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Abstract: Local differential privacy algorithms combined with deep generative models can enhance
secure medical image sharing among researchers in the public domain without central administrators;
however, these images were limited to the generation of low-resolution images, which are very
insufficient for diagnosis by medical doctors. To enhance the performance of deep generative models
so that they can generate high-resolution medical images, we propose a large-scale diffusion model
that can, for the first time, unconditionally generate high-resolution (256 × 256 × 256) volumetric
medical images (head magnetic resonance images). This diffusion model has 19 billion parameters,
but to make it easy to train it, we temporally divided the model into 200 submodels, each of which
has 95 million parameters. Moreover, on the basis of this new diffusion model, we propose another
formulation of image anonymization with which the processed images can satisfy provable Gaussian
local differential privacy and with which we can generate images semantically different from the
original image but belonging to the same class. We believe that the formulation of this new diffusion
model and the implementation of local differential privacy algorithms combined with the diffusion
models can contribute to the secure sharing of practical images upstream of data processing.

Keywords: deep generative models; denoising; differential privacy; diffusion models; head magnetic
resonance images

1. Introduction

Local differential privacy (LDP) [1,2] combined with the deep generative models [3,4]
can simultaneously ensure the provable and controllable upper bound of information
leakage and hold realistic utilities [5,6] upstream of data processing. Therefore, we consider
that this combination can be a realistic tool to anonymize and then share private medical
images among researchers in the public domain. On the other hand, the total dimension
of data modeled by deep generative models for images is typically limited to, equivalent
to, or below 2,097,152 (see the section on related works for details). However, to diagnose
patients with volumetric medical images, medical doctors usually want those images to
have a resolution of at least 256 × 256 × 256 = 16,777,216 total dimensions. On the basis of
these backgrounds, the purpose of the present study is to build a deep generative model
that can learn volumetric images with state-of-the-art high-resolution (256× 256× 256) and
sample from the probabilistic distribution of those images to apply LDP algorithms with it
for high-resolution volumetric medical images. Specifically, we adopt diffusion models as
the deep generative models because the diffusion models can divide the training problem
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for the probabilistic distribution of images to virtually infinite subproblems to enhance the
power of expression. With reference to this division, the stochastic differential equations for
the diffusion models [7] are an interesting topic; however, we do not handle those equations
in the present study. More strictly, we adopt pixel-space diffusion models [3] because they
can straightforwardly handle real images without encoders, as in generative adversarial
networks (GANs) [4] and latent-space diffusion models [8], which is an important and
favorable feature in LDP processing. Furthermore, a pair of an encoder and a decoder for the
latent-space diffusion models requires a significantly large GPU memory when we scale up
the models to high-resolution volumetric images. Finally, we not only show unconditional
image generation from a pseudo-random noise with the proposed diffusion model, but also
apply the proposed model to generate high-resolution LDP volumetric medical images
from a real image. Because differential privacy (DP) provides provable privacy protection,
we decided to concentrate on clarifying the utility of those generated images, including
LDP-processed images with visual evaluations by three medical doctors. We adopt head
magnetic resonance (MR) images taken at the University of Tokyo Hospital throughout
the present study. In summary, this study enhances diffusion models to facilitate modeling
high-resolution volumetric images, contributing to the construction of practical medical
systems. Additionally, we apply this improved diffusion model to propose and validate a
method for sharing medical images with guaranteed privacy.

2. Related Works
2.1. Deep Generative Models for High-Dimensional Data

Shibata et al. [9] improved the training method of flow-based deep generative mod-
els [10–12] and successfully modeled three-dimensional chest computed tomography
(CT) images with the models, but the image resolution was limited, that is, equiva-
lent to or below 128 × 128 × 128. Khader et al. [13] adopted denoising diffusion prob-
abilistic models (DDPMs) to unconditionally generate three-dimensional medical images,
but the total dimensions of image pixels were limited, that is, equivalent to or below
2,097,152. Bieder et al. [14] adopted DDPMs to segment three-dimensional high-resolution
(256 × 256 × 256) medical images, but they did not report the results of their image genera-
tion. Dorjsembe et al. [15] adopted DDPMs to conditionally generate three-dimensional
medical images, but their resolution was limited to 128 × 128 × 128. Finally, Sun et al. [16]
proposed a three-dimensional GAN, which can unconditionally generate high-resolution
(256 × 256 × 256) medical images, but they did not report image generations conditioned
with another image with a GAN, unlike in our present study.

2.2. Differential Privacy for Multidimensional Data

Fan [17] proposed an LDP algorithm for image anonymization. The algorithm di-
rectly adds a perturbation noise on images. In the present study, we adopt the algorithm,
but we additionally postprocess the LDP-processed noisy images. Croft et al. [6], Li and
Clifton [18], and Liu et al. [19] almost simultaneously proposed another LDP algorithm for
the obfuscation of facial images, which adopts generative models to semantically change
the identity in facial images while it can preserve the class (face) of those images. However,
they did not adopt diffusion models as generative models. We stress that the above LDP
algorithms are all different from DP-SGD [20], which adds perturbation noise against
parameters of deep discriminative or generative models.
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3. Methods

Figure 1 shows the flowchart of the proposed method.

Figure 1. We extend the denoising diffusion probabilistic model (DDPM) to handle high-resolution
volumetric images, and furthermore, propose and validate a novel method to remove noise induced
by local differential privacy (LDP) using DDPM.

3.1. Score Matching and DDPMs

Given the domain-specific data (we represent the set of the data as D and one of the
data as x), the purpose of the generative models is to estimate the probabilistic distribution
log p(x) of those data. However, the direct modeling of log p(x) is very difficult. Therefore,
we focus on score ∇x log p(x). However, the direct modeling of ∇x log p(x) is still difficult.
Therefore, we estimate the score with implicit score matching [21]. However, the scale up of
implicit score matching to high-dimensional data is difficult and overfitting is significantly
problematic. Therefore, we divide the problem. We add the perturbation noise of different
signal-to-noise ratios (SNRs) to data and prepare datasets characterized with different
SNRs. The implicit score matching now learns denoising from noisy data.

The denoising diffusion probabilistic models (DDPMs) [3] are another expression
of score-based diffusion models and formulated to maximize the evidence lower bound
(ELBO) of the Kullback–Leibler divergence. Maximizing the ELBO is equivalent to learning
noise prediction from noisy data. Specifically, we train a model, which is represented
as a vector function conditioned on the time step ft,θ, so that the model can predict the
noise component at a time step t, which is linearly combined with the normalized image
(xt ∈ [−1, 1]):

xt =
√

ᾱtx0 +
√

β̄tϵ, (1)

and

x̂t−1 = ft,θ(xt), (2)

where the hat represents the predicted quantity throughout this paper, and

ϵ ∼ N (0, I), (3)

αt := 1 − βt, (4)

ᾱt :=
t

∏
s=1

αs, (5)

β̄t := 1 − ᾱt, (6)

where 0 < β1 < β2 < · · · < βT < 1 are the control parameters for the magnitude of
deviations. In this study, we adopt the Sigmoid scheduling [22] for the betas.
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3.2. Scale Up to High-Resolution Volumetric Images by Model Unrolling

Previous DDPMs recursively adopt the same neural network to execute denoising from
images of different SNRs with the time step information prescribed inside the denoising network:

x̂0 = ft=1,θ ◦ ft=2,θ ◦ · · · ◦ ft=T,θ︸ ︷︷ ︸
T-steps

(xT). (7)

This DDPM network ( fθ) requires a large power of expression, i.e., numerous parame-
ters, to enable denoising from images of different SNRs, but it is very difficult to scale this
up to high-resolution volumetric images owing to the GPU memory limitation. On the
contrary, if we train a different DDPM network for each time step, the power of expression
required for each model would be significantly relaxed. On the basis of this insight, we have

x̂0 = fθ1 ◦ fθ2 ◦ · · · ◦ fθT︸ ︷︷ ︸
T-steps

(xT), (8)

where fθi learns denoising from xt to estimate the noise component and it can generate
the image in the previous time step xt−1. Specifically, for training, we prepare multiple
instances of the network shown in Figure A1 for different time steps (t), and optimize the
parameters included in them using the ADAM optimizer.

3.3. DP

We deal with the LDP apart from global differential privacy. The LDP can anonymize
data itself upstream of data processing. The theoretical guarantee for privacy protection of
LDP with the Gaussian mechanism [1,23] is given by

Pr(x̃|x)− eϵPr(x̃|x′) ≤ δ, (9)

where x̃ is an LDP-processed image, x and x′ are different arbitrarily selected images in the
probabilistic distribution of images, ϵ ≥ 0 and 0 ≤ δ < 1 are the privacy budgets specified
by administrators of the images, and Pr(x̃|x) [or Pr(x̃|x′)] is the conditional probability
that x̃ is generated when x (or x′) is given.

To generate x̃ from x (or, x′), which satisfies (9), we add a perturbation that obeys a
normal (Gaussian) distribution on x as follows:

x̃ijk = xijk + n, (10)

n ∼ N (0, σ2), (11)

σ2 =
2 ln 1.25/δijk · (∆ fijk)

2

ϵ2
ijk

, (12)

where for a single pixel (xijk) of x, ϵijk and δijk are the privacy budgets, and ∆ fijk is the
sensitivity. After the addition of the perturbation, we clip the range of x̃ijk from −1 to 1.

3.4. Integration of DDPM and DP

First, we handle (ϵijk, δijk)-Gaussian-LDP for a single fixed pixel (xijk) and extend this
to handling all the pixels using the following composition theorem of DP:

ϵ = ∑
i,j,k

ϵijk, (13)

δ = ∑
i,j,k

δijk, (14)

where ϵ and δ are the total privacy budgets.
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Because the deviations of perturbed images appear in DDPMs (1), we can write

σ2
t =

β̄t

ᾱt
. (15)

We can now connect the above equation with (12) as

σ2
t = σ2. (16)

This indicates that we can compute the virtually infinite pairs of ϵ and δ if the noise
scheduling (betas) of the DDPM and the sensitivity ∆ fijk are given.

Note that we can obtain LDP-processed images by just picking intermediate images xt
in the DDPM (the forward process), but those images do not preserve the class (head MR
images in the present study) if the privacy budgets are small. To preserve the class even
when the privacy budgets are small, we reversely apply the DDPM to the intermediate
images as follows (the reverse process):

x̂0 = fθ1 ◦ fθ2 ◦ · · · ◦ fθt︸ ︷︷ ︸
t-steps

(xt). (17)

With this postprocessing, we can have images such that they (i) preserve the class, (ii)
may be semantically different from original images, and (iii) have provable indistinguisha-
bility and therefore are practical for medical data sharing.

4. Numerical Experiments
4.1. Preparation of Head MR Images

The institutional review board of the University of Tokyo Hospital approved the use
of head MR images (T1WI) taken in the hospital for the present retrospective study. From
November 2006 to December 2017, high-resolution volumetric fast spoiled gradient-echo
MR imaging was performed with a Signa EXCITE and a Discovery MR750 scanner (GE
Healthcare Japan, Tokyo, Japan) (repetition time, 6.4 ms; echo time, 2.0 ms; inversion time,
450 ms; field-of-view, 25 cm; flip angle, 15 deg; acquisition matrix, 256 × 256; number of
excitations, 0.5; and voxel dimensions 0.98 × 0.98 × 1.0 mm3) using an 8-channel head
coil. From January 2018 to April 2021, high-resolution volumetric magnetization-prepared
rapid gradient-echo MR images were acquired with a Biograph mMR scanner (repetition
time, 1660 ms; echo time, 2.4 ms; inversion time, 910 ms; field-of-view, 25 cm; flip angle,
8 deg; acquisition matrix, 256 × 256; number of excitations, 1; and voxel dimensions,
0.98 × 0.98 × 1.0 mm3) using a 16-channel receiver coil (These protocols are the same as
in [24].). We extracted only 1327 head MR images (volumes) from a large set (including
both normal and abnormal cases) of images taken with the above protocols. The resolution
of each two-dimensional MR image (sagittal slices) was 256 × 256. We stacked these
two-dimensional images to create a three-dimensional image of 256 × 256 × 256 size with
padding. These head MR images were processed without skull stripping. The images were
divided into training (1224) and test (103) datasets. Each image was normalized so that
the whole pixel range of all the images was included. We then mapped the range of these
images onto [−1, 1] for the training.

4.2. Training of DDPMs

We trained the models in an unsupervised manner with the DDPM network described
in Appendix A without the time step information (t). We set the number of the total time
steps (T = 200); hence, we trained 200 models (θ1, θ2, . . . , θ200). Each model for the fixed
time step contains 95 million trainable parameters and all the models together contain
19 billion trainable parameters. We efficiently trained the models in a serpentine folding
manner. Specifically, we first trained the model θ1 and when finished, we initialized
the next model θ2 with the parameters of θ1 and then trained it. When all the models
(θ1, θ2, . . . , θ200) were updated once, we define this process as completinig one epoch. We
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updated the model until four epochs. All the computations were executed on a single node
of the supercomputer Wisteria/BDEC-01 (Fujitsu, Tokyo, Japan) (one node contains eight
A100 GPUs with 40 GB of memory for each GPU), at the University of Tokyo.

5. Results
5.1. Unconditional Image Generation and Visual Evaluation

Using the trained model, we first unconditionally generated head MR images
[i.e., (ϵ, δ) = (0, 0)]. Three medical doctors (radiologists) evaluated the quality of those
images (six volumes) and real images (six volumes) to show the capability of the model to
generate realistic but fictional high-resolution volumetric medical images. They evaluated
the appearance of anatomical structures and the contrast of the cortical white matter in
five stages on the basis of the criteria shown in Table 1. Tables 2 and 3 show the results of
the evaluation of real and fake cases, respectively. Moreover, in Figure 2, we show three
representative slices (i.e., axial, coronal, and sagittal slices) of a generated head MR image
(we selected case 1 in Tables A1–A3.) from pseudo random noise, i.e., from t = 200 in (17).
The medical images obtained in the present study were cropped and enlarged to enhance
their visibility.

Table 1. Evaluation Criteria.

Stages Criteria

1 The structure is invisible.
2 The structure is slightly identifiable.
3 The structure is visible but not sufficient.
4 The structure is visible as in real cases

with the resolution of 256 × 256 × 256.
5 The structure is well visible as in real cases

with the resolution of 256 × 256 × 256.

Table 2. Visual evaluation results. A, B, and C indicate averaged evaluation results for six real cases.
Ave. indicates the averaged results (A, B, and C) from the three medical doctors.

Doctor A B C Ave. (2563)

Brain regions
Anterior commissure 5.0 5.0 5.0 5.0
Posterior commissure 5.0 5.0 5.0 5.0

Cerebral aqueduct 5.0 5.0 5.0 5.0
Tegmentum of midbrain 5.0 5.0 5.0 5.0
Cerebellar hemisphere 5.0 5.0 4.7 4.9

sulcus
Cerebral peduncle 5.0 5.0 5.0 5.0
Corpus callosum 5.0 5.0 5.0 5.0
Third ventricle 5.0 5.0 5.0 5.0

Fourth ventricle 5.0 5.0 5.0 5.0
Lateral ventricle 5.0 5.0 5.0 5.0

Cortical white matter
contrast

Hippocampus 5.0 5.0 4.8 4.9
Frontal lobe 5.0 5.0 4.8 4.9

Occipital lobe 5.0 5.0 4.8 4.9
Temporal lobe 5.0 5.0 5.0 5.0
Parietal lobe 5.0 5.0 5.0 5.0
Basal ganglia 4.8 4.8 4.8 4.8
Other regions

First cervical vertebra 5.0 5.0 5.0 5.0
Second cervical vertebra 5.0 5.0 5.0 5.0

Optic nerve 5.0 5.0 4.8 4.9
Extraocular muscles 5.0 5.0 5.0 5.0
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Table 3. Visual evaluation results. A, B, and C indicate averaged evaluation results for six fake cases.
Ave. indicates the averaged results (A, B, and C) from the three medical doctors.

Doctor A B C Ave. (2563)

Brain regions
Anterior commissure 3.5 2.0 3.2 2.9
Posterior commissure 1.8 1.5 2.3 1.9

Cerebral aqueduct 1.5 1.3 2.2 1.7
Tegmentum of midbrain 3.0 3.0 2.3 2.8
Cerebellar hemisphere 2.0 2.7 3.3 2.7

sulcus
Cerebral peduncle 3.2 2.8 5.0 3.7
Corpus callosum 4.0 4.2 5.0 4.4
Third ventricle 3.2 4.2 4.7 4.0

Fourth ventricle 4.5 4.2 4.7 4.5
Lateral ventricle 5.0 4.2 3.7 4.3

Corticomedullary
contrast

Hippocampus 1.7 2.3 3.2 2.4
Frontal lobe 2.3 1.7 2.8 2.3

Occipital lobe 1.5 1.7 3.2 2.1
Temporal lobe 2.0 2.3 3.7 2.7
Parietal lobe 2.0 1.8 3.2 2.3
Basal ganglia 2.5 2.2 3.3 2.7
Other regions

First cervical vertebra 1.7 1.7 4.2 2.5
Second cervical vertebra 2.5 2.3 3.2 2.7

Optic nerve 2.8 2.5 2.8 2.7
Extraocular muscles 4.0 2.7 3.2 3.3

Figure 2. One of the unconditionally generated images (Case 1 in Table A1). (a) Axial slice. (b) Coronal
slice. (c) Sagittal slice.

5.2. Conditional Image Generation and Equivalent Privacy Budget

Because we clarified that the model can generate realistic but fictional head MR images
in the previous subsection, we now adopt the model to anonymize real head MR images.
Specifically, we consider cases with nonzero privacy budgets, i.e., (ϵ, δ) ̸= (0, 0), for a real
head MR image (this image corresponds to x in Section 3.3) and generate anonymized
fictional head MR images (these images correspond to postprocessed x̃ in Section 3.3).

Figure 3 shows three representative slices of the real images to be LDP-processed,
three representative slices of the LDP-processed images, and three representative slices of
the LDP-processed and postprocessed images when the total privacy budgets (In the case
of t = 50, we have σ2 = 0.175. Additionally, the l2-sensitivity ∆ fijk is always 2 because we
set −1 ≤ (x0)ijk ≤ 1. Therefore, for a given δijk = 10−8, we have ϵijk = 2.92 × 101 per pixel.
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Therefore, the total privacy budgets in this case are ϵ = 4.90 × 108 and δ = 0.168 for the
image of 256 × 256 × 256 size.) are ϵ = 4.90 × 108 and δ = 0.168.

Figure 3. Results of applying Local Differential Privacy (LDP). (a) Axial slice of one of the real images.
(b) Coronal slice of one of the real images. (c) Sagittal slice of one of the real image. (d) Axial slice
of the LDP-processed real image. (e) Coronal slice of the LDP-processed real image. (f) Sagittal
slice of the LDP-processed real image. (g) Axial slice of the LDP-processed and postprocessed real
image. (h) Coronal slice of the LDP-processed and postprocessed real image. (i) Sagittal slice of the
LDP-processed and postprocessed real image.
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6. Discussion
6.1. Novelty

We realized state-of-the-art unconditional and conditional high-resolution volumetric
image generation with this improved DDPM. The new architecture with low memory con-
sumption for our proposed DDPM enabled this (see Section 3 and Appendix A for details).
Moreover, the novel LDP and postprocessing algorithms that can generate semantically
different images in the same class (head MR images) based on the DDPM were proposed
and validated.

6.2. Quality Evaluation by Medical Doctors

Global and large structures, e.g., the lateral ventricle, are well unconditionally gener-
ated with the proposed DDPM. However, relatively small structures, e.g., the hippocampus
and cortical white matter contrast, are not very well generated with the proposed DDPM,
as commonly indicated by the three medical doctors in the evaluation results. Never-
theless, most of the anatomically important structures scored more than 2.0 on average.
Since in this study a score of 2 means “slightly identifiable”, we believe that our pro-
posed method can reconstruct these important structures properly. In the clinical domain,
the corticomedullary contrast and the volumes of the hippocampi are important in disease
diagnosis and prognosis prediction (e.g., Alzheimer disease [25]). Therefore, we need to
improve the depiction correctness of these structures. Note that such a clinically relative
evaluation of AI-generated volumes was rarely performed in previous studies and is thus
one of our contributions in this paper.

As the difficult structures (corticomedullary contrast and hippocampi) are slightly
visualized in the results, we can also apply any additional postprocess to improve the
depiction of these structures by, e.g., deep-learning-based filtering methods [26]. Generally,
however, simple noise reduction postprocessing cannot recover the structures that are not
represented in the original generated volume. In other words, for evaluating the quality of
generated medical images, the ordinal contrast-noise ratio (CNR) or structural similarity
index measure (SSIM) is not enough and the faithful recreation of relative anatomical
structures must be confirmed by medical experts.

On the other hand, the amount of statistical variety of generalized images is another
quality measure of generative models and it should be evaluated by further experiments. It
is one of our future works. However, it would be difficult to fairly evaluate the amount of
variety of medical images generated by a given model, because medical image generation
should be not only diverse but also resemble the distribution of a real population of human
beings. The ordinal inception score (IS) and Fréchet inception distance (FID) are based
on and rely on another classifier model, which is rarely customized for medical images.
Inventing a new methodology to evaluate the amount of variety of generated medical
images will be another future work.

6.3. Limitation

First, without the model parallelization or high-capacity-memory GPUs, the straight-
forward scale up of the present model to the resolution of 512 × 512 × 512 is not easy.
Second, we showed LDP-processed images with the limited deviations σ2

t , but we can set
arbitrary deviations in theory. This requires the retraining of the diffusion model; otherwise,
the model will generate a suboptimal image.

6.4. Future Works

If we increase the number of time steps (T) in the DDPM, it would significantly improve
the quality of generated images including the contrast of the cortical white matter, and this
is included in our future works. Moreover, we further plan to apply the proposed DDPM to
other conditional image generation tasks, e.g., aging prediction, ultra-sparse view CTs [9].
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7. Conclusions

We improved the diffusion models so that they can, for the first time, unconditionally
generate high-resolution volumetric (256× 256× 256) medical images. Moreover, on the ba-
sis of this new diffusion model, we proposed another formulation of image anonymization
with which the processed images can satisfy provable Gaussian local differential privacy
and we can generate images semantically different from the original image but belonging to
the same class. Furthermore, we validated the formulation with high-resolution volumetric
medical image anonymization. This method assumes no specific class of images, making it
potentially applicable to any type of natural image. Low-resolution medical images are not
well-suited for practical medical systems, and traditional standard diffusion models have
struggled to model high-resolution volumetric medical images. In this study, we overcame
this challenge and paved the way for applying deep generative models to practical medical
systems. We believe that this improvement of the DDPM and the formulation of LDP
algorithms combined with the DDPM can contribute to the secure sharing of practical
images upstream of data processing.

Author Contributions: Conceptualization, H.S.; methodology, H.S.; software, H.S.; validation, H.S.;
formal analysis, H.S.; investigation, T.N., T.K. and Y.N. (Yuta Nakamura); resources, T.Y.; data curation,
Y.N. (Yukihiro Nomura); writing—original draft preparation, H.S.; writing—review and editing,
H.S., S.H., T.N., T.K., Y.N. (Yuta Nakamura), Y.N. (Yukihiro Nomura), T.Y. and O.A.; visualization,
H.S.; supervision, T.Y. and O.A.; project administration, H.S.; funding acquisition, H.S. and S.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Japan Science and Technology Agency (JST), CREST Grant
Number JPMJCR21M2, including the FY2023 AIP challenge program (Establishment of the diffusion
models for high-resolution volumetric images; PI: H. Shibata), Japan.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of the University
of Tokyo Hospital (protocol code: 1461-(9) and date of approval: 16 September 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The code presented in this study is available on reasonable request
from the corresponding author. The data are not publicly available due to privacy protection.

Acknowledgments: The Department of Computational Diagnostic Radiology and Preventive Medicine,
the University of Tokyo Hospital, is sponsored by HIMEDIC Inc., and Siemens Healthcare K.K. This
research was conducted using the FUJITSU Supercomputer PRIMEHPC FX1000 and FUJITSU Server
PRIMERGY GX2570 (Wisteria/BDEC-01) at the Information Technology Center, the University of Tokyo.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

CT Computed Tomography
DDPM Denoising Diffusion Probabilistic Models
GAN Generative Adversarial Networks
LDP Local Differential Privacy
MR Magnetic Resonance
SGD Stochastic Gradient Descent

Appendix A. Network Architecture of the Proposed DDPM

Figure A1 illustrates the network architecture adopted in this study. We implemented
a code on the basis of one of the PyTorch implementations [27] of the pixel space DDPMs for
two-dimensional images [3] so that it can handle three-dimensional images and run on eight
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NVIDIA A100 GPUs (NVIDIA Corporation, Santa Clara, CA, USA) with 40 GB of memory
for each in a data-parallel manner. This code combines the attention mechanism [28],
a linear attention mechanism, and U-Net [29] enabling local and global feature extraction
and generation. All the Conv2D operations were converted into Conv3D operations. We
adopted the SiLU activation function. The previous network of attention mechanisms
was also converted into the equivalent three-dimensional network. We set the number of
input image channels to 1. The depth of the three-dimensional U-Net in our code is 8. The
Res-Net in different depths of the U-Net has the channel sizes of 4, 8, 16, 32, 64, 128, 256,
and 512. For attention mechanisms, we set the dimension of each head to 8 and the number
of heads to 4. For linear attention mechanisms, we set the dimension of each head to 8 and
the number of heads to 2.

Figure A1. We adopted a UNet that includes attention to model the function fθ (for details about
function fθ , refer to the main text).

Appendix B. All the Results of Evaluation by Three Medical Doctors

In Tables A1–A3, we show all the evaluation results by the three medical doctors for
the six fake cases at resolution of 256 × 256 × 256, respectively.

Table A1. Results of visual evaluation by medical doctor A.

Case (Fake) 1 2 3 4 5 6

Brain regions
Anterior commissure 4 4 4 4 3 2
Posterior commissure 3 2 2 3 1 2
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Table A1. Cont.

Case (Fake) 1 2 3 4 5 6

Cerebral aqueduct 2 1 2 2 1 1
Tegmentum of midbrain 3 3 3 3 3 3

Cerebellar hemisphere sulcus 1 2 2 2 2 3
Cerebral peduncle 4 4 4 4 3 3
Corpus callosum 4 4 4 4 4 4
Third ventricle 4 3 3 3 3 3

Fourth ventricle 4 5 4 5 4 5
Lateral ventricle 5 5 5 5 5 5

Cortical white matter contrast
Hippocampus 1 2 3 1 1 2

Frontal lobe 3 2 3 1 2 2
Occipital lobe 2 2 2 1 1 1
Temporal lobe 2 2 3 1 2 2
Parietal lobe 2 2 2 1 3 2
Basal ganglia 2 3 3 2 3 2
Other regions

First cervical vertebra (C1) 1 2 1 4 1 1
Second cervical vertebra (C2) 2 2 2 5 2 2

Optic nerve 1 5 3 4 2 2
Extraocular muscles 4 4 5 5 3 3

Table A2. Results of visual evaluation by medical doctor B.

Case (Fake) 1 2 3 4 5 6

Brain regions
Anterior commissure 3 2 2 1 2 2
Posterior commissure 2 1 2 2 1 1

Cerebral aqueduct 1 1 2 2 1 1
Tegmentum of midbrain 3 3 3 3 3 3

Cerebellar hemisphere sulcus 2 3 2 3 3 3
Cerebral peduncle 3 3 3 3 2 3
Corpus callosum 4 4 4 5 4 4
Third ventricle 5 4 4 4 4 4

Fourth ventricle 5 4 4 4 4 4
Lateral ventricle 5 4 4 4 4 4

Cortical white matter contrast
Hippocampus 2 2 3 2 3 2

Frontal lobe 3 1 3 1 1 1
Occipital lobe 3 2 2 1 1 1
Temporal lobe 3 2 2 2 3 2
Parietal lobe 3 2 2 1 2 1
Basal ganglia 2 2 3 2 2 2
Other regions

First cervical vertebra (C1) 1 2 2 2 2 1
Second cervical vertebra (C2) 2 2 3 3 2 2

Optic nerve 1 4 2 4 2 2
Extraocular muscles 3 3 2 4 2 2

Table A3. Results of visual evaluation by medical doctor C.

Case (Fake) 1 2 3 4 5 6

Brain regions
Anterior commissure 4 4 4 2 3 2
Posterior commissure 2 3 2 3 2 2

Cerebral aqueduct 2 2 2 2 2 3
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Table A3. Cont.

Case (Fake) 1 2 3 4 5 6

Tegmentum of midbrain 2 2 2 2 3 3
Cerebellar hemisphere sulcus 3 4 4 3 3 3

Cerebral peduncle 5 5 5 5 5 5
Corpus callosum 5 5 5 5 5 5
Third ventricle 5 4 5 5 5 4

Fourth ventricle 5 3 3 3 4 4
Lateral ventricle 5 5 5 5 5 5

Cortical white matter contrast
Hippocampus 3 3 3 4 3 3

Frontal lobe 2 3 3 3 3 3
Occipital lobe 3 3 3 3 4 3
Temporal lobe 3 4 4 4 4 3
Parietal lobe 3 3 3 3 4 3
Basal ganglia 2 3 3 4 4 4
Other regions

First cervical vertebra (C1) 3 2 5 5 5 5
Second cervical vertebra (C2) 3 2 3 3 4 4

Optic nerve 2 5 2 4 2 2
Extraocular muscles 4 3 2 4 3 3
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