table 1. Test functions.

ID Function Name Dim Range Min

F1 Sphere 30 [−100,100] 0
F2 Schwefel’s Problem 2.22 30 [−10,10] 0
F3 Schwefel’s Problem 1.2 30 [−100,100] 0
F4 Schwefel’s Problem 2.21 30 [−10,10] 0
F5 Generalized Rosenbrock 30 [−30,30] 0
F6 Step 30 [−100,100] 0
F7 Quartic 30 [−1.28,1.28] 0
F8 Generalized Schwefel 2.26 4 [−500,500] −418.9829D
F9 Generalized Rastrigin 4 [−5.12,5.12] 0

F10 Ackley 4 [−32,32] 0

3.3.2. AWSSA Compared with Other Algorithms

The AWSSA, the SSA, and the PSO algorithm were compared for functional optimiza-
tion. The population size was set to 30, the maximum number of iterations was 500, and
the algorithm parameter settings are shown in Table 2. The three algorithms were run on
the test function 30 times, and the average value was taken as a reference. Table 3 lists the
detailed experimental results. It can be seen from Table 3 that in the unimodal function,
the AWSSA achieved optimal results in F1∼F4, which was dozens of orders of magnitude
ahead of the other algorithms. It was only slightly lower than the SSA on the F5 and F6
functions. On the other hand, it can be observed that the AWSSA was far better than the
SSA for the multimodal function F8, although the average values and standard deviations
obtained by the AWSSA and the SSA were the same on F9 and F10. The information evident
from the convergence curves depicted in Figures 4–13 is that the convergence speed of
the AWSSA was better than that of the other algorithms. From the above results, it can
be seen that the improvement strategy in this article has a certain effect on improving the
convergence ability and optimization ability of the original algorithm.

In the next section, we describe in detail the application of the AWSSA to multi-
objective association rule mining, including the selection of coding rules and fitness func-
tions, as well as its comparison with other algorithms.

Table 2. Parameters setting of comparison algorithm.

Algorithm Parameters

AWSSA ST = 0.8, PD = 0.2, SD = 0.1, λ = 2
SSA ST = 0.8, PD = 0.2, SD = 0.1
PSO W = 0.9, C1 = 1.49445, C2 = 1.49445

WOA B = 0.5
SMA Z = 0.03

F
it

n
e
s
s

F1

Iterations

AWSSA

SSA

PSO

Figure 4. F1 convergence curve.



Appl. Sci. 2024, 14, 3460 9 of 17

Iterations

F
it

n
e
s
s

F2

AWSSA

SSA

PSO

Figure 5. F2 convergence curve.

F
it

n
e
s
s

F3

Iterations

AWSSA

SSA

PSO

Figure 6. F3 convergence curve.

Iterations

F
it

n
e
s
s

F4

AWSSA

SSA

PSO

Figure 7. F4 convergence curve.
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Iterations

F
it

n
e
s
s

F5

AWSSA

SSA

PSO

Figure 8. F5 convergence curve.

Iterations

F
it

n
e
s
s

F6

AWSSA

SSA

PSO

Figure 9. F6 convergence curve.

Iterations

F
it

n
e
s
s

F7

AWSSA

SSA

PSO

Figure 10. F7 convergence curve.
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Iterations

F
it
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s
s

F8

AWSSA

SSA

PSO

Figure 11. F8 convergence curve.

Iterations

F
it

n
e
s
s

F9

AWSSA

SSA

PSO

Figure 12. F9 convergence curve.

Iterations

F
it

n
e
s
s

F10

AWSSA

SSA

PSO

Figure 13. F10 convergence curve.
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Table 3. Test Function Results.

Function Algorithm AWSSA SSA PSO

F1 Mean 8.87 × 10−218 8.62 × 10−41 1.01 × 101

Std 0.00 × 100 4.73 × 10−40 2.91 × 100

F2 Mean 1.31 × 10−96 3.10 × 10−24 1.09 × 101

Std 7.19 × 10−96 1.61 × 10−23 2.56 × 100

F3 Mean 1.06 × 10−168 5.69 × 10−34 5.41 × 102

Std 0.00 × 100 3.12 × 10−33 2.06 × 102

F4 Mean 1.08 × 10−113 3.32 × 10−20 5.80 × 100

Std 5.92 × 10−113 1.82 × 10−19 1.50 × 100

F5 Mean 3.44 × 10−3 1.04 × 10−5 1.28 × 103

Std 6.24 × 10−3 1.87 × 10−5 6.41 × 102

F6 Mean 7.28 × 10−5 1.14 × 10−7 9.92 × 100

Std 2.19 × 10−4 3.47 × 10−7 3.51 × 100

F7 Mean 1.78 × 10−4 3.98 × 10−4 6.51 × 10−1

Std 1.47 × 10−4 2.93 × 10−4 3.20 × 10−1

F8 Mean −8.19 × 103 −6.44 × 103 −2.42 × 103

Std 1.83 × 103 1.84 × 103 4.62 × 10−13

F9 Mean 0.00 × 100 0.00 × 100 1.06 × 102

Std 0.00 × 100 0.00 × 100 1.84 × 101

F10 Mean 4.44 × 10−16 4.44 × 10−16 5.71 × 100

Std 0.00 × 100 0.00 × 100 1.04 × 100

4. Solving Multi-Objective Association Rule Mining with the AWSSA
4.1. ARM Rule Representation

In the field of ARM, rules are usually represented in two ways [33]: the Michigan
approach and the Pittsburgh approach. The former represents a rule as a single individual
and the latter represents a rule as a set. In this paper, we chose to adopt the Michigan
method. In the Michigan method, a rule is represented as a vector of integers of length 2N.
The first half of this vector is used to represent the presence or absence of each item in the
rule and the second half is used to represent the presence or absence of each item in the
result. In the first half, if the value is greater than zero, it means that the corresponding
item exists in the rule, while in the second half, if the value is greater than zero, it means
that the item is in the first item of the rule and, vice versa, it means that the item belongs to
the latter item, and thus it is more convenient to compute. For example, in Table 4, the rule
is represented as [3, 4]→ [1, 2].

Table 4. Example of individual.

0 1 2 3 4 0 1 2 3 4
−1 0.1 1.1 1.2 2 −2 −0.2 −3 4.1 3

4.2. Fitness Function Selection

In this paper, the quality of association rules is considered in terms of support, confi-
dence, and Lift [34] for discovering rules with high generality, more reliability, and strong
association. Support is defined as follows:

Sup(A → B) =
Sup(BA)

|D| (12)

where |D| is the total number of transactions, and (BA)| represents the number of transac-
tions containing both A and B. Support can be thought of as the frequency of occurrence
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of a rule in the transaction set, which is used to characterize the degree of prevalence of
a rule. If the support is too low, it means that the resulting rule is quite rare, which may
not be meaningful to the decision maker. The second objective function is the confidence,
which is usually used to measure the credibility of a rule to help determine the strength
of the association rule, i.e., the likelihood that itemset B will occur under the condition
that itemset A occurs. Rules with high confidence are usually more reliable because their
occurrence in the data is well-founded. The confidence level is defined as follows:

Conf(A → B) =
Sup(BA)

Sup(A)
(13)

In ARM, sometimes there are misleading associations that appear to be related on
the surface but are actually caused by chance events, and lift can help us determine the
authenticity of such associations. The lift tells us whether the itemsets included in the
rule are more related than if they had appeared separately, and it helps to identify non-
independent relationships between the itemsets; a lift of less than 1 indicates that A plays
no role in the likelihood of B’s occurrence, whereas a larger lift indicates that A is more
related to B.

Lift(A → B) =
Sup(BA)

Sup(A) · Sup(B)
(14)

The workflow of the AWSSA in MOARM is shown in Figure 14.

Figure 14. Flowchart of the proposed multi-objective AWSSA.
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4.3. Implementation

We compared the AWSSA with four additional advanced metaheuristic algorithms
in association rule issues. The name of the algorithm is listed in Table 2, along with the
parameter settings. Five real datasets from UCI [35] were used. Table 5 is a description of
the different datasets, where all the datasets have been discretized. From the Table, it can be
seen that the number of transactions as well as the number of items in the five datasets were
different; the number of transactions is also known as the number of records, and the size of
the selected datasets tends to increase to better observe the performance of the algorithms
on datasets of different magnitudes. The other four algorithms were the WOA [36], the
SSA [30], the SMA [13], and the PSO [37]. The SMA algorithm was proposed in the same
year as the SSA, which is a relatively new algorithm, so it was chosen for comparison. As
for the PSO algorithm and the WOA, they have been maturely applied in many fields,
the original papers have high citations, and their excellent performance has been certified
by various industries, so we thought that it was necessary to choose excellent algorithms
to compare with the AWSSA. All in all, our selection mainly considered relatively novel
algorithms and algorithms that had been highly recognized in many fields. For each
calculation, the number of populations and iterations were 30 and 100, respectively. We
let each algorithm repeat the experiment five times on the dataset, and the average value
obtained was used as a reference basis. The experimental results recorded not only the
values of the three objective functions for each rule in the solution set of the Pareto front,
but also the size of the Pareto front, i.e., the number of rules obtained.

Table 5. Datasets selected for experiments.

Datasets Rows Binary Attributes

Iris 150 43
Australian 690 98

Flag 194 340
Abalone 4177 83

Wine 4898 117

4.4. Simulation Result Analysis

Analyzing the experimental results based on Table 6, it can be observed that the
AWSSA did not show significant superiority over the other algorithms on smaller datasets,
such as the Iris dataset. In these cases, it achieved only a moderate level in terms of
three different objective function values. The problem complexity of the smaller datasets
was relatively low, resulting in insignificant performance differences between the five
algorithms. The AWSSA performed much better in all three objective function values
when the number of transactions and the number of dimensions of the dataset increased.
It performed especially better in terms of lift, where it was much better than the other
algorithms. In addition, the AWSSA also maintained a high level of support and confidence.
This suggests that the AWSSA has a very proficient capacity for identifying optimization.

Table 6. Average objective function value of Pareto front.

Algorithm Iris Australian Flag Abalone Wine
Sup Conf Lift Sup Conf Lift Sup Conf Lift Sup Conf Lift Sup Conf Lift

SSA 0.09 0.83 27.73 0.21 0.80 100.49 0.15 0.78 57.78 0.07 0.74 230.20 0.06 0.59 598.46
WOA 0.07 0.76 61.15 0.16 0.72 117.90 0.11 0.76 48.73 0.05 0.68 324.54 0.02 0.72 471.40
PSO 0.06 0.76 51.81 0.16 0.72 82.49 0.12 0.67 39.12 0.05 0.70 574.94 0.05 0.49 381.49
SMA 0.04 0.83 43.81 0.07 0.79 59.30 0.05 0.83 47.78 0.02 0.77 465.12 0.03 0.71 209.20

AWSSA 0.09 0.87 35.59 0.21 0.86 161.79 0.16 0.83 71.62 0.07 0.76 586.21 0.06 0.65 1183.62

In Table 7, further analysis shows that the AWSSA found a good number of rules
on multiple datasets. In contrast, although the SMA algorithm could also find multiple
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rules, the average objective function values of these rules were relatively low, i.e., the rules
were of poor quality. This phenomenon stemmed from the fact that the SMAs fell into
local optima in the early stages, where the populations were rapidly clustered together
and lacked the ability to break away from the local optima, resulting in a large number of
poor-quality solutions in the Pareto-optimal set. The AWSSAs had a strong potential to
break away from the local optima, thanks to the Weibull distribution strategy adopted and
had excellent exploration capabilities under the augmented search and multidirectional
learning strategies. As a result, the AWSSA was able to find a large number of rules while
keeping their quality high. This further validates that the AWSSA strikes a good balance
between exploration and exploitation.

Table 7. Average number of rules composing the Pareto front.

Algorithm Iris Australian Flag Abalone Wine

Mean

SSA 8.8 20.05 17.7 23.35 21.65
WOA 9.5 15.5 14.0 14.6 31.45
PSO 10.6 19.45 14.2 19.05 18.9
SMA 19.1 25.5 17.9 20.8 19.6

AWSSA 9.2 25.3 24.15 29.65 21.25

Std

SSA 1.32 3.70 2.65 4.65 4.65
WOA 3.80 4.12 6.85 2.83 14.30
PSO 3.13 5.67 5.30 2.45 2.40
SMA 20.29 13.59 14.81 10.85 13.20

AWSSA 1.24 3.10 4.25 4.65 4.88

5. Discussion and Conclusions

In this paper, we propose an improved sparrow search algorithm by considering
problems such as the poor optimization-seeking ability of current heuristic algorithms
in multi-objective association rule mining. The method employs an adaptive Weibull
distribution to enhance the ability of the algorithm to jump out of the local optimum in
different iteration periods. An enhancement search strategy and a multidirectional learning
strategy are introduced, to expand the search range of population individuals. The main
conclusions of this paper can be summarized in two aspects: (1) Firstly, comparing with
SSA in 10 standard function tests, its optimization searching accuracy is improved by tens
of orders of magnitude in most of the functions; at the same time, the standard deviation
performs much better and, on the other hand, the convergence speed is also improved,
which proves the effectiveness of the improved strategy in this paper. (2) Applying the
improved algorithm to multi-objective association rule mining was the final research
purpose of this paper. On five different sizes of datasets, the AWSSA took the lead in
multiple objective function values, especially on two large-scale datasets, Abalone and
Wine. The lift was improved by about 1.5 times compared with SSA, and the confidence
was also improved by about 5 percent. On the other hand, while maintaining the high
quality of association rules obtained, the AWSSA did not mine the largest number of rules,
but combined with the performance on function values, the AWSSA was significantly
more comprehensive.

This study confirms that the AWSSA has excellent performance in multi-objective
association rule mining. However, considering the limitations of the application scenarios
in this paper, they need to be applied to more fields in future work, such as cluster analysis
and other directions to verify the performance of the AWSSA. Meanwhile, considering the
complexity of the algorithm, a parallel version of this paper’s algorithm could be proposed
in the next step, and parallelization could accelerate the search process and reduce the over-
all computation time, especially when coping with larger datasets in practical applications.
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