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Abstract: The penalty-based boundary cross-aggregation (PBI) method is a common decomposition
method of the MOEA/D algorithm, but the strategy of using a fixed penalty parameter in the
boundary cross-aggregation function affects the convergence of the populations to a certain extent
and is not conducive to the maintenance of the diversity of boundary solutions. To address the above
problems, this paper proposes a penalty boundary crossing strategy (DPA) for MOEA/D to adaptively
adjust the penalty parameter. The strategy adjusts the penalty parameter values according to the
state of uniform distribution of solutions around the weight vectors in the current iteration period,
thus helping the optimization process to balance convergence and diversity. In the experimental part,
we tested the MOEA/D-DPA algorithm with several MOEA/D improved algorithms on the classical
test set. The results show that the MOEA/D with the DPA has better performance than the MOEA/D
with the other decomposition strategies.

Keywords: MOEA/D; boundary-crossing strategies for punishment; weight vector; adaptive tuning
strategy; intelligence techniques

1. Introduction

Many real-life problems involve conflicting and interdependent objectives. The chal-
lenge is to optimize multiple objectives simultaneously within a given region, which is
known as a multi-objective optimization problem. Multi-objective optimization problems
are very important and highly researched in real life, such as in engineering applications,
including coil spring design problems for commercial three-wheeled vehicles [1], solar
photovoltaic forecasting [2], wind energy forecasting and research issues [3], air pollution
forecasting issues [4], aerodynamic design issues [5], etc. Yang and Jiang defined the
multi-objective optimization problem as shown in Equation (1) [6]:

The decision space is represented by Ωx ⊆ Rn, while nh, ng represent the number of
equations and inequalities, respectively. The number of objectives is denoted by m, and
F(x) : Ωx → RM is the objective function vector used to solve for x. Therefore, a multi-
objective optimization problem typically yields a set of optimal solutions, known as the
Pareto optimal solution set. In 1896, the scholar Pareto introduced the concept of the Pareto
optimal solution. A domination is defined as follows: ∀ft(xi) ≤ ft

(
xj
)

and ∃ft(xi) < ft
(
xj
)
,

j = 1, 2, . . ., m, xi dominates xj, denoted xi < xj, and is referred to as Pareto domination. A
solution is considered Pareto optimal if it is not dominated by any other solutions. The set
of objective values corresponding to each solution in the Pareto solution set is known as
the Pareto frontier [7].

Zhang and Li proposed the MOEA/D algorithm for decomposition-based multi-
objective optimization in 2007 [8]. The approach adopted involves decomposition to
address multi-objective problems. This is achieved by converting a multi-objective problem
into multiple single-objective sub-problems that can be solved individually, and utiliz-
ing a neighborhood search strategy and weight vectors to ensure global convergence
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and diversity. Compared to other multi-objective optimization algorithms, such as the
dominance-based multi-objective optimization algorithm (NSGA-II), MOEA/D has several
advantages: the MOEA/D algorithm uses a decomposition strategy for solving, so it can
effectively deal with high-dimensional problems [9–11]; approximation of Pareto optimal
solutions by collaborative solving among subproblems [12,13]; and using a single reference
point to guide solution generation reduces the number of depth evaluations and improves
the efficiency of the algorithm by only evaluating the solution in the vicinity of the reference
point in each problem [14–16].

min F(x) = ( f1(x), f2(x), . . . , fm(x))T

s.t. hi(x) = 0, i = 1, . . . , nh
gi(x) ≥ 0, i = 1, . . . , ng

x ∈ Ωx

(1)

MOEA/D commonly uses three decomposition methods: the weighted sum method,
the Tchebycheff approach, and the penalty-based boundary intersection method (PBI). The
algorithm’s performance is affected by the number of weight vectors used in the weight
summation approach [17], too few to adequately explore the various regions of the Pareto
front, and too many, leading to an increase in terms of the algorithm’s computational com-
plexity. Also, when the distribution of the weight vectors is not uniform [18], it may lead
to the weight vectors being too dense or sparse in some regions, which affects the search
ability of the algorithm. The Chebyshev aggregation approach has a large dependence on
the weight vector [19], and the determination of the weights between the objective func-
tions needs to be performed [20]. Also, when there are fewer objectives, the distribution of
optimal solutions obtained by the Chebyshev aggregation approach is more scattered [21].
The PBI decomposition approach provides high search efficiency and optimization quality
for interactability problems and nonlinear and nonconvex optimization problems [22].
The PBI decomposition approach has higher feasibility and validity for initial popula-
tion individuals and better reflects the characteristics of the problem than the other two
decompositions in MOEA/D [23]. In addition, the PBI decomposition approach allows
for the selection of appropriate penalty parameters according to the needs of the specific
problem [24]. This can result in a more effective adaptation of the generated population to
the objective function and a quicker discovery of the globally optimal solution during the
optimization process.

The size of the penalty parameter in the PBI algorithm significantly affects its con-
vergence and diversity. In 2019, when solving hybrid energy system optimization prob-
lems [25], Guo, Yang, and Jiang first set the penalty parameter to 0.5, when the diversity
of the algorithm was low, and then changed the value of the penalty parameter to 3.0
when the diversity of the algorithm was significantly increased. In 2015, in response to
the multi-target backpack problem [26], Ishibuchi, Akedo, and Nojima found that the
convergence rate for a penalty parameter value of 0.1 is significantly higher than that for
a penalty parameter value of 5.0. The algorithm’s diversity increases with larger penalty
parameter values, while smaller penalty parameter values increase its convergence [27–29].
Therefore, the value of the penalty parameter should be different depending on the prob-
lem; in contrast, in the traditional MOEA/D-PBI decomposition approach, the penalty
parameter is usually designed as a fixed value. Fixed penalty parameters do not capture the
characteristics of the problem well when dealing with problems of high complexity. Also,
when there is a large conflict between the objective function value and the constraints, the
two need to be balanced by adjusting the penalty parameter, and a fixed penalty parameter
cannot flexibly cope with this trade-off problem.

To tackle the aforementioned situation, this paper suggests a novel penalty approach,
namely the boundary-crossing strategy with dynamically adjusted penalization parameters
(MOEA/D-DPA). MOEA/D-DPA adaptively adjusts the penalty parameter values accord-
ing to the state of the uniform distribution of the solutions around the weight vectors for
the iteration period currently in progress.
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This paper is structured as follows: Section 2 explains the MOEA/D-PBI algorithm
and the significance of the penalty factor in it. Section 3 proposes an improved penalization
strategy for the PBI algorithm. Section 4 presents an experimental study of the proposed
punishment strategy. Section 5 summarizes the research presented in this paper.

2. Related Work
2.1. MOEA/D-PBI

The decomposition-based multi-objective optimization algorithm (MOEA/D) employs
three decomposition methods. This section will focus on the penalty-based boundary
cross-aggregation approach (PBI) as an example to provide a detailed introduction to the
MOEA/D algorithm process.

The input to the MOEA/D-PBI algorithm contains the following:
1⃝ Objective functions: Define multiple objective functions that need to be minimized

or maximized; these functions are a measure of the performance of the optimization prob-
lem. 2⃝ Constraints: Define possible constraints. Constraints are problem limitations that
need to be satisfied, e.g., feasibility, resource constraints, etc. 3⃝ Weight vector: Determines
the weights of each objective function in the optimization problem. ss 4⃝ Penalty factor:
Gives the factor used to penalize the violation of constraints. Penalty factors are used to
penalize solutions that do not meet the constraints and to motivate the algorithm to find
a better solution if the constraints are met. 5⃝ Algorithm parameters: Set the parameters
required by the algorithm, including population size, crossover rate, mutation rate, etc.,
which will affect the speed of convergence and the final results of the algorithm.

Output of the MOEA/D-PBI algorithm:
1⃝ Approximate Pareto optimal solution set: These solutions perform relatively well

on multiple objective functions and can no longer be improved by improving one objective
function without compromising the others. These solutions are distributed on the Pareto
front and represent the best trade-off solution to the problem. 2⃝ The objective function
value for each solution: The MOEA/D-PBI algorithm provides the value of each objective
function for every solution in the set of approximate Pareto optimal solutions. These
values help us evaluate the performance of each solution on different objective functions.

3⃝ Feasibility information: The MOEA/D-PBI algorithm also provides information on the
feasibility of each solution. This indicates whether each solution satisfies the constraints. If
the solution does not satisfy the constraints, the algorithm may apply a penalty factor to it
to correct it.

The MOEA/D-PBI algorithm steps include the following:
1⃝ Initialization: Set the number of populations N and generate the initial population

P(0) = {x1(0), x2(0), . . . , xn(0)}.
2⃝ Decoupling Decomposition: For each individual x(i)(t) ∈ P(t), compute its de-

composition weight vector λ(i) = (λ1(i), λ2(i), . . . , λm(i), The variable ‘m’ represents the
number of targets, while ‘i’ denotes the index of the individual.

3⃝ Update the set of neighbors: For each individual x(i)(t) ∈ P(t), find its set of
neighbors. The selection of the set of neighbors can be based on the distance metric
or topology.

4⃝ Evolutionary operations: For each individual x(i)(t) ∈ P(t), perform the following
steps: (a) Select two parent individuals (x(p1),x(p2)) ∈ N(i). (b) Use crossover and mutation
operations to generate a child individual x(off). (c) Compute the decomposition weight
vector (off) for the child individuals. (d) Determine whether a child individual can replace
a parent individual.

If λ(off) is close to λ(i), replace the parent individual. Otherwise, retain the parent
individual.

5⃝ Renewal of stocks: For each individual x(i)(t) ∈ P(t), it is updated according to
the fitness value, which can be calculated using the Pareto boundary crossing (MOEA/D-
PBI) function.
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6⃝ Termination judgment: Check whether the termination conditions are satisfied, such
as reaching the preset number of iterations or the degree of convergence of the solution.

7⃝ Produce an approximate set of Pareto-optimal solutions: Upon satisfaction of
the termination condition, the algorithm outputs the approximate set of Pareto-optimal
solutions.

2.2. Effect of Penalizing Factor θ on PBI

Jiang and Yang analyzed the effect of punishment factor θ on PBI [6]. Specifically,
when a solution does not meet the conditions, the objective function value of the solution
is penalized by the PBI algorithm through the addition of a penalty term, and the size of
this penalty term has a penalty factor to determine. If the penalty factor is excessive, the
algorithm will penalize solutions that fail to meet the constraints, which may cause the
algorithm to favor solutions that satisfy the constraints and therefore increase the diversity
of the algorithm. On the contrary, if the penalty factor is smaller, the algorithm penalizes
less for solutions that do not meet the constraints, which may cause the algorithm to be
more inclined to find better solutions, i.e., solutions that may not meet the constraints, and
therefore improve the convergence of the algorithm.

Figures 1 and 2 show the effect of two different values of the penalty parameter θ on
convergence and diversity [6].
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The penalty factor θ is set to 1.0 in Figure 1; ω1 = (0.1, 0.9)T and ω2 = (0.2, 0.8)T

denote two neighboring boundary weight vectors. From Figure 1, B and C are the optimal
points of ω1,ω2, two boundary weight vectors, respectively. Since gpbi(B

∣∣ω1, z* ) = 0.60 is
less than gpbi(B

∣∣ω1, z* ) = 0.75, the solution of the subproblem for ω1 with the associated
sub-problem is replaced by C from B. So, when the penalty factor is small, the algorithm
may find more non-dominated solutions because it is easier for the algorithm to find
solutions that do not meet the constraints but have smaller objective function values. These
non-dominated solutions may cause congestion in the Pareto front and thus reduce the
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diversity of the algorithms. In Figure 2, since the penalty factor θ is set to a large 5.0, H
and J are the optimal points of the two boundary weight vectors of ω1,ω2, respectively,
but since the gpbi of J is larger than that of H, H will not be replaced by J. So, when the
penalty factor is large, the algorithm may find fewer non-dominated solutions because it
focuses more on those solutions that satisfy the constraints. These solutions satisfying the
constraints may be more decentralized, thus increasing the diversity of the algorithms.

And later in the paper [6], the adaptive penalization scheme (MOEA/D-APS) was
proposed. MOEA/D-APS proposes adaptively adjusting the penalty factor θ based on
different search stages. In the early stage, the main optimization goal is to converge towards
the real PF quickly, so the penalty factor θ is set to a small value; In the subsequent stages,
the penalty parameter is increasing, and at this point, the algorithm focuses more on the
diversity of the population. APS uses this formula to achieve the above goals:

θ = θmin + (θmax − θmin)
it

maxIteration
(2)

The variable it represents the current number of iterations, while maxIteration rep-
resents the total number of population iterations. θmin and θmax represent the upper and
lower bounds of θ, respectively, and θ takes the value 5.0; θmin = 1.0, θmax = 10.0.

3. Suggested Strategies for Improvement
3.1. Basic Concept

The aim of this paper is to tackle the issue that the penalty parameter is a fixed value
in the traditional PBI decomposition method, which affects the convergence speed of the
population to some extent, so we propose a boundary-crossing strategy to adaptively adjust
the penalty parameter. The core idea of the dynamic tuning strategy is that the penalty
parameter affects the probability of the offspring being retained to a certain extent, thus
affecting the convergence and diversity of the population. According to the PBI formula,
the larger the penalty parameter, the less likely the offspring will be retained. Therefore,
at the start of each iteration, the primary objective is to bring the population as close as
possible to the Pareto front, so it is necessary to make the penalty parameter low, a large
number of substitution operations occur in the offspring, and population turnover; as the
number of iterations increases, the penalty parameter is gradually increased, so that the
population is diversified and dispersed. To cover the entire Pareto front, it is necessary to
include all relevant options. Based on this approach, the penalty parameter is adaptively
adjusted according to the current distribution of solutions around the weight vector. When
the distribution of solutions around the weight vector is too wide, the penalty parameter
decreases to increase the convergence of the population; when the distribution of solutions
around the weight vector is too small, the penalty parameter increases to increase the
diversity of the population.

3.2. Boundary-Crossing Strategy for Adaptive Tuning of Penalty Parameters

In this paper, adaptive parameter tuning is used to regulate the convergence and
diversity of the population, thus accelerating population convergence. From the above
analysis, it can be seen that the size of the penalty parameter θ is inextricably related to the
current iteration period. At the beginning of the iteration, the penalty parameter θ is low,
the population undergoes a large number of substitution operations, and the population
convergence increases, rapidly approaching the Pareto frontier. In the later stages of the
iteration, the penalty parameter value θ rises and the population dispersion and diversity
increase so that the population does not miss any part of the Pareto front. Therefore, this
paper makes the following improvements based on Equation (2):

During the evolution of a population, if the penalty parameter θ is too small, the
solutions at the frontier are easily replaced by solutions closer to the center, which results in
a decrease in population diversity. If the penalty parameter θ is too large, the occurrence of
the replacement operation in the population is not frequent, which significantly impacts the
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convergence speed of the population and hinders its ability to approach the Pareto frontier
effectively. As a result, the penalty parameter’s value is related to the current iteration
period, as well as the uniformity of the current population distribution. Therefore, on the
basis of the above tuning formula, the distribution density of the current population should
be taken into account. Therefore, the uniform state of the subproblem is defined first:

avgi =
nci − ncmin

ncmax − ncmin
(3)

Among them, avgi ∈ [0, 1] is the uniform state of the distribution of solutions around
the weight vector, the number of solutions to the weight vector is represented by nci. The
minimum number of solutions is represented by ncmin, and ncmax represents the maximum
number of solutions. For the solution xj, if the distance between the vector and weight
vector i is less than the distance between its corresponding solution xi and weight vector i,
it is considered to be distributed around weight vector i, i.e.,

nci =
{

xj
∣∣∣d(xj, wi

)
< d

(
xi, wi

)}
(4)

where d(x, w) denotes the perpendicular distance from the solution x to the weight vector
w, i.e.,

d(x, w) = ∥F(x)− wT F(x)
wTw

∥ (5)

where F(x) is the normalized processing function for solving x, which is treated as in
Equation (6).

ASF
(

x, wj
)
= maxm

i=1{
1

wj,i

∣∣∣∣∣ fi(x)− z∗i
znad

i − z∗i

∣∣∣∣∣} (6)

Since the final population sought has to balance convergence and diversity, if there
are too many solutions distributed around the weight vector, it is too convergent, and the
current population is not evenly distributed. During population evolution, if the penalty
parameter θ is too small, solutions at the boundary are easily replaced by solutions closer
to the center. If the penalty parameter θ is too large, the population is less susceptible
to replacement operations. Therefore, this paper proposes to further adjust the penalty
parameter θ according to the current solution distribution state on the basis of tuning
the parameter according to the current iteration state. When there are too many solutions
distributed around the current weight vector, the penalty parameter is decreased to increase
the convergence of the solutions; when there are too few solutions distributed around the
weight vector, the penalty parameter is increased to increase the population diversity.

θ =

{
max

{
θmin, θ

2

}
i f avgi > 0.4

min{θmax, θ ∗ 2} i f avgi ≤ 0.4
(7)

3.3. MOEA/D-DPA Algorithm

The MOEA/D-DPA algorithm is divided into five main steps: initialization, construct-
ing the solution, selecting the children, updating the value of the penalty parameter θ, and
updating the solution set in five parts. Its pseudo-algorithm is shown in Algorithm 1, and
the algorithmic procedure is described in detail below.

In the first step, an initialization operation is performed. Generate N vectors uniformly
distributed in a multidimensional space. Ensure that the vectors are uniformly distributed
and calculate their Euclidean distance. The Euclidean distance for each vector to select its
nearest T vectors will be counted in the order in the middle B(i), B(i) = {i1, . . . , iT}, where
this wi1, . . . , wiT that is wi distance nearest T vectors.

In the second step, an initial population P =
{

x1, . . . , xN}
is generated from the

solution space in a randomized manner. z*
i and znad will be computed at the same time,
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where z*
i is the ideal value, and precise computation will be very time consuming, so it will

be estimated by the minimum value of the current population, which is constantly updated
as the population iterates; similarly znad

i of the minimum znad is estimated by the worst
value achieved by the current population in the fi direction, and continuously updated.

The third step is to construct the solution. Constructing the solution in this algorithm
is mainly divided into four parts, structured reference points, cross variation, normalization
process, and clustering. The following algorithm outlines the steps to be taken.

In the fourth step, the population is updated. The strategy used is to choose to replace
xj with a solution y if the resulting solution y is better than any of the solutions x in
B(i), i.e., gpbi(y

∣∣wj, z*) ≤ gpbi(xj
∣∣wj, z*), as judged by the PBI formula, this contributes

to preserving the diversity of the population and gradually enhancing the quality of the
solution.

In the fifth step, the value of the penalty parameter θ is adaptively adjusted according
to the PBI tuning formula introduced in this chapter.

Finally, keep repeating the above steps until the maximum number of iterations
is reached.

Algorithm 1 MOEA/D−DPA

Input:

• maxIteration: a stopping criterion;
• N: the quantity of subproblems evaluated in MOEA/D;
• a uniform spread of N weight vector: λ1 . . . λN ;
• T: the number of weight vectors in the neighborhood of each weight vector.

Output: EP

1: Initialization: Generate a uniform spread of N weight vectors: w1, . . . , wN and compute the
T closest weight vectors to each weight vector by the distance. For each i = 1, . . . , N, set
B(i) = {i1, . . . , iT} where wi1, . . . , wiT are the T closest weight vectors to wi.

2: Create the initial population P
3: While the stopping criteria have not been met, do:
4: Randomly select two indexes r1 and r2 f rom B(i)
3: Solution construction
4: Select construction
5: Determine the value of parameter θ

6: Update of EP
7: End while

3.4. Algorithm Complexity Analysis

From Algorithm 1, the computational cost of the MOEA/D-DPA algorithm is mainly
within the iterations. Let the population size of the MOEA/D-DPA algorithm be m, the
number of subproblems be N, and the number of weight vectors be T. Unlike the original
MOEA/D algorithm, when updating, the MOEA/D-DPA algorithm must compute the
current value of the penalty parameter. The algorithm has a time complexity of O(1), and
the average time complexity to compute each generation is O(mNT).

The MOEA/D-DPA algorithm is considered to have similar time and space complex-
ity to the original MOEA/D algorithm, as it does not require additional storage space.
This ensures that the improved MOEA/D-DPA algorithm does not significantly alter the
algorithm’s complexity.

4. Discussion
4.1. Compare Functions and Test Functions

To assess the efficacy of the algorithm proposed in this paper, the experimental part
is run on ZDT and DTLZ test sets. The comparison algorithms are chosen: MOEA/D-
AGG, MOEA/D-TCHE, MOEA/D-PBI, and the improved algorithms MOEA/D-SPS and
MOEA/D-2PBI [30] for the PBI approach.
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To ensure comparability among all algorithms, all the same parameters in the experi-
ment were set to the same values. Let the number of neighbors T = 20, crossover probability
Pc = 0.2, and variance probability Pm = 0.2. The population size is 200, and the maximum
number of iterations is set to 25,000. All algorithms are run independently 25 times.

In this paper, four ZDT functions are selected as test functions, and their function
expressions are shown in Table 1.

Table 1. ZDT test function table.

Problem Objective Functions Variable Bounds

ZDT1

Min F = { f1, f2}
f1 = x1

f2 = g × h

g = 1 + 9 ×
n
∑

i=2
xi/(n − 1)

h( f1, g) = 1 −
√

f1/g

n = 30
xiϵ[0, 1]

ZDT2

Min F = { f1, f2}
f1 = x1

f2 = g × h

g = 1 + 9 ×
n
∑

i=2
xi/(n − 1)

h( f1, g) = 1 − ( f1/g)2

n = 30
xiϵ[0, 1]

ZDT3

Min F = { f1, f2}
f1 = x1

f2 = g × h

g = 1 + 9 ×
n
∑

i=2
xi/(n − 1)

h( f1, g) = 1 −
√

f1/g − ( f1/g)× sin(10π f1)

n = 30
xiϵ[0, 1]

ZDT4

Min F = { f1, f2}
f1 = x1

f2 = g × h
g = 1 + 10 × (n − 1)

+
n
∑

i=2

(
x2

i − 10cos(4πxi)
)

h( f1, g) = 1 −
√

f1/g

n = 10
x1ϵ[0, 1]

x2, . . . , xnϵ[−5, 5]

Since all ZDT test functions are bi-objective optimization problems, DTLZ is chosen as
a set of three-objective optimization test functions, which can be set to have three objectives
by considering the number of its objectives. Let be the human-set parameter, its function
expression is shown in Table 2.

Table 2. DTLZ test function table.

Problem Objective Functions Variable Bounds

DTLZ1

Min F = { f1, f2, f3}
f1 = (1 + g)× 0.5 × x1x2

f2 = (1 + g)× 0.5 × x1(1 − x2)
f3 = (1 + g)×0.5 × (1 − x 1)

g = 100[|xm|+ ∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))]

xiϵ[0, 1]

DTLZ2

Min F = { f1, f2, f3}
f1 = (1 + g)cos(x1π/2)cos(x2π/2)
f2 = (1 + g)cos(x1π/2)sin(x2π/2)

f3 = (1 + g)sin(x1π/2)
g = ∑

xi∈xM

(xi − 0.5)2

xiϵ[0, 1]
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Table 2. Cont.

Problem Objective Functions Variable Bounds

DTLZ3

Min F = { f1, f2, f3}
f1 = (1 + g)cos(x1π/2)cos(x2π/2)
f2 = (1 + g)cos(x1π/2)sin(x1π/2)

f3 = (1 + g)sin(x1π/2)
g = 100[|xm|+ ∑

xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))]

xiϵ[0, 1]

DTLZ4

Min F = { f1, f2, f3}
f1 = (1 + g)cos

(
xα

1 π/2
)
cos

(
xα

2 π/2
)

f2 = (1 + g)cos
(

xα
1 π/2

)
sin

(
xα

2 π/2
)

f3 = (1 + g)sin
(

xα
1 π/2

)
g = ∑

xi∈xM

(xi − 0.5)2

xiϵ[0, 1]

DTLZ5

MinF = {f1, f2, f3}
f1 = (1 + g)cos(θ1π/2)cos(θ2π/2)
f2 = (1 + g)cos(θ1π/2)sin(θ2π/2)

f3 = (1 + g)sin(θ1π/2)
θi =

π
4(1+g) (1 + 2gxi)

g = ∑
xi∈xM

(xi − 0.5)2

xiϵ[0, 1]

DTLZ6

Min F = { f1, f2, f3}
f1 = (1 + g)cos(θ1π/2)cos(θ2π/2)
f2 = (1 + g)cos(θ1π/2)sin(θ2π/2)

f3 = (1 + g)sin(θ1π/2)
θi =

π
4(1+g) (1 + 2gxi)

g = ∑
xi∈xM

x0.1
i

xiϵ[0, 1]

DTLZ7

Min F = { f1, f2, f3}
f1 = x1
f2 = x2
f3 = x3

xiϵ[0, 1]

4.2. Performance Indicators

This paper employs the inverted generational distance evaluation metric (IGD) and
the hypervolume metric (HV) to evaluate multi-objective optimization algorithms.

The IGD value indicates the minimum distance from the population to the ideal Pareto
front obtained by the algorithm, i.e., the smaller the value of IGD, the closer the population
is to the ideal Pareto front and is distributed in each part of the Pareto front, the better the
algorithm performs. Therefore, the IGD value can be a good assessment of the convergence
and diversity of the algorithm.

Inverted generational distance (IGD):

IGD(P∗, P) = ∑vϵP∗ d(v, P)
|P∗| (8)

The function d(v, P) represents the minimum Euclidean distance from the point v to P.
The point P denotes the solution set of the algorithm to find the population. P∗ is a set of
uniformly distributed points obtained from the ideal Pareto front, and |P∗| is the size of P∗.

The HV value is used to comprehensively evaluate the convergence and diversity
of the solutions obtained by the multi-objective optimization algorithm. The larger the
HV value, the closer the current population is considered to be to the ideal Pareto frontier.
However, the choice of reference point needs to be more careful, because it will greatly
affect the accuracy of the HV value.
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Hypervolume (HV):

HV(X, P) =
X⋃

xϵX
v(x, P) (9)

In the set of non-occupied solutions X, v(x, P) represents the hypervolume of the
space formed by the solution x and the reference point P. This is equivalent to the volume
of the hypercube constructed with the line between the solution x and the reference point
P as the diagonal.

4.3. Experimental Results and Analysis
4.3.1. Experimental Results

Figures 3 and 4 show the distribution of the Pareto frontiers obtained by the four
algorithms on the ZDT and DTLZ test problem sets. On the bi-objective problem, it can
be seen from Figure 3 that on the ZDT1 problem, the populations obtained by the PBI
and TCHE approaches can approach the Pareto frontier very well, and the distribution
of the solutions obtained by the AGG and 2PBI approaches is poorer. The MOEA/D-TC
and MOEA/D-SPS algorithms maintain the convergence and diversity quality of solutions
obtained by the PBI approach, while also achieving a more uniform distribution of solutions.
And the distribution of the solutions is more uniform. On the ZDT2 problem, the quality of
the solutions obtained by the TC, PBI, and TCHE approaches is all better, and the MOEA/D-
SPS and MOEA/D-2PBI algorithms perform slightly worse, where the distribution curves
of the solutions obtained by the TC strategy are smoother and of higher quality when
compared with the pre-improved PBI decomposition approach. On the test set ZDT3,
the quality of the solutions obtained by the TC strategy is poor, while the quality of the
solutions obtained by the TCHE decomposition approach is better. On the test problem
ZDT4, the improved TC strategy is more improved than the original PBI decomposition,
the obtained curve is smoother, and the population distribution is more uniform. From
the distribution graph of the obtained solution set, it can be initially recognized that on
the dual-objective problem, the improved TC strategy improves the solution quality to a
certain extent.
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Figure 3. Results of five algorithms in ZDT problem. 

0.0

0.1

0.2

0.3

0.0
0.1

0.2

0.3

0.1

0.2

0.3

Z

X

Y

MOEA/D-DPA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

Z

X

Y

MOEA/D-SPS

0.0

0.1

0.2

0.3

0.4

0.0
0.2

0.4

0.6

0.0
0.1

0.2

0.3

0.4

Z

X

Y

MOEA/D-PBI

0

50

100

150

200

020
40

60
80

100
120

140

0
20

40
60

80
100

Z

X

Y

MOEA/D-AGG

0.0

0.1

0.2

0.3

0.4

0.0
0.1

0.2
0.3

0.4
0.5

0.0
0.1

0.2
0.3

0.4

Z

X

Y

MOEA/D-TCHE

0.0

0.2

0.4

0.6

0.0
0.2

0.4

0.6

0.2
0.4

0.6
0.8

1.0

Z

X

Y

MOEA/D-2PBI

 
(a) DTLZ1 

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.2
0.4

0.6
0.8

1.0

Z

X

Y

MOEA/D-DPA

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.2
0.4

0.6
0.8

1.0

Z

X

Y

 MOEA/D-SPS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0
0.2

0.4
0.6

0.8
1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

Z

X

Y

MOEA/D-PBI

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.5

1.0
1.5

2.0
2.5

0.0

0.2

0.4

0.6

Z

X

Y

MOEA/D-AGG

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

0.2
0.4

0.6
0.8

1.0
1.2

Z

X

Y

MOEA/D-TCHE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

0.5

1.0

0.0
0.5

1.0
1.5

Z

X

Y

MOEA/D-2PBI

 
(b) DTLZ2 

Figure 3. Results of five algorithms in ZDT problem.



Appl. Sci. 2024, 14, 3481 11 of 19

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 20 
 

on the dual-objective problem, the improved TC strategy improves the solution quality to 
a certain extent. 

On the triple-objective problem, as illustrated in Figure 4, the improved MOEA/D-
TC algorithm yields Pareto that is more similar to the ideal Pareto frontier on the DTLZ2, 
DTLZ3, DTLZ5, and DTLZ6 test problems. The MOEA/D-TC algorithm performs poorly 
on the DTLZ1 and DTLZ7 test problems. On the DTLZ4 problem, both the MOEA/D-TC 
algorithm and the original MOEA/D-PBI algorithm can find the solution set better. There-
fore, it can be preliminarily concluded that the MOEA/D-TC algorithm has some improve-
ment over the MOEA/D-PBI decomposition strategy on the triple objective problem. 

MOEA/D-DPA

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.3

0.4

0.5

0.6

MOEA/D-SPS

0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.3

0.4

0.5

0.6

0.7

MOEA/D-PBI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

MOEA/D-AGG

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

MOEA/D-TCHE

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

MOEA/D-2PBI

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

 
(a) ZDT1 

MOEA/D-DPA

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

MOEA/D-SPS

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

MOEA/D-PBI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

MOEA/D-AGG

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

MOEA/D-TCHE

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

MOEA/D-2PBI

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

 
(b) ZDT2 

MOEA/D-DPA

0.4 0.5 0.6 0.7 0.8
-0.8

-0.6

-0.4

-0.2

MOEA/D-SPS

0.65 0.70 0.75 0.80 0.85

-0.6

-0.4

-0.2

0.0

MOEA/D-PBI

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

MOEA/D-AGG

0.0 0.2 0.4 0.6 0.8

-1

0

1

2

3

4

5

MOEA/D-TCHE

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

MOEA/D-2PBI

0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 
(c) ZDT3 

MOEA/D-DPA

0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MOEA/D-SPS

0.35 0.40 0.45 0.50 0.55 0.60 0.65
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

MOEA/D-PBI

0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

MOEA/D-AGG

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

MOEA/D-TCHE

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

MOEA/D-2PBI

0.0 0.2 0.4 0.6 0.8

20

30

40

50

60

70

 
(d) ZDT4 

Figure 3. Results of five algorithms in ZDT problem. 

0.0

0.1

0.2

0.3

0.0
0.1

0.2

0.3

0.1

0.2

0.3

Z

X

Y

MOEA/D-DPA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

Z

X

Y

MOEA/D-SPS

0.0

0.1

0.2

0.3

0.4

0.0
0.2

0.4

0.6

0.0
0.1

0.2

0.3

0.4

Z

X

Y

MOEA/D-PBI

0

50

100

150

200

020
40

60
80

100
120

140

0
20

40
60

80
100

Z

X

Y

MOEA/D-AGG

0.0

0.1

0.2

0.3

0.4

0.0
0.1

0.2
0.3

0.4
0.5

0.0
0.1

0.2
0.3

0.4

Z

X

Y

MOEA/D-TCHE

0.0

0.2

0.4

0.6

0.0
0.2

0.4

0.6

0.2
0.4

0.6
0.8

1.0

Z

X

Y

MOEA/D-2PBI

 
(a) DTLZ1 

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.2
0.4

0.6
0.8

1.0

Z

X

Y

MOEA/D-DPA

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.2
0.4

0.6
0.8

1.0

Z

X

Y

 MOEA/D-SPS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0
0.2

0.4
0.6

0.8
1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

Z

X

Y

MOEA/D-PBI

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.5

1.0
1.5

2.0
2.5

0.0

0.2

0.4

0.6

Z

X

Y

MOEA/D-AGG

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

0.2
0.4

0.6
0.8

1.0
1.2

Z

X

Y

MOEA/D-TCHE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

0.5

1.0

0.0
0.5

1.0
1.5

Z

X

Y

MOEA/D-2PBI

 
(b) DTLZ2 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 20 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

0.2
0.4

0.6
0.8

1.0
1.2

Z

X

Y

MOEA/D-DPA

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0.1

0.2
0.3

0.4

0.0

0.1

0.2

0.3

0.4

Z

X

Y

MOEA/D-SPS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

Z

X

Y

MOEA/D-PBI

0

50

100

150

200

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

200
400

600

800

1000

Z

X

Y

MOEA/D-AGG

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0
0.5

1.0
1.5

2.0

2.5

0.0
0.5

1.0

1.5

Z

X

Y

MOEA/D-TCHE

0

20

40

60

80

100

0
20

40
60

80

50
100

150
200

250

Z

X

Y

MOEA/D-2PBI

 
(c) DTLZ3 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

1.2

0.2
0.4

0.6

0.8

1.0

Z

X

Y

MOEA/D-DPA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

1.2

0.2
0.4

0.6
0.8

1.0
1.2

Z

X

Y

MOEA/D-SPS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

1.2

0.2
0.4

0.6
0.8

1.0
1.2

Z

X

Y

MOEA/D-PBI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.5

1.0
1.5

2.0
2.5

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Z

X

Y

MOEA/D-AGG

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

1.2

0.2
0.4

0.6
0.8

1.0
1.2

Z

X

Y

MOEA/D-TCHE

0.0

0.5

1.0

1.5

2.0

0.0
0.5

1.0
1.5

0.5

1.0

Z

X

Y

MOEA/D-2PBI

 
(d) DTLZ4 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.0 0.1 0.2 0.3
0.4

0.5
0.6

0.7

Z

X

Y

MOEA/D-DPA

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

Z

X

Y

MOEA/D-SPS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0
0.5

1.0
1.5

2.0
2.5

0.5
1.0

1.5
2.0

2.5
3.0

3.5

Z

X

Y

MOEA/D-PBI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.5

1.0
1.5

2.0
2.5

0.2
0.4

0.6
0.8

1.0
1.2

Z

X

Y

MOEA/D-AGG

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

Z

X

Y

MOEA/D-TCHE

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.0
0.2

0.4
0.6

Z

X

Y

MOEA/D-2PBI

 
(e) DTLZ5 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

Z

X

Y

MOEA/D-DPA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Z

X

Y

MOEA/D-SPS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

0.5

1.0

1.5

2.0

Z

X

Y

MOEA/D-PBI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.5

1.0
1.5

2.0
2.5

3.0

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Z

X

Y

MOEA/D-AGG

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

Z

X

Y

MOEA/D-TCHE

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.0 0.2 0.4 0.6

Z

X

Y

MOEA/D-2PBI

 
(f) DTLZ6 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.83
0.84

0.85
0.86

0.87

0.840
0.845

0.850

0.855

0.860

0.865

Z

X

Y

MOEA/D-DPA

0

1

2

3

0.82
0.83

0.84
0.85

0.86

0.83

0.84

0.85

0.86

0.87

Z

X

Y

MOEA/D-SPS

0

2

4

6

8

0.0
0.2

0.4
0.6

0.8

0.0

0.2

0.4

0.6

0.8

Z

X

Y

MOEA/D-PBI

0

5

10

15

20

0
2

4
6

8
10

0.0
0.2

0.4
0.6

0.8
1.0

Z

X

Y

MOEA/D-AGG

0

2

4

6

8

0.0

0.2

0.4

0.6

0.8

0.0
0.2

0.4
0.6

0.8
1.0

Z

X

Y

MOEA/D-TCHE

3

4

5

6

7

0.0

0.5

1.0

1.50.0 0.5

Z

X

Y

MOEA/D-2PBI

 
(g) DTLZ7 

Figure 4. Results of algorithms in the DTLZ problem. 
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On the triple-objective problem, as illustrated in Figure 4, the improved MOEA/D-TC
algorithm yields Pareto that is more similar to the ideal Pareto frontier on the DTLZ2,
DTLZ3, DTLZ5, and DTLZ6 test problems. The MOEA/D-TC algorithm performs poorly
on the DTLZ1 and DTLZ7 test problems. On the DTLZ4 problem, both the MOEA/D-TC al-
gorithm and the original MOEA/D-PBI algorithm can find the solution set better. Therefore,
it can be preliminarily concluded that the MOEA/D-TC algorithm has some improvement
over the MOEA/D-PBI decomposition strategy on the triple objective problem.

4.3.2. Analysis of IGD Performance Index Results

The mean, standard deviation, median, and quartiles for the IGDs of the algorithms
MOEA/D-SPS, MOEA/D-PBI, MOEA/D-AGG, MOEA/D-TCHE, and MOEA/D-2PBI,
and the algorithm MOEA/D-DPA proposed in this paper, are given in Tables 3 and 4. After
running the IGDs independently for 25 runs, respectively, in Tables 3 and 4, the data with
better significance in each algorithm are blackened.

Table 3. IGD mean and standard deviation of algorithms.

MOEA/D-DPA MOEA/D-SPS MOEA/D-PBI MOEA/D-AGG MOEA/D-TCHE MOEA/D-2PBI

ZDT1 4.30E-3 (1.5E-4) 4.30E-3 (6.7E-4) 7.70E-3 (3.6E-3) 1.12E-3 (6.4E-4) 2.78E-3 (1.1E-3) 1.23E-2 (3.1E-3)
ZDT2 5.77E-4 (3.7E-4) 4.71E-3 (1.8E-3) 1.14E-2 (6.2E-3) 1.32E-2 (3.2E-3) 3.06E-3 (1.4E-3) 2.21E-2 (4.6E-3)
ZDT3 8.98E-3 (1.7E-3) 1.57E-2 (2.7E-3) 1.42E-2 (1.1E-3) 4.15E-3 (1.8E-3) 6.84E-3 (7.9E-4) 9.85E-3 (1.0E-3)
ZDT4 8.43E-3 (4.8E-3) 3.69E-2 (3.1E-2) 9.35E-2 (5.9E-2) 3.86E-2 (1.9E-2) 4.79E-2 (3.0E-2) 5.48E-1 (1.6E-1)

DTLZ1 8.99E-4 (2.3E-5) 9.87E-4 (1.6E-4) 6.60E-4 (3.0E-4) 4.90E-3 (2.1E-5) 2.12E-2 (2.6E-2) 3.47E-2 (3.4E-2)
DTLZ2 3.55E-4 (1.3E-6) 6.29E-4 (1.4E-5) 7.61E-4 (2.0E-5) 5.35E-3 (1.5E-6) 7.74E-4 (1.1E-5) 1.08E-3 (6.5E-5)
DTLZ3 3.07E-3 (1.2E-2) 2.11E-2 (4.6E-2) 6.10E-2 (1.2E-1) 2.00E-2 (2.3E-2) 2.28E-1 (2.5E-1) 3.11E-1 (4.0E-1)
DTLZ4 1.03E-3 (8.7e-4) 1.42E-3 (9.5E-4) 1.24E-3 (2.1E-4) 5.88E-3 (1.0E-11) 1.32E-3 (2.7E-4) 1.69E-3 (2.7E-4)
DTLZ5 1.03E-3 (9.8E-6) 1.06E-3 (4.6E-5) 1.44E-3 (2.6E-5) 3.09E-2 (5.5E-10) 9.92E-4 (3.0E-5) 1.01E-3 (1.7E-4)
DTLZ6 1.56E-3 (2.7E-5) 1.78E-3 (7.5E-5) 1.78E-3 (7.5E-5) 4.65E-2 (1.9E-2) 4.25E-3 (9.4E-3) 7.42E-3 (2.1E-2)
DTLZ7 3.75E-2 (5.1E-3) 3.66E-2 (5.2E-3) 9.96E-3 (4.3E-4) 1.54E-2 (3.8E-3) 2.91E-3 (4.2E-3) 2.74E-2 (3.9E-3)

Table 4. IGD median and quartile of algorithms.

MOEA/D-DPA MOEA/D-SPS MOEA/D-PBI MOEA/D-AGG MOEA/D-TCHE MOEA/D-2PBI

ZDT1 4.27E-3 (2.3E-4) 4.08E-3 (8.7E-4) 7.02E-3 (7.2E-3) 9.09E-4 (6.3E-4) 2.57E-3 (1.7E-3) 1.22E-2 (4.4E-3)
ZDT2 4.72E-4 (4.2E-4) 4.36E-3 (3.3E-3) 1.07E-2 (9.2E-3) 1.30E-2 (1.1E-3) 2.91E-3 (2.2E-3) 2.21E-2 (8.0E-3)
ZDT3 1.37E-2 (1.4E-4) 1.73E-2 (5.5E-3) 8.71E-3 (2.8E-3) 3.77E-3 (3.0E-3) 6.78E-3 (1.0E-3) 9.88E-3 (1.1E-3)
ZDT4 6.75E-3 (6.5E-3) 3.01E-2 (2.7E-2) 3.01E-2 (2.7E-2) 3.64E-2 (2.7E-2) 3.75E-2 (3.9E-2) 5.19E-1 (2.7E-1)

DTLZ1 8.94E-4 (2.5E-5) 1.05E-3 (2.1E-4) 5.61E-4 (4.3E-5) 4.90E-3 (5.2E-9) 8.00E-3 (3.2E-2) 3.03E-2 (5.4E-2)
DTLZ2 3.55E-4 (2.6E-6) 6.32E-4 (2.3E-5) 7.62E-4 (2.6E-5) 5.35E-3 (2.1E-11) 7.73E-4 (1.2E-5) 1.08E-3 (7.8E-5)
DTLZ3 6.24E-4 (6.2E-5) 1.07E-3 (6.7E-3) 1.08E-2 (5.5E-2) 1.14E-2 (6.8E-3) 1.64E-1 (2.9E-1) 1.28E-1 (5.1E-1)
DTLZ4 7.82E-4 (6.4e-5) 1.17E-3 (2.2E-4) 1.14E-3 (2.0E-4) 5.88E-3 (5.6E-12) 1.31E-3 (5.8E-4) 1.63E-3 (2.6E-4)
DTLZ5 1.03E-3 (1.0E-5) 1.08E-3 (7.7E-5) 1.45E-3 (2.9E-5) 3.09E-2 (1.6E-10) 9.90E-4 (3.9E-5) 9.85E-4 (1.4E-4)
DTLZ6 1.54E-3 (5.2E-5) 1.79E-3 (1.1E-4) 2.19E-3 (9.1E-5) 4.65E-2 (1.9E-2) 1.38E-3 (1.3E-4) 8.96E-4 (7.3E-4)
DTLZ7 4.12E-2 (1.0E-2) 4.00E-2 (1.0E-2) 9.90E-3 (6.5E-4) 1.84E-2 (6.8E-3) 3.02E-2 (4.8E-3) 2.93E-2 (5.1E-3)

Combined with Tables 3 and 4, it can be seen that the DPA strategy significantly
improves the performance compared with the original PBI strategy on the ZDT2 and
ZDT4 problems, and the obtained IGD metrics are the best among the five decomposition
strategies. On the ZDT3 test problem, the IGD metrics obtained by the MOEA/D-DPA
algorithm are better than those obtained by the MOEA/D-PBI algorithm, which proves
that the improved dynamic parameterization algorithm has a certain enhancement on the
quality of the solution on the bi-objective problem.

Among the seven test functions of the tri-objective problem, the DPA strategy finds
the optimal IGD values on the DTLZ2, DTLZ3, DTLZ4, and DTLZ6 test problems, but
underperforms on the DTLZ7 test problem. Therefore, it is concluded that the DPA tuning
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strategy has some performance enhancement effect on the PBI decomposition strategy on
the three-objective problem and is better than similar improved algorithms.

As can be seen from the boxplots in Figure 5, the DPA strategy achieves better IGD
metrics on the ZDT1, ZDT2, and ZDT4 problems, thus proving that its derived solution
sets are closer to the ideal Pareto distance. It can also be seen that the IGD metrics obtained
by the DPA strategy on all four test problems are more stable than those obtained by the
original PBI decomposition strategy. On the ZDT3 problem, the IGD metrics obtained by
both the DPA strategy and the SPS strategy are unsatisfactory.
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As demonstrated by the box plots presented in Figure 6, the MOEA/D-DPA algorithm
achieves better IGD metrics than the MOEA/D-PBI algorithm on the test problems except
DTZL7 and is more stable. The MOEA/D-DPA and MOEA/D-SPS algorithms do not
perform well on the DTLZ7 test problem, which shows that on the triple-objective problem,
the DPA decomposition strategy has some solution quality improvement over the original
PBI decomposition strategy, but there is still room for improvement.
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4.3.3. Analysis of HV Performance Index Results 

The mean, standard deviation, median, and interquartile deviation of HV on the test 
set ZDT for the MOEA/D-DPA, MOEA/D-SPS, MOEA/D-PBI, MOEA/D-AGG, MOEA/D-
TCHE, and MOEA/D-2PBI algorithms are given in Tables 5 and 6, and a blackening oper-
ation has been performed on the better data of each algorithm. 

Combining the HV performance metrics of the algorithms in Tables 5 and 6, it can be 
seen that the MOEA/D-DPA algorithm has better HV metrics than the original MOEA/D-
PBI algorithm and outperforms the similar improved MOEA/D-SPS and MOEA/D-2PBI 
algorithms on all four test problems of ZDT. And the MOEA/D-DPA algorithm finds the 
optimal HV metric value on ZDT2 and ZDT4 problems. Therefore, it is believed that the 
MOEA-DPA algorithm solution improves the convergence and diversity of the solution 
to the bi-objective problem. 

On the three-objective problem, the improved MOEA/D-DPA algorithm performs 
better than the original PBI strategy on all the test problems except DTLZ7 and achieves 
the optimal value of the five decomposition strategies. However, it performs poorly on 
the DTLZ7 test problem. In summary, it is concluded that the MOEA/D-DPA algorithm 
enhances population diversity and improves solution quality to some extent, which is 
consistent with the previous conclusions. 
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4.3.3. Analysis of HV Performance Index Results

The mean, standard deviation, median, and interquartile deviation of HV on the test set
ZDT for the MOEA/D-DPA, MOEA/D-SPS, MOEA/D-PBI, MOEA/D-AGG, MOEA/D-
TCHE, and MOEA/D-2PBI algorithms are given in Tables 5 and 6, and a blackening
operation has been performed on the better data of each algorithm.

Table 5. HV mean and standard deviation of algorithms.

MOEA/D-DPA MOEA/D-SPS MOEA/D-PBI MOEA/D-AGG MOEA/D-TCHE MOEA/D-2PBI

ZDT1 6.01E-1 (3.1E-3) 5.22E-1 (4.0E-2) 4.18E-1 (4.8E-2) 6.22E-1 (3.7E-2) 5.35E-1 (4.7E-2) 1.93E-1 (8.6E-2)
ZDT2 3.10E-1 (8.0E-3) 1.97E-1 (5.4E-2) 1.97E-1 (4.2E-2) 6.51E-3 (1.7E-2) 2.35E-1 (4.1E-2) 4.05E-3 (7.9E-3)
ZDT3 3.42E-1 (4.8E-2) 2.31E-2 (5.2E-2) 2.64E-1 (5.1E-2) 3.65E-1 (7.5E-2) 2.98E-1 (3.7E-2) 1.56E-1 (2.9E-2)
ZDT4 3.63E-1 (1.4E-1) 6.82E-2 (1.3E-1) 4.28E-3 (9.3E-3) 3.25E-2 (6.1E-2) 9.39E-3 (1.9E-2) 0.00E+0 (0.00E+0)

DTLZ1 7.92E-1 (9.2E-4) 7.69E-1 (5.4E-3) 7.45E-1 (4.8E-2) 7.07E-4 (3.5E-3) 2.08E-1 (2.6E-1) 1.79E-1 (2.8E-1)
DTLZ2 4.09E-1 (2.5E-3) 3.83E-1 (4.1E-3) 3.55E-1 (5.4E-3) 8.43E-8 (6.2E-7) 3.63E-1 (2.4E-3) 2.94E-1 (1.3E-2)
DTLZ3 3.78E-1 (9.1E-2) 2.70E-1 (1.6E-1) 1.08E-1 (1.4E-1) 8.63E-6 (3.2E-9) 2.69E-2 (6.4E-2) 1.99E-2 (6.2E-2)
DTLZ4 3.76E-1 (7.2E-2) 3.39E-1 (8.3E-2) 3.36E-1 (1.6E-2) 4.42E-8 (6.2E-5) 3.29E-1 (3.3E-2) 2.83E-1 (2.3E-2)
DTLZ5 8.93E-2 (8.1E-5) 8.87E-2 (3.7E-4) 8.64E-2 (2.8E-4) 3.43E-9 (2.2E-7) 8.84E-2 (2.8E-4) 8.75E-2 (1.2E-3)
DTLZ6 9.02E-2 (7.7E-5) 8.93E-2 (3.6E-4) 8.77E-2 (1.6E-4) 2.43E-4 (5.2E-9) 8.97E-2 (6.6E-3) 8.53E-2 (2.4E-2)
DTLZ7 4.03E-3 (4.5E-3) 6.56E-3 (1.1E-2) 4.56E-2 (1.4E-2) 8.67E-2 (4.3E-2) 2.185E-3 (4.8E-3) 2.22E-2 (3.0E-2)
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Table 6. HV median and quartile of algorithms.

MOEA/D-DPA MOEA/D-SPS MOEA/D-PBI MOEA/D-AGG MOEA/D-TCHE MOEA/D-2PBI

ZDT1 6.03E-1 (5.2E-3) 5.28E-1 (4.4E-2) 3.43E-1 (2.7E-1) 6.34E-1 (3.1E-2) 5.42E-1 (7.6E-2) 1.85E-1 (1.2E-1)
ZDT2 3.09E-1 (1.2E-2) 1.85E-1 (9.7E-2) 8.15E-2 (1.6E-1) 3.21E-4 (5.9E-3) 2.37E-1 (6.7E-2) 0.00E+0 (4.3E-3)
ZDT3 3.52E-1 (5.0E-3) 2.06E-2 (9.6E-2) 1.96E-1 (1.2E-1) 3.75E-1 (1.1E-1) 3.02E-1 (4.0E-2) 1.55E-1 (3.4E-2)
ZDT4 3.68E-1 (2.9E-1) 6.82E-5 (1.0E-1) 6.94E-5 (2.3E-1) 3.25E-2 (6.1E-2) 9.39E-3 (1.9E-2) 0.00E+0 (0.00E+0)

DTLZ1 7.92E-1 (1.1E-3) 7.70E-1 (3.6E-3) 7.62E-1 (1.1E-2) 3.33E-14 (4.0E-1) 1.41E-2 (4.2E-1) 7.51E-1 (8.5E-3)
DTLZ2 4.10E-1 (3.2E-3) 3.84E-1 (6.3E-3) 3.56E-1 (8.1E-3) 8.43E-8 (6.2E-7) 3.64E-1 (3.4E-3) 2.94E-1 (1.7E-2)
DTLZ3 4.03E-1 (1.1E-2) 3.67E-1 (2.7E-1) 1.37E-1 (2.6E-1) 8.63E-6 (3.2E-9) 1.53E-1 (1.6E-1) 2.75E-1 (1.8E-1)
DTLZ4 3.99E-1 (6.0E-3) 3.67E-1 (1.0E-2) 3.40E-1 (1.8E-2) 4.42E-8 (6.2E-5) 3.47E-1 (7.0E-2) 2.82E-1 (2.8E-2)
DTLZ5 8.93E-2 (8.8E-5) 8.87E-2 (4.9E-4) 8.64E-2 (3.9E-4) 3.43E-9 (2.2E-7) 8.84E-2 (4.0E-4) 8.75E-2 (1.7E-3)
DTLZ6 9.02E-2 (9.9E-6) 8.98E-2 (3.0E-4) 8.76E-2 (3.2E-4) 2.43E-4 (5.2E-9) 9.14E-2 (4.5E-4) 9.36E-2 (1.5E-3)
DTLZ7 7.25E-4 (9.1E-3) 9.09E-4 (9.9E-3) 4.68E-2 (1.9E-2) 1.12E-1 (8.7E-2) 7.27E-4 (2.2E-3) 1.01E-2 (1.6E-2)

Combining the HV performance metrics of the algorithms in Tables 5 and 6, it can be
seen that the MOEA/D-DPA algorithm has better HV metrics than the original MOEA/D-
PBI algorithm and outperforms the similar improved MOEA/D-SPS and MOEA/D-2PBI
algorithms on all four test problems of ZDT. And the MOEA/D-DPA algorithm finds the
optimal HV metric value on ZDT2 and ZDT4 problems. Therefore, it is believed that the
MOEA-DPA algorithm solution improves the convergence and diversity of the solution to
the bi-objective problem.

On the three-objective problem, the improved MOEA/D-DPA algorithm performs
better than the original PBI strategy on all the test problems except DTLZ7 and achieves
the optimal value of the five decomposition strategies. However, it performs poorly on
the DTLZ7 test problem. In summary, it is concluded that the MOEA/D-DPA algorithm
enhances population diversity and improves solution quality to some extent, which is
consistent with the previous conclusions.

As can be seen from Figure 7, the MOEA/D-DPA algorithm significantly improves
the HV metrics over the original MOEA/D-PBI algorithm on the four ZDT test problems,
especially on the ZDT2 and ZDT4 test problems, where the HV metrics obtained by the
MOEA/D-DPA algorithm are optimal. In general, both IGD metrics and HV metrics com-
bine to demonstrate the convergence and diversity of the algorithms, i.e., the dynamic
parameterization strategy exhibits better performance metrics than the original PBI de-
composition strategy on the ZDT test problem, but on the ZDT3 test problem, the IGD
metrics of the MOEA/D-DPA algorithm are slightly worse than those of the MOEA/D-PBI
algorithm, but the HV metrics are better than those of the MOEA/D-PBI algorithm. This is
due to the fact that although both IGD and HV metrics combine to show the performance
of the algorithms, the HV metrics are more inclined to reflect the population diversity of
the algorithms. Therefore, it is proven that the MOEA/D-DPA algorithm improves popula-
tion diversity in discontinuous bi-objective optimization problems. In the test problems,
except for ZDT4, the metrics solved by the MOEA/D-DPA algorithm have better stability.
Therefore, it is concluded that the DPA strategy improves the solution performance of the
algorithm to a greater extent, which is consistent with the previous conclusion.
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As can be seen from the HV boxplots of the five algorithms on the DTLZ test problem
in Figure 8, the MOEA/D-DPA algorithm achieves higher performance and is more stable
than the MOEA/D-SPS algorithm on the triple-objective problem in most cases. However,
both the MOEA/D-DPA algorithm and the MOEA/D-SPS algorithm yielded poor HV
performance metrics on the DTLZ7 test problem. Overall, it is concluded that the MOEA/D-
DPA algorithm has some solution quality improvement over the MOEA/D-PBI algorithm
on the triple-objective problem, but there is still some room for improvement.
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5. Conclusions

In order to solve the shortcomings caused by the fixed penalty parameter in the PBI
decomposition strategy in the MOEA/D algorithm, this paper proposes the MOEA/D-DPA
dynamic tuning algorithm. This strategy will dynamically adjust the penalty parameter
according to the current iteration period, and then adaptively adjust the value of the penalty
parameter according to the distribution of solutions around the current weight vector, so as
to make the population better balance between convergence and diversity while improving
the operational efficiency. The experimental results show that the improved dynamic
tuning parameter substantially improves the solution quality of the PBI decomposition
strategy with higher stability in solving bi-objective optimization problems. In solving the
three-objective optimization problem, dynamic parameter tuning improves the quality of
the solution of the PBI decomposition strategy to a certain extent, and there is a certain
improvement in the population diversity in. However, it also brings the problem of un-
stable solution. Therefore, it is considered that the tuning strategy has a certain degree
of performance optimization effect on the PBI decomposition strategy in multi-objective
optimization problems. Tuning strategies offer significant advantages in addressing op-
timization problems, providing strong support for their application to real-world issues.
The MOEA/D-DPA algorithm maintains similar time and space complexity to the basic
MOEA/D algorithm, while also demonstrating effective scalability in parallelized and
distributed environments. This increased scalability enhances the algorithm’s applicability
to real-world optimization problems.
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