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Abstract: The edible brown seaweed, Ecklonia cava, is highly valued for its bioactive compounds,
and is widely used in food supplements and functional foods. The increasing demand for this
seaweed in the food industry emphasizes the necessity for sustainable cultivation practices. This
study focused on inducing callus in the meristem and stipe of E. cava using different culture media:
Provasoli’s enriched seawater medium (PESI), enriched artificial seawater medium (ESAW), artificial
enriched seawater medium (ASP2), or Von Stosch’s enriched seawater medium (VS). Various abiotic
stress factors (photoperiod, agar concentration, and temperature), growth regulators, carbon sources,
polyamines, and plasma treatments were explored for their impact on callus induction. Both stipe
and meristem explants developed callus within three to six weeks across all media except ASP2.
Callus development was favored at temperatures between 8 to 13 ◦C and in the absence of light.
Stipe explants showed a higher callus induction rate (up to 65.59 ± 6.24%) compared to meristem
(up to 57.53 ± 8.32%). Meristem explants showed optimal callus induction in PESI medium with a
low concentration of indole-3-acetic acid (IAA; 40.93 ± 8.65%). However, higher concentrations of
IAA and 1-naphthaleneacetic acid (NAA) reduced meristem callus induction. Stipe showed high
induced-callus (up to 50.37 ± 5.17%) in PESI medium with low concentrations of IAA, NAA, and
6-benzylaminopurine (BAP). Both stipe and meristem explants induced largest callus at 2% sucrose,
but higher carbon source concentrations reduced callus induction. Spermine (Spm) at 1 µM resulted
in high induced calluses; however, increasing Spm concentrations decreased callus induction. This
tissue culture technique not only supports mass cultivation of E. cava, but also holds potential for
extending to other seaweed species, contributing to the sustainability of seaweed stocks for the
food industry.

Keywords: abiotic stresses; callus; functional food material; laminariales; phaeophyta; seaweed;
tissue culture

1. Introduction

Seaweeds encompass a diverse array of marine species [1,2], showing remarkable
adoptability to challenging environmental conditions. In response to these adversities, sea-
weeds produce allelochemicals which contribute to their ability to compete for space, resist
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pathogenic microorganisms and predators, and hinder the establishment of epiphytes [3,4].
Notably, seaweeds have been associated with various biological activities that offer health-
promoting benefits related to human skin, immunity, and growth [5–8]. These attributes
position seaweed as a valuable source for pharmaceuticals, nutraceuticals, and cosme-
ceuticals [5,9,10]. The seaweed market is expected to undergo significant growth, with
projections indicating a 39.8% increase, reaching USD 24.98 billion from 2021 to 2028 [11].
Recognizing the potential of seaweed as a source of biomass in the pharmaceutical, food,
and chemical industries, there is pressing need to adopt sustainable seaweed cultivation
practices, with tissue culture emerging as a key strategy.

Seaweeds can undergo in vitro cultivation through various methods, including
(1) micropropagation, (2) protoplast isolation and regeneration, or (3) callus induction [12].
Among these techniques, micropropagation, which involves meristem or somatic embryoge-
nesis, stands out as one of the most commonly employed methods for in vitro propagation
of macroalgae [12,13]. Tissue culture presents a sustainable approach for fostering tissue
development and enhancing quality in seaweeds. The controlled cultivation of seaweed
tissues has the potential to maximize biomass production and stimulate the synthesis of
desired compounds [14]. Particularly vital for species like Ecklonia cava, characterized by
limited wild stocks, tissue culture serves as a strategic response to challenges posed by cli-
mate change, pollution, and escalating demand, ensuring the availability of stocks. Tissue
culture of seaweeds can be achieved through direct regeneration from explant tissues or
indirectly through callus induction. While callus culture is a well-established technique in
tissue culture engineering for terrestrial plants, its application in seaweed culture remains
underdeveloped, despite the recognition of seaweeds for various applications such as
functional foods, nutraceuticals, and pharmaceuticals.

The brown seaweed, E. cava, found only in Japan, Korea’s Jeju Island, and Busan [15–17],
has been associated with various physiological benefits, including antioxidant, antibacte-
rial, anti-thrombotic, anti-diabetic, anti-hypertensive, anti-obesity, and anti-inflammatory
properties, making it a potential raw material for functional foods [18–23]. However, in-
dustrialization has been limited to a few seaweed species from various genera that are
suitable for cultivation and harvesting. The cultivation of E. cava is particularly challenging
due to farming difficulties and environmental issues such as microplastic and radioactive
pollution, ocean desertification, and resource depletion. Countermeasures are essential,
especially considering that Korea’s Incheon-Gyeonggi coast and the Nakdong river estuary
rank second to third globally in microplastic concentration [24,25]. While indoor culture
technology has advanced for land crops and mushrooms, tissue culture research for sea-
weeds, especially E. cava, is limited, with only the report on callus culture by Kawashima
and Tokuda [26], examining the impact of collection time on callus development. The
limited research on this species may be attributed to the restricted distribution of E. cava
resources, mainly in Korea and Japan. Considering the escalating marine pollution and
global interest in the safety of marine resources, we aim to develop callus culture for E. cava
as a natural, year-round, and cost-effective food and pharmaceutical material, safe from
marine pollution.

Callus induction, a critical initial stage of proliferation and growth, is influenced by
various abiotic factors. Seaweed callus induction is triggered by tissue wounding and
changes in the physical environment [27], with different seaweed groups displaying varied
responses to abiotic conditions [14,28]. Factors such as light irradiance, temperature, media
composition, growth regulators, CO2 levels, temperature, nutrient absorption, osmolarity,
nutrient absorption, salinity, photosynthesis, and culture medium composition influence
callus induction [14,29–51]. Earlier studies have investigated the effects of different abiotic
parameters on various marine algae species, including red algae like Gracilariopsis and
Gelidium, brown algae such as Dictyota and Undaria, and green algae like Cladophora and
Ulva [29–51]. Additionally, studies have examined the effects of radiation, carposporophyte
culture, protoplast isolation, callus ontogeny, tissue culture, gametogenesis induction,
clonal propagation, and epigenetic variations [52–56].
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Despite the importance of abiotic factors in callus induction, research on this aspect
in seaweed culture is limited. While some studies have explored the influence of abiotic
factors on seaweed callus induction [14,57,58], to the best of our knowledge, except one
study focusing on the impact of collection time [26], no other studies have reported their
impact on tissue culture or callus induction in E. cava. Therefore, in this study, we not only
focused on callus induction in E. cava, but also investigated the impact of abiotic stresses on
callus development. This study would provide basis for establishing the liquid suspension
culture of E. cava to mass-produce the secondary metabolites, mainly phlorotannins, which
have been proven for their antibacterial, antioxidant, anti-inflammatory, anti-proliferative,
anti-tumor, anti-diabetic, anti-adipogenic, anti-allergic, and radio-protective effects [59].

2. Materials and Methods
2.1. Sample Collection

Fresh and dark brown thalli of Ecklonia cava were collected from Gijang, Busan,
Republic of Korea (GPS coordinates: 35◦15′34′′ N 129◦15′02′′ E). Thalli were transported in
a portable icebox to Tongyeong, Republic of Korea, and pre-processed on the same day.

2.2. Pre-Processing of E. cava Thalli

Fresh and dark brown thalli of E. cava were selected for the tissue culture experiment.
Thalli were wiped with sterile paper towels (Wypall, Yuhan-Kimberly Co., Ltd., Seoul,
Republic of Korea), washed twice with autoclaved seawater, and immersed sequentially
in autoclaved seawater containing 1% povidone-iodine (Green Pharmaceutical Co., Ltd.,
Jincheon, Republic of Korea) and 2% triton X-100 (Samchun Pure Chemical Co., Ltd.,
Pyeongtaek, Republic of Korea) for 3 min each. After rinsing and washing, thalli were
treated with an antibiotic mixture: Kanamycin (0.1 g L−1; K1377; Sigma-Aldrich, St. Louis,
MO, USA), Ampicillin (0.1 g L−1; A9518; Sigma), Streptomycin (0.2 g L−1; S9137; Sigma),
Neomycin (20 mg L−1; N1876; Sigma), and Nystatin (1.5 mg L−1; N4014; Sigma) for 30 min
at 12 ◦C to prevent contamination.

2.3. Experimental Conditions

Four culture media were employed: Provasoli’s enriched seawater medium (PESI) [60],
enriched artificial seawater medium (ESAW) [61], artificial enriched seawater medium
(ASP-2) [62], and Von Stosch’s enriched seawater medium (VS) [63]. Meristem and stipe
were used for callus induction. Each section was cut into 1 × 1 cm2 (L × W) pieces, treated
with a 10× antibiotics mixture for 30 min at 12 ◦C, and placed on agar media in a growth
chamber (Multi-Room Incubator; LMI-3004PL, Daihan Labtech Co., Ltd., Namyangju,
Republic of Korea) for callus development. Six to eight explants were inoculated on each
agar plate, and callus formation was confirmed under a microscope (Routine Microscopes;
CX33; Evidient Co., Ltd., Shinjuku-ku, Tokyo, Japan). Various treatments to optimize callus
induction were performed as described in Table 1. The plant growth regulators, carbon
sources, and polyamines were purchased from Sigma-Aldrich, St. Louis, MO, USA.

Table 1. Experimental conditions for callus induction in explants from E. cava meristem and stipe.

Parameter Experimental Conditions

Effect of culture medium • Explants were cultured on PESI, ESAW, ASP2, or VS solid medium supplemented with 1.5% agar.
• Growth was monitored at 12 ◦C with a light period of 12 h for eight weeks.

Effect of agar
concentration

• Explants were cultured on PESI solid medium containing 1.2% or 1.5% agar.
• Growth was monitored at 12 ◦C for eight weeks.

Effect of photoperiod
and temperature

• Explants were cultured on PESI solid medium containing 1.5% agar. Varying photoperiods (0 h or
12 h light period at a light intensity of 160 µmol m−2 s−1 using a fluorescent lamp; 36 W;
FPL36EX-D/C, Ilshin Vitson Co., Ltd., Namyangju, Republic of Korea) and temperatures (12 ◦C
or 18 ◦C) were tested.

• Growth was monitored for eight weeks.
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Table 1. Cont.

Parameter Experimental Conditions

Effect of growth
regulator

• Explants were cultured on PESI solid medium containing 1.5% agar. Different plant growth
regulators: IAA (1003530010), IBA (I5386), NAA (N0640), BAP (B3408), 2,4-D (D70724) or KIN
(48130), were added at concentrations up to 5 mg L−1.

• Growth was monitored at 12 ◦C in the dark for eight weeks.

Effect of carbon source

• Explants were cultured on PESI solid medium containing 1.5% agar.
• Different carbon sources: glucose (PHR1000), lactose (PHR1025), galactose (PHR1206), fructose

(F0127), sucrose (S0389), or sorbitol (PHR1006), were added at concentrations up to 5%.
• The medium for meristem explants was supplemented with 1 mg L−1 IAA.
• Growth was monitored at 12 ◦C in the dark for eight weeks.

Effect of polyamine

• Explants were cultured on PESI solid medium containing 1.5% agar and 2% sucrose. Different
polyamines: Spm (85590), Put (51799), or Spd (S0266), were added at concentrations up to 1000 µM.

• The medium for meristem explants was supplemented with 1 mg L−1 IAA.
• Growth was monitored at 12 ◦C in the dark for eight weeks.

Effect of plasma
treatment

• Explants were directly or indirectly treated with plasma.
• Explants were cultured on PESI solid medium containing 1.5% agar and 2% sucrose. The medium

for meristem explants was supplemented with 1 mg L−1 IAA and 1 µM Spm.
• Growth was monitored at 12 ◦C in the dark for eight weeks.

PESI: Provasoli’s enriched seawater medium; ESAW: Enriched artificial seawater medium; ASP2: Artificial enriched
seawater medium; VS: Von Stosch’s enriched seawater medium; IAA: Indole-3-acetic acid; IBA: Indole-3-butyric acid;
NAA: 1-naphthaleneacetic acid; BAP: 6-benzylaminopurine; 2,4-D: 2,4-dichlorophenoxyacetic acid; KIN: Kinetin;
Spm: Spermine; Put: Putrescine; Spd: Spermidine.

2.4. Plasma Treatment

Meristem and stipe explants were prepared as discussed in Sections 2.2 and 2.3, and
then subjected to plasma treatment.

2.4.1. Indirect Plasma Treatment

A 40 mL autoclaved seawater in a Petri dish was treated with a plasma generator
provided by KRIBB (Korea Research Institute of Bioscience and Biotechnology, Daejeon, Re-
public of Korea) for 5, 10, 40, or 60 s, respectively, following the procedure by Bian et al. [64].
Prepared explants were socked in plasma–treated autoclaved seawater for 20–22 h and
then cultured on agar PESI medium in a growth chamber (LMI-3004PL; Daihan Labtech)
for eight weeks at 12 ◦C in the dark.

2.4.2. Direct Plasma Treatment

Explants were placed in a beaker filled with autoclaved seawater and incubated for
20–22 h, and then cultured on agar PESI medium. Plasma treatment durations were 5, 10,
30, or 60 s, followed by incubation in a growth chamber (LMI-3004PL; Daihan Labtech) for
eight weeks at 12 ◦C in the dark.

2.5. Statistical Analysis

Ten different replicates were utilized per experiment (n = 10). Initially, the percentage
values underwent arcsin-square root transformation prior to statistical analysis. Subse-
quently, statistical significance was assessed using a one-way or multiple-way analysis of
variance (ANOVA) conducted with IBM SPSS Statistics version 29.0 (IBM Corp., Armonk,
NY, USA). Post hoc tests were conducted using Tukey’s Honestly Significant Difference
(HSD) test. Statistical significance was set at p ≤ 0.05. The experimental results were
presented as percentage values in the figures.

3. Results and Discussion

During preliminary experiments, poor callus development was observed in liquid
media. Therefore, only agar media were used for callus induction and subsequent cultures,
aligning with the findings of Kawashima and Tokuda [26]. Callus growth was monitored



Appl. Sci. 2024, 14, 3480 5 of 15

for up to eight weeks, and both stipe and meristem explants displayed callus development
within three to six weeks. The calluses, appearing light brown, exhibited gradual volume
increases over the inoculation period and featured rod-shaped filamentous structures
(Figures 1 and 2), reminiscent of those observed by Kawashima and Tokuda [26]. The
optimal callus induction parameters were determined under various conditions, and the
impact of abiotic factors on callus development was explored. Callus induction rate (%)
was calculated based on the total number of induced calluses per total number of explants
multiplied by 100.
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3.1. Effect of Media Type

Figure 3 presents the callus induction rates (%) observed with different culture media,
and Figure 4 illustrates selected calluses induced from meristem and stipe explants of
E. cava. The highest callus induction (31.73 ± 4.41% in stipe tissue and 38.28 ± 8.37% in
meristem tissue) was observed on PESI medium, leading to its selection for subsequent
experiments. The addition of potassium iodide in PESI medium [60] may have enhanced
callus formation, aligning with the findings of Kawashima and Tokuda [26]. No callus
growth was observed on ASP2 medium, possibly due to the presence of nitrilotriacetic
acid and mannitol, acting as potential toxins [26,65] and increasing osmotic pressure of
media [66], respectively.
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3.2. Effect of Agar Concentration

Figure 5 shows the results of callus induction in meristem and stipe using PESI
solid medium with different agar concentrations (1.2% and 1.5%). The highest callus
induction rate (39.85 ± 8.27%) was observed in stipe at 1.5% agar concentration, followed
by meristem (33.44 ± 6.50%) at 1.5% agar and 18 ◦C. Subsequent experiments utilized 1.5%
agar concentration.
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3.3. Effect of Photoperiod and Temperature

Environmental elements, including factors like photoperiod and light intensity, play
a crucial role in the growth of algae. However, their influence varies among species and
is contingent upon the specific product under investigation [67,68]. Additionally, light
significantly impacts the growth and morphogenesis of callus by influencing the rate of
cell division in various plants, directly regulating plant growth and development [69].
The impact of photoperiod (0 h and 12 h light) and temperatures (12 ◦C and 18 ◦C) on
callus induction in meristem and stipe is shown in Figure 6. The highest callus induction
(44.30 ± 6.28%) occurred in stipe at 0 h photoperiod and 12 ◦C. Optimal development
of E. cava callus was observed at 12 ◦C, consistent with the findings of Kawashima and
Tokuda [26]. Higher callus development was observed in complete darkness (0 h provision
of light), possibly due to heterotrophic culture conditions overcoming growth inhibition
challenges in light and aeration-dependent algal growth [70]. Subsequent experiments
were conducted at 12 ◦C in dark.
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Tukey’s HSD test using a multiple-way ANOVA test at p < 0.05. The temperature alone had no
statistically significant effect (p = 0.089) on callus induction in stipe explant. However, the photoperiod
alone (p = 0.002) and the interaction between photoperiod (0 h) and temperature (12 ◦C) showed a
significant effect (p = 0.049) on callus induction in meristem when checked using a multiple-way
ANOVA test using SPSS.

3.4. Effect of Growth Regulator

Plant growth regulators (PGRs) are incorporated into the basal growth medium of
cell cultures to stimulate and regulate plant development [71–73]. These PGRs govern cell
division in undifferentiated cells [74] and prompt callogenesis, leading to subsequent callus
proliferation. Callus induction in meristem and stipe was observed in PESI solid medium
with different growth regulators: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA),
1-naphthaleneacetic acid (NAA), 6-benzylaminopurine (BAP), 2,4-dichlorophenoxyacetic
acid (2,4-D), and kinetin (KIN) at concentrations of 1 or 5 mg L−1 at 12 ◦C (Figure 7). The
selected calluses developed from meristem and stipe tissues are shown in Figure 8. The
highest callus induction (50.37 ± 5.17%) in stipe occurred in standard PESI solid medium
without growth regulators. Meanwhile, the highest callus induction rate (40.93 ± 8.65%)
in meristem tissue was observed in PESI medium containing 1 mg L−1 IAA. Further
experiments for meristem calluses were performed in PESI agar medium containing IAA,
while stipe explants were cultured on standard PESI solid medium.
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3.5. Effect of Carbon Source

Sugars are essential for biomass accumulation, serving as a vital energy source due
to typically diminished photosynthetic activity in in vitro growing tissues. They also con-
tribute to supply of carbon for biosynthetic processes and cell wall synthesis [75]. Moreover,
sugars function as signal molecules that can either repress or activate plant genes, as noted
by Tognetti et al. [76]. Callus induction in meristem and stipe was observed in PESI solid
medium with different carbon sources (glucose, lactose, galactose, fructose, sucrose, or
sorbitol) at 12 ◦C in dark (Figure 9). The selected calluses induced from meristem and stipe
tissues are shown in Figure 10. Meristem tissue exhibited higher callus induction rates in
PESI medium containing sucrose (51.42 ± 5.05%) or glucose (43.60 ± 7.88%) compared to
standard PESI medium (40.31 ± 17.41%). Stipe tissue displayed an overall higher rate of
callus induction in PESI medium supplemented with 2% sucrose (58.48 ± 5.66%) or glucose
(53.10 ± 7.15%). It could be due to the factor that the inclusion of organic carbon sources
may alleviate stresses arising from heterotrophic conditions in algal growth [40]. Further-
more, sucrose proves to be a relatively economic choice compared to other carbon sources.
Consequently, subsequent experiments were performed in PESI medium containing 2%
sucrose at 12 ◦C in the dark.
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3.6. Effect of Polyamine

Polyamines, including spermine (Spm), putrescine (Put), and spermidine (Spd), rep-
resent a category of low molecular weight aliphatic nitrogenous organic compounds con-
taining two or more amino groups [77]. These compounds are associated with various
biological processes, including tissue growth, cell division, and cell differentiation [78].
Polyamines have been linked to higher callus induction and growth [79], while also playing
a significant role in responding to both biotic and abiotic stresses [80]. Previous studies
have indicated an increase in arginine decarboxylase (ADC) activity in rice seedlings when
exposed to salinity [81]. Similarly, Wang and Liu [82] observed an increase in ADC and
S-adenosylmethionine decarboxylase (SAMDC) expression in citrus embryogenic callus
under high salinity and both low and high temperatures. Furthermore, various abiotic
stresses have been shown to trigger the up regulation of SAMDC expression at the tran-
scriptional level in transgenic tobacco plants [83]. Moreover, Zhou et al. [78] observed
higher free polyamine levels and the expression of polyamine biosynthesis enzyme genes in
young rice spikelets under heat stress, thereby increasing endogenous Spd and Spm levels.
This correlation was associated with higher yield and resistance to heat stress, providing
insights for rice production under high temperatures. This involvement in stress response
is just one aspect of their intricate physiological functions.

Callus induction in meristem and stipe was monitored in PESI solid medium with
different polyamines (Spm, Put, Spd) at 12 ◦C in dark (Figure 11). The selected calluses
are shown in Figure 12. Overall, an increase in callus induction was observed in meristem
tissue when culture medium was supplemented with 1 µM Spm (60.55 ± 3.05%). Except for
this, all other conditions did not show a favorable impact on callus induction in meristem
and stipe of E. cava compared to the callus development in standard PESI medium.
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3.7. Effect of Plasma Treatment

The impact of plasma treatment on callus induction in meristem and stipe is shown in
Figure 13. The selected calluses are shown in Figure 14. Indirect plasma treatment showed
callus induction in both meristem and stipe, while direct plasma treatment on meristem
explants did not yield callus induction. Indirect or direct plasma treatment failed to enhance
callus induction rate, as the highest development occurred at 0 s plasma treatment in both
meristem (57.53 ± 5.19%) and stipe (65.59 ± 6.24%). Therefore, based on the findings of this
study, plasma treatment is not recommended for callus development in E. cava. However,
further research exploring alternative plasma techniques may reveal different outcomes.
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4. Conclusions

Callus, often referred to as the stem cell of a plant, represents an undifferentiated cell
mass capable of unlimited proliferation and re-differentiation under favorable conditions.
The establishment of callus-based seaweed culture technology holds the key to the mass
production and industrialization of seaweeds that pose challenges in cultivation or collec-
tion, such as E. cava. The improved method for callus induction in E. cava involves culturing
in PESI solid medium with 1.5% agar and 2% sucrose at 12 ◦C in the dark. Specifically for
stipe explants, it is recommended to omit growth regulators, while for meristem, the use
of 1 mg L−1 IAA and 1 µM Spm is advisable. Although plasma treatment did not yield
favorable results in our study, exploring different plasma techniques may offer alternative
outcomes. The establishment of E. cava callus cultures holds significant promise for research
purposes and for addressing seed stock supply for mariculture and bioactive compound
production. The callus induction technique developed in this study could streamline the
mass cultivation of E. cava and other beneficial seaweed species, paving the way for the
development of a callus-based smart farming technology. This advancement contributes to
the cultivation of E. cava and other commercially valuable seaweed species for functional
food and pharmaceutical materials.
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