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Abstract: The gas adsorption characteristics in deep coal reservoirs are the focus of deep coalbed
methane geology research. In order to reveal the adsorption characteristics in deep coal reservoirs and
quantitatively characterize the amount of adsorbed methane in the deep coal seams, four coals were
collected from the Permian Longtan Formation in southern Sichuan Province. Methane isothermal
adsorption tests were carried out on the collected coal samples at 30 ◦C. The adsorption characteristic
curve was established based on the data of the isothermal adsorption. The adsorption potential
theory was used to predict the isothermal adsorption curves under different temperatures and the
evolutionary relationship between the methane adsorption capacity and the coal seam burial depth
in the C17 and C25 coal seams of the Permian in southern Sichuan Province, China. The results
showed that the methane isothermal adsorption curve at 30 ◦C belonged to the Type I isotherm
adsorption curve. The methane isothermal adsorption curves for various samples at 45 ◦C, 60 ◦C,
and 75 ◦C were predicted based on the uniqueness of the methane adsorption characteristic curve.
The amount of adsorbed gas in deep coal reservoirs was comprehensively controlled by pressure
and temperature. The pressure showed a positive effect on the amount of methane adsorbed, while
the temperature showed a negative effect on the adsorption of methane. The negative effect of
temperature became more significant with the increase in pressure. The results of the study are
beneficial for further promoting the exploration and development of deep coalbed methane in the
southern Sichuan Province of China.

Keywords: adsorption potential; adsorption characteristics; deep coalbed methane; southern Sichuan
Province

1. Introduction

Currently, energy demand is constantly increasing due to the increase in population. To
meet the growing energy demand, the extraction of coalbed methane has become necessary.
Globally, the total amount of coalbed methane in coal (1730 T tons) is approximately
30,000 TCF [1]. As is well known, coalbed methane is present in the adsorbed state within
the pores of a coal matrix and in a free state in coal pores and fractures, along with a
small amount in a dissolved state in coal seam water [1–3]. The accumulation of coalbed
methane is a prerequisite and foundation for its exploration and development [4]. From
the 1980s to the early 21st century, the exploration of coalbed methane with depths ranging
from 1500 to 3000 m was conducted in North America [5–7]. Scientists estimated the
resources of coalbed methane in the major basins of North America and pointed out that
the development of deep coalbed methane was an important direction for developing
unconventional natural gas in the future [8]. The test project consisting of 65 coalbed
methane wells (with coal seams buried at depths of 1635–2591 m) achieved success in the
Picence Basin [7,9], indicating the prospects for the exploration and development of deep
coalbed methane. In China, a large-scale deep coalbed methane block was built on the

Appl. Sci. 2024, 14, 3478. https://doi.org/10.3390/app14083478 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083478
https://doi.org/10.3390/app14083478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4932-4327
https://doi.org/10.3390/app14083478
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083478?type=check_update&version=1


Appl. Sci. 2024, 14, 3478 2 of 11

southern margin of Yanchuan [10]. Since 2021, several coalbed gas wells with a depth of
more than 2000 m have produced tens of thousands of cubic meters of gas per day in the
Junggar Basin and the eastern margin of the Ordos Basin [11–13]. Therefore, the study of
methane adsorption characteristics in deep coal reservoirs is a hot topic, which can help
predict the total exploitable methane content in deep coal reservoirs [14,15].

Experimental testing and numerical simulation are the main approaches used to study
methane adsorption on coal. Previous studies have shown that the methane adsorption
capacity on coal is controlled by internal factors such as coal properties, macerals, rank,
deformation, and moisture [16–21] and various other external factors such as temperature
and pressure [22–24]. Yee et al. [16] found that the adsorption capacity of dry coal for
methane varied during various stages of the rank of coal. For example, in the low-rank
stage of coal, the methane adsorption capacity on coal increased with the increase in the
rank of coal. In the middle- to high-rank stage of coal, the methane adsorption capacity
on coal showed a U-shaped variation trend with the increase in the coal rank. There is a
minimum adsorption capacity near the highly volatile bituminous coal. Vitrinite has the
strongest methane adsorption capacity, while exinite has the weakest methane adsorption
capacity among the three petrography compositions [17–19]. The micropores (<2 nm)
often result in the largest proportion of the total specific surface area and are the major
contributors to the adsorption of methane [17,20]. Coal with a high content of aromatic
carbon has a strong adsorption capacity, whereas coal with aliphatic structures and oxygen-
containing functional groups exhibits a weaker capability for methane adsorption [25,26].
Pressure has a positive effect, whereas temperature has a negative effect on the adsorption
of methane [13]. There are various models used to describe the adsorption of methane on
coal, including the Langmuir model, BET model, D-A model, and D-R model [1,3,4,27,28].
The Langmuir model has been widely applied due to its simplicity and the practical value
of its parameters.

With the continuous deepening of coalbed methane exploration and development, the
adsorption characteristics and reservoir formation mechanism of deep coalbed methane
have become increasingly valued. However, changes in pressure and temperature with the
increase in burial depths affect the adsorption characteristics of coal and the occurrence
state of coalbed methane. Physical simulation experiments can help researchers understand
the adsorption situation under specific temperature and pressure conditions. However, it
is difficult to simulate the gas adsorption characteristics of coal under high-temperature
conditions. Therefore, it is difficult to describe the temperature and pressure conditions of
methane adsorption characteristics on coal in deep reservoirs. The adsorption potential
theory of non-polar carbon materials for gas adsorption fully characterizes the influence of
temperature and pressure on the methane adsorption capacity of coal. In recent years, it
has been applied to the evaluation theory of methane adsorption capacity on coal and in
reservoirs. Therefore, based on the experimental data of methane isothermal adsorption on
coals collected from southern Sichuan Province, China, the methane adsorption characteris-
tic curves were constructed to predict the methane adsorption characteristics on coal under
different temperature conditions. Moreover, the volume of the adsorbed methane in deep
coal reservoirs was also predicted.

2. Adsorption Potential Theory
2.1. Theoretical Basis

The early adsorption potential theory mainly includes the following three aspects [29–31].
Firstly, there is a gravitational field within a certain space on the surface of an adsorbent just as
there is a gravitational field on Earth that envelops air into an atmosphere. Gas molecules will
be adsorbed once they fall within this gravitational field. The space in which the gravitational
field operates is called the adsorption space. The density of the adsorbed gas in the adsorption
space decreases with the increase in the distance from the surface. The density of the adsorbed
gas at the outermost edge of the adsorption space is no longer different from that of the
external gas. The maximum space in which the gravitational field acts is called the ultimate
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adsorption space. Secondly, there is adsorption potential everywhere in the adsorption space.
The adsorption potential is defined as the work required to adsorb 1 mol of gas from an infinite
distance to a certain point. Thirdly, the adsorption potential is independent of the temperature,
that is to say, the relationship between the adsorption potential and the adsorption space
remains unchanged under any temperature conditions. Therefore, the relationship curve is
called the adsorption characteristic curve.

2.2. Adsorption Potential

The adsorption potential theory is a thermodynamic theory proposed by Polanyi and
is applicable to physical adsorption. The adsorption potential theory suggests that the
interaction force between the gas and the solid is a dispersion force and that the distribution
curve of the adsorption potential according to the adsorption space is unique and called the
adsorption characteristic curve. This theory has been successfully applied to the adsorption
of gases onto non-polar carbonaceous adsorbents [29–31]. As a special porous carbonaceous
material, coal follows the Langmuir monolayer theory for gas adsorption, which has been
confirmed by a large number of adsorption tests.

The relationship between the adsorption potential and the pressure is established by
the adsorption potential theory and is given by Equation (1):

ε =
∫ P0

Pi

RT
P

dP = RT ln
P0

Pi
, (1)

where P is the equilibrium pressure (Mpa), ε is the adsorption potential (J/mol), P0 is
the virtual saturated vapor pressure of methane (Mpa), Pi is the equilibrium pressure of
ideal gas at constant temperature (Mpa), R is the universal gas constant, with a value of
8.3144 J/(mol·K), and T is the measured temperature (K).

Due to the adsorption of methane on the surface of coal being above the critical
temperature, the saturated vapor pressure under critical conditions loses its physical
significance. This article adopts the empirical correlation for virtual saturated steam
pressure under supercritical conditions [30], as given by Equation (2):

P0 = Pc

(
T
Tc

)2
, (2)

where Pc is the critical pressure of methane, with a value of 4.62 Mpa, and Tc is the critical
temperature of methane, with a value of 190.6 K.

2.3. Adsorption Space

The adsorption space refers to the place in coal where methane can be adsorbed. The
adsorption space is calculated based on isothermal adsorption data using Equation (3):

w = Vad
M
ρad

, (3)

where w is the adsorption space (cm3/g), Vad is the measured adsorption capacity (mol/g),
M is the methane molecular weight (g/mol), and ρad is the methane adsorption phase
density (g/cm3), which can be calculated by Equation (4) [32]:

ρad = ρb exp[−0.0025 × (T − Tb)], (4)

where ρb is the liquid density of methane at normal boiling point, with a value of 0.466 g/cm3,
Tb is the boiling point temperature of methane, with a value of 111.6 K, and T is the measured
temperature (303.2 K).
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2.4. Adsorption Characteristic Curve

The adsorption characteristic curve can be obtained based on the adsorption potential
and its corresponding adsorption space. The relationship between the adsorption potential
and the adsorption space can be described using Equation (5):

ε = a + bw + cw2 + dw3, (5)

where a, b, c, and d are constants.

3. Experimental
3.1. Sample Preparation

The coal samples were collected from the XW Coal Mine, WH Coal Mine, and ZK
drilling of southern Sichuan Province, China (Figure 1). The oldest exposed strata in the
research area are the Sinian system. Except for the sporadic distribution of the Neogene
Pleistocene series, the latest strata are the Cretaceous system, with the absence of the
Cambrian Silurian and Carboniferous systems. The main strata distributed in the area
are the Triassic Jialingjiang Formation and Feixianguan Formation, as well as the Permian
Changxing Formation, Longtan Formation, and Maokou Formation.
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Among them, the coal-bearing strata of the Upper Permian are mainly the Longtan
Formation, which is a set of marine continental sedimentary systems that are mainly
composed of terrestrial facies. The thickness of the strata is about 76.25–130.11 m, with
an average value of 92.33 m. It is composed of clastic rocks, mudstones, and coal seams
(Figure 2). The top formation contains a small amount of bioclastic limestone or mudstone,
while the upper and lower parts contain pyrite nodules. There are a total of 11–24 coal
seams, with nine coal seams that can be compared, C11, C13, C14, C15, C17, C20, C23, C24,
and C25. Among them, there are two stable and minable coal seams (C17 and C25) in the
entire area, whereas six coal seams (C13, C14, C15, C20, C23, and C24) are mostly and locally
minable. The total thickness of the coal seams is 10.16 m, with a coal content coefficient of
12.37% and a minable coal content coefficient of 9.95%. The gas content is 4.76~39.38 m3/t,
with an average of 14.87 m3/t.
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After being collected and before being transported to the laboratory for further analysis,
all of the coal samples were wrapped in black polyethylene bags. The physical properties
of the samples used in the current study are listed in Table 1. The samples are anthracites.
Moreover, the value of Mad lay within the range of 1.16–2.06%, whereas that of Aad lay
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within the range of 12.21–33.16%. Furthermore, the value of Vad lay within the range of
8.23–10.32%.

Table 1. Information on the coal samples used in the current work.

Samples Coal Seam Coal Type Mad (%) Aad (%) Vad (%)

XW1 C17 anthracite 2.06 33.16 9.72
XW2 C25 anthracite 1.16 14.46 10.32
WH C17 anthracite 2.35 12.21 8.94
ZK C25 anthracite 1.83 16.79 8.23

Note: Mad—air-dried moisture, Aad—air-dried ash, Vad—air-dried volatile.

3.2. Isothermal Adsorption Test

Methane isothermal adsorption tests were conducted on the samples using a laboratory-
scale commercial isotherm system on an H-sorb2600 adsorption system. The samples were
crushed to 60–80 mesh in accordance with the Chinese Standard GB/T19560-2008, and then
they were dried at 110 ◦C until the weight loss was less than 1%. After drying, the samples
were ready for the isothermal adsorption tests. The measurements were carried out at
30 ◦C, and each isothermal adsorption curve included 10 different pressures. Adsorption
equilibrium at each pressure point was maintained for 1 h during the test. The adsorbate
was 99.99% methane. Approximately 10 g of each sample was tested.

4. Results and Discussion
4.1. Methane Adsorption Characteristic

As shown in Figure 3, the methane adsorption curves had the same characteristics.
The volume of methane adsorbed on the coal increased rapidly with the increase in pressure
until 3 Mpa. The rate of increase in adsorbed methane gradually slowed down when the
pressure lay within the range of 3–5 Mpa. The rate of increase in adsorbed methane was not
significant when the pressure exceeded the value of 5 Mpa, and therefore, it was inferred
that the system had reached its saturated state at this stage.
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Based on the curve characteristics of the methane adsorption on samples, the Langmuir
model was used to describe the isothermal adsorption curves of the samples, as given by
Equation (6):

V =
VLP

PL + P
, (6)
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where V is the methane adsorption volume at equilibrium (cm3/g), P is the equilibrium
pressure (Mpa), VL is the Langmuir volume under the standard state with a pressure of
101 kPa and a temperature of 273.15 K, and PL is the Langmuir pressure (Mpa).

The Langmuir constants of the samples are presented in Table 2. In the present study,
the Langmuir volume lay within the range of 26.67–34.56 cm3/g, whereas the Langmuir
pressure lay within the range of 1.10–1.28 Mpa. Fitting had a high correlation coefficient.

Table 2. The Langmuir constants of the samples.

Sample VL (cm3) PL (MPa) R2

XW1 30.54 1.10 0.9573
XW2 33.59 1.28 0.9825
WH 34.56 1.20 0.9782
ZK 26.67 1.23 0.9659

Note: Dry basis.

4.2. Adsorption Characteristic Curve

In order to obtain the methane adsorption characteristic curves, the volumes of the
adsorbed methane on coals under different pressures at the temperature of 30 ◦C were cal-
culated according to the adsorption constants of the Langmuir model. Then, the adsorption
potentials and adsorption spaces under different pressures at 30 ◦C were calculated. Follow-
ing this, the adsorption characteristic curves were obtained (Figure 4). The fitting equations
were obtained based on the adsorption characteristic curves as given by Equations (7)–(10).
It can be seen that the univariate cubic equation could satisfactorily fit the relationship
between the adsorption potential and the adsorption space with an R2 of 0.9998.

εXW1 = 1.43 × 104 − 4.22 × 105w + 7.88 × 106w2 − 6.90 × 107w3 R2 = 0.9998 (7)

εXW2 = 1.41 × 104 − 3.92 × 105w + 6.64 × 106w2 − 5.22 × 107w3 R2 = 0.9998 (8)

εWH = 1.42 × 104 − 3.77 × 105w + 6.21 × 106w2 − 4.77 × 107w3 R2 = 0.9998 (9)

εZK = 1.42 × 104 − 4.9 × 105w + 1.05 × 107w2 − 1.04 × 108w3 R2 = 0.9998 (10)
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In the present study, the maximum adsorption potential of around 12,000 J/mol and
the maximum adsorption space of 0.059–0.008 cm3/g (Figure 3) were obtained. There was
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a significant difference in the adsorption characteristic curves among coals from coal mines
and the drilling well. Compared to drilled coal samples, the coal samples collected from
coal mines had larger adsorption spaces at the same adsorption potential. This phenomenon
may be due to the significant differences in the sample collection and processing process.

4.3. Application of the Adsorption Characteristic Curve

A previous study [33] has shown that the methane adsorption characteristic curve
for a specific coal sample is unique. The absolute adsorption capacity at any temperature
and pressure can be calculated based on the equation of the methane adsorption potential
characteristic curve. In the present study, the methane isotherm adsorption curves of the
four coals at 45, 60, and 75 ◦C were predicted (Figure 5).
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As shown in Figure 5, the adsorption capacity of methane on coal continuously
weakened with the increase in temperature, which is completely consistent with previous
studies. Meanwhile, it was found that predicting the adsorption isotherm curve at high
temperatures still followed the Langmuir model. Then, the Langmuir constants were
calculated using the Langmuir model based on the predicted results of the amounts of
methane adsorbed under certain pressure values (Table 3).
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Table 3. The prediction results of the methane isothermal adsorption on the samples at different
temperatures.

Sample T (◦C) VL (cm3/g) PL (MPa) R2

XW1
45 29.79 1.38 0.9999
60 29.28 1.74 0.9989
75 29.20 2.05 0.9985

XW2
45 32.88 1.61 0.9998
60 32.66 2.12 0.9990
75 32.53 2.50 0.9980

WH
45 33.89 1.55 0.9996
60 33.42 1.96 0.9992
75 32.94 2.25 0.9988

ZK
45 26.21 1.58 0.9993
60 25.80 2.00 0.9992
75 25.24 2.20 0.9985

Note: Dry basis.

Meanwhile, the data on ground temperature and pressure at different burial depths
were obtained based on the measured geological parameters of the ground temperature
gradient and pressure gradient in the southern Sichuan region. In this study, the geothermal
gradient of 2.45 ◦C/100 m and the pressure gradient of 0.98 MPa/100 m were used. The
volumes of methane adsorbed on coals were obtained as mentioned earlier. Finally, the
relationship between the volume of methane adsorbed on coal and the burial depth of the
coal seam was obtained (Figure 6).
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As shown in Figure 6, the amount of methane adsorbed by coal first increased rapidly
with the increase in burial depth, tended to plateau to reach its maximum value at a depth
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of approximately 1400 m, and then slowly decreased with a further increase in burial depth.
This indicates that the influence of pressure was more important in methane adsorption
than that of temperature in shallow coal seams. Furthermore, with the increase in burial
depth, the control effect of the temperature on the adsorption capacity was more significant.
The predicted results are consistent with the methane adsorption characteristics of the
deep coal reservoirs [14]. Due to the small geothermal gradient, the negative effect of the
adsorption temperature on adsorption does not fluctuate significantly with the change
in burial depth. This is the difference in the adsorption characteristics of deep coalbed
methane in the southern Sichuan region and certain other regions.

5. Conclusions

(1) Four coal samples were collected from the southern Sichuan region (China) for
methane isothermal adsorption tests at 30 ◦C. The results showed that the methane
adsorption capacity of coal first increased rapidly with adsorption pressure and then
gradually stabilized. The methane isothermal adsorption curve followed the Type I
isothermal adsorption curve.

(2) Four methane adsorption characteristic curves and corresponding equations were
established and fitted based on the adsorption potential theory. The fitting results had
a high correlation coefficient.

(3) The methane isothermal adsorption curves of the four coal samples at 45, 60, and
75 ◦C were predicted based on the adsorption potential theory. It was found that the
methane adsorption curves of coal under different temperature conditions belonged
to the Type I isothermal adsorption group. The methane adsorption capacity on coal
gradually weakened with the increase in adsorption temperature.

(4) The adsorbed gas content in the reservoir first increased rapidly with the increase in
the coal seam burial depth, reached a maximum value in the region, and then tended
to decrease, indicating that the methane adsorption capacity was more significantly
controlled by the pressure in shallow coal seams, whereas it was controlled by the
temperature in deep coal seams.
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