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Featured Application: Thin polymer film durability and resistance to certain exposure tests.

Abstract: In this paper, a custom-tailored investigation protocol aimed at the tests of the resistance of
bacteriostatic acrylic-based film containing silver nanoparticles is presented. As hospital appliance
applications were considered, it was necessary to provide a unique approach, enabling specific
media exposure and utilizing high-sensitivity measurement methods to observe fine indications of
material wear. Due to the presence of nanoparticles in the tested film, nanometer-resolution surface
imaging is necessary. Therefore, the main source of information about its degradation process is
atomic force microscopy (AFM) measurements. This particular tool is an appreciated source of
information, providing quantitative data about both morphological and mechanical changes in the
properties of the surface. Using such an approach, supported by standard diagnostic methods, such
as colorimetry and wettability angle determination, it was possible to enable insights into the way the
bacteriostatic film deteriorates and evaluate its usefulness in medical appliance applications. Further
tests of various films developed by companies can be performed using the described protocol to
determine the lifetime of certain products. This paper reveals the company’s practical utilization of
both standardized and novel test techniques in the evaluation of new products.

Keywords: nanomaterials; atomic force microscopy; acrylic film; bacteriostatic layer; colorimetry;
wettability; roughness; mechanical properties

1. Introduction

One of the major challenges in clinical practice is the need for the reduction of hospital-
acquired infections (HAIs). The total amount of annually diagnosed HAI cases in the
USA is 1.8 million cases, where, for almost 100,000 patients, the infection is lethal. It
should be underlined that breast cancer, AIDS, and car accidents together take fewer lives
annually than HAIs [1]. Therefore, the scale of this problem encourages various agencies
and companies to develop solutions, providing a significant reduction of this issue.

Recently performed studies showed that the issue of HAIs is one of the most important
causes of extended hospitalization due to additional therapy or even deaths [2–6]. As it
is identified in a significant fraction of patients (even more than 30%), it is addressed
using various approaches. While analyzing the surveys, one can point out the most
often identified pathogens, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and
Pseudomonas aeruginosa; however, this list changes when one focuses on certain medical
procedures and the patient’s age. It should be underlined that the presence of antimicrobial
resistance (AMR) requires the application of new-generation drugs, yet at some point, no
therapy is effective. Therefore, the means to reduce infection risk must be taken. As studies
have proven, no patient contact is necessary to contaminate hospital staff with the bacteria
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in the room; hence, all possible pathogen transmission paths must be cut at every level.
Thus, it becomes clear that an essential role of infection reduction may be the equipment if
bacteriostatic properties of the surface are implemented.

Progress in hospital equipment development is enabled by the introduction of technical
solutions providing new or improved functionalities. Also, better safety features are
available, particularly in reducing the bacteria survival ratio. As the companies aim to
meet the needs of the market, various solutions are tested in order to verify the potential
usefulness of various substances to obtain a bacteriostatic film over the equipment’s surface.
One promising solution is nano-silver (silver nanoparticles—Ag NPs)-based antibacterial
solutions [7–12]. In particular, polymer-based coatings containing nanoparticles may be a
very useful approach [13].

The acrylic-based paint containing silver nanoparticles was one of the first selections.
The bacteriological tests using Escherichia coli ATCC25922 (according to ISO 22196:2007
standard [14]) showed satisfying efficacy of the investigated film in terms of bacteriostatic
properties, with an R value of 5.30 log (78.3%). Also, the results of the preliminary test were
promising, while the obtained coverings of the equipment made of aluminum revealed
satisfying adhesion and homogeneity. However, the reliability verification of the surface
is one of the major issues that the producer has to evaluate. The expected lifetime of
such products must be not less than 5 years. As the unique environment is considered in
terms of the conditions that the material has to show resistance to, application-tailored test
procedures providing insight into the degradation process of the bacteriostatic film have to
be developed.

In order to perform time-accelerated tests of the developed coating, a customer-
tailored protocol was developed, as standard protocols appeared to be insufficient in
terms of nanoparticle-based thin film coverings. In principle, the conditions typical for
hospitals had to be taken into account, so adequate exposure and degradation methods
were chosen. One has to be aware that the test methods of the deterioration of films made
of nanomaterials must be adequate for the investigated object and phenomena. Therefore,
some standard-defined test solutions are not sufficient in terms of the required outcome.
The list of both the exposure method and the test techniques is given in the following
chapter. The developed test approach, with particular emphasis on verification methods
based on high-sensitivity techniques, such as atomic force microscopy, is a considerable
advantage due to its diagnostic potential. It solves a critical issue of obtaining reliable and
quantitative data about the deterioration ratio of a certain product in terms of application
at specific conditions, where high sensitivity over a relatively short test period with small
dimensions of the specimens, such as thin films, are the key advantages. Additionally, AFM
is one of the fine nanoscale diagnostic tools that does not require complex preparation of
the investigated sample, while in the case of SEM (scanning electron microscopy), dielectric
samples should be covered with a thin conductive film, which is considered at some degree
as the surface’s roughness alteration.

Therefore, the present approach can be desired by a number of entities active in the
field of the development and fabrication of a variety of films and coverings, where the
evaluation of the wear and degradation of the films is essential, and no macroscopic method
may provide reliable data, in particular, at early aging stages. The market related to such
products can be estimated to be hundreds of thousands of dollars annually at the moment.
It should be emphasized that the unique detection sensitivity of atomic force microscopy,
providing complex information about changes in the material’s properties with ultimate
resolution, enables the degradation tests in short periods, which is particularly important
for the industry. Moreover, this particular technique allows us to test the specimens, which,
due to their small dimensions, can not be investigated with other methods. Therefore, the
potential value of the method increases with a reduction in the size of the object under test,
as well as the available test time.
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2. Materials and Methods

Typical aluminum profiles used for medical equipment fabrication were utilized in
the tests. The construction aluminum 6000 series profiles were fabricated using extrusion
method with an aluminum smelter, according to technical specifications provided by the
equipment manufacturer.

The film was fabricated by spray painting according to the specifications of the paint
delivered by the third party. Once the surface was dry, the samples were tested. Three
sets of samples were prepared: A—reference sample, B—sample exposed to a single dose,
C—sample exposed to a double dose. A view of the product with new film, as well as
photography of a small part of the element utilized in the tests, are shown in Figure 1.
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Figure 1. View of the product with new coating (a). Close-up photography of the surface with coating
used for tests (b).

2.1. The Exposure Parameters

The exposures were adjusted in order to simulate the conditions one can expect in
hospital conditions, taking into account solar and UV radiation used for disinfection,
including increased temperature and humidity, as well as presence of chemicals used for
cleaning medical equipment surfaces. Those factors are the most significant in terms of
polymer deterioration.

The single-dose exposure parameters to a certain set of media were as follows:

- Simulated solar radiation [15] (Xenon lamp)—100 h (details are shown in Table 1);
- UV radiation typically utilized for the air and room sterilization—500 h (details are

shown in Table 2);
- Increased humidity (RH 98%) and temperature (40 ◦C)—72 h;
- Increased temperature (70 ◦C)—48 h;
- Chemical disinfection substances typically utilized in medical units, 24 h exposure for

each substance:

# Incidin Liquid Spray;
# Lysoformin Plus Schaum;
# Aldewir (10% solution).

For doubled doses, all the time periods given above were multiplied by two. It has to
be underlined that the spraying causes thermal shock on the surface; therefore, it mimics a
much harsher environment than in the case of exposure without spraying.

The following test methods were utilized to observe the degradation of the devel-
oped films:

- The roughness measurements by means of atomic force microscopy (AFM) provided
insight into the deterioration of the material by quantitative tracing of the morpholog-
ical changes of the surface [16–23].
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- The mechanical property measurements from atomic force microscopy enabled the
detection of the degradation of the outer layers of the material in terms of changes in
stiffness and adhesion [23–25].

- Wettability tests provided complementary information to the roughness measurement
concerning the practical aspects of the utilization of the film in particular condi-
tions [25].

- Colorimetric analysis gave information concerning the loss of aesthetical aspects of
the film as well as phenomena responsible for the aging process [26].

Table 1. The simulated solar radiation exposure parameters.

Device Atlas Ci65

Basic exposure time 100 h

Type of the lamp Xenon

Spraying of the samples 102 min (no spraying)
18 min (spraying)

Black plate’s temperature 65.1 ◦C (during dry periods)

Dry thermometer temperature 47.0 ◦C (average value during the dry periods)

Relative humidity during the exposure 48% (average value during the dry periods)

The radiation intensity of full spectra of the
xenon lamp (290 nm < λ < 800 nm) 374 W

m2

The radiation intensity of UV spectra of the
xenon lamp (290 nm < λ < 800 nm) 41.14 W

m2

The radiation intensity of the xenon lamp
λ = 340 nm 0.34 W

m2·nm

Table 2. The UV light exposure parameters.

Basic Exposure Time 500 h

Type of lamp evanescent

Spraying of the samples no spraying

Black plate’s temperature 37.1 ◦C

Relative humidity during the exposure 48% (average value during the dry periods)

The radiation intensity of the evanescent lamp
λ = 253 nm 9 W

m2

2.2. AFM Measurements

AFM measurements were performed with DI3000 system (Digital Instruments, Santa
Barbara, CA, USA) equipped with 100 × 100 µm X-Y scanner. Topography imaging was
carried out in TappingMode using standard probes (Nanosensors Pointprobes: nominal
tip radius rtip = 10 nm, resonance frequency fres = 306–353 kHz, and spring constant range
k = 43–68 N·m−1) under ambient conditions. The scanning area was 3 × 3 µm; typical
scanning speed was approx. 1 µm/s. The set of three topography data points was acquired
for each sample in order to provide statistically significant data, as local morphological
non-homogeneities could be noticed and excluded. The roughness values distribution
allowed us to assume that the acquired data could be utilized for further analysis, providing
expected consistency. In addition, 50 × 50 µm images were also acquired to confirm the
homogeneity of the surface on a larger scale. The 3 × 3 µm scanning area allowed us
to observe the presence of silver nanoparticles in the polymer film; therefore, the data
obtained for this area was utilized in further analyses, while the nanoscale appearance of



Appl. Sci. 2024, 14, 3503 5 of 13

surface degradation can be noticed in the area of matrix-filler interphase. Images at both
scales are shown in Figure 2.
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Figure 2. Examples of 3D views of surface topography of investigated samples. (a) Sample at
3 × 3 µm scan size. (b) Sample at 50 × 50 µm scan size.

The mechanical properties of the film were determined using force spectroscopy,
where contact probes NTMDT CSG30 (0.6 N·m−1, 6 nm radius) were used. In order
to provide required measurement accuracy, the reference sample was utilized [27,28].
Approach/retract speed was 10 nm/s. The maximum tip-sample force was limited to 75 nN
in order to avoid sample’s deformation and tip damage. The measurements were performed
using following procedure: the force–distance acquisition was performed 10 times in a
single spot; then, the probe’s location was changed, and the acquisition procedure was
repeated within an area of 3 × 3 µm. This process was continued while nine sets of curves
were acquired. Then, in order to avoid the influence of local non-homogeneities, the
measurement spot was changed three times, where the whole data collection procedure
was performed.

The topography data was processed using SPIP software (version 5.1.7) from Image
Metrology [29], and force spectroscopy curves were analyzed while the DMT model was
utilized. In both cases, median value was calculated and used in the analysis, and standard
deviation was used to evaluate the uniformity and repeatability of the calculated values.
Example of the force–distance curve is shown in Figure 3.
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2.3. Wettability Determination

The wettability was determined using semi-automatic home-made system. The mech-
anized liquid dosing system allowed application of repeatable amounts of water on the
surface at a given height. The computer equipped with a microscopic camera acquired
images of droplets as a movie; therefore, one could determine wettability angles consider-
ing time as a parameter. The contact angle was determined using vector-based analysis
software, enabling the measurement resolution below 0.1 deg. For each sample, at least
five measurement values were obtained at different locations on the surface to provide a
statistical approach. An example of the acquired image is shown in Figure 4.
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2.4. Colorimetric Analysis

The discoloration of the investigated samples was measured using a home-made
system containing computer equipped with CCD camera, providing 4 Mpix resolution in an
area range 50 × 50 mm. The measurement chamber eliminated the external light influence,
while internal LED-based lighting system obtained repeatable, stable illumination. In order
to verify the measurement quality, the test grid was used before each test.

In order to obtain L*a*b colorimetric system data, the RGB components were extracted
using statistical analysis of generated files and compared, taking into account other acquired
data. The examples of collected images are shown in Figure 5.
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3. Experimental Results

The acquisition of the topography maps using atomic force microscopy allowed us to
observe significant morphological changes due to exposure to the set of previous conditions
(Figure 6). While the reference surface was relatively flat, with no discontinuities, and
the presence of large (up to 1 µm in diameter) silver particles could be noticed, sample B
reveals the first signs of degradation, such as cracks and pinholes. On the other hand, in
the case of sample C, a vast reduction in the volume of the material is visible, showing
advanced degradation of the acrylic matrix.
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In order to compare the morphological changes in a quantitative fashion, the roughness
parameters were calculated. The acquisition of several sets of data for each sample allowed
us to calculate the average value and the distribution of the parameters, providing insights
into the homogeneity of the surfaces. The following parameters are shown in Figure 7
(Supplementary Materials Figure S1): average roughness (Sa), root mean square roughness
(Sq), peak–peak value (Sz), and the surface area ratio (Sdr). A significant increase in all of the
presented parameters is clearly visible. A rapid increase in Sz is related to the appearance of
the first cracks and pinholes penetrating the volume of the film. The vertical bars show the
standard deviation within the set of measurement data. A further increase in this parameter
has smaller dynamics as the process switches to the volume loss. It should be noted that
the standard deviation bars reveal that the spatial non-homogeneities of the surface are
smaller than observed roughness changes. This important information allows us to claim
that the measurements are meaningful and can be used for the analysis. Additionally, the
exceptionally large SD bar in Sz for the second sample shows that at a certain point of
deterioration, quite large cracks appear in the surface (visible in Figure 6), which initiate
the mechanical degradation of the surface.

One of the advantages of the AFM method is the measurement of the mechanical
properties of the surface. Figure 8 (Supplementary Materials Figure S2) shows the changes
in stiffness and adhesion measured using the force spectroscopy technique. The stiffness
increase, along with the adhesion reduction, revealed the tendency of the film to peel off
after the doubled exposure. This phenomenon was also confirmed by the macroscopic ob-
servation. Further analysis revealed that UV exposure causes further polymer networking,
hence hardening.
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While the durability of the surface is one of the most desired properties, some elasticity
is also necessary to avoid the presence of too much tension between the substrate and the
film. Therefore, one can expect a complete dysfunction of the film once similar conditions
are present in real applications. Such a conclusion can be considered as the basis of the
disqualification of the investigated film. This stage of the experiment allowed us to notice
the expected lifetime of the antibacterial film. The exploitation period causing the exposure
conditions simulated for sample B could be acceptable, but the double-time use would
cause damage to the film. On the other hand, the pull force (visible also in Figure 3), which
reveals the adhesion force present between the surface and the scanning tip, decreased
while exposure was applied (Figure 9). (Supplementary Materials Figure S3). The observed
behavior may indicate a reduced ability of the film to stick to other surfaces, which, in
connection with other processes, can cause the film to detach from the substrate [30].
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The wettability measurements showed a significant decrease in the contact angle
(Figure 10). (Supplementary Materials Figure S4). The changes are coherent with the
roughness parameters; however, the dynamics of the process differed for both test methods.
Such a phenomenon indicates a possible worsening of the surface’s cleaning, which has
a major impact on safety in hospitals. In addition, one must also take into account the
influence of the degradation process on the bacteria’s nesting ability on the surface. This
issue may play a certain role in the decrease of the bacteriostatic efficacy of the material. It
should be underlined that as AFM measurements may provide the majority of essential data
for determining the product’s aging ratio, this particular diagnostic technology reaches its
maturity while appropriate measurement protocols and data processing data are developed
and tested [31–35]. The usefulness of this approach and its complementary value to other
methods used in this work is continuously tested and proven.
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The colorimetric analysis (according to CIELAB color space) [36] revealed a decrease in
the luminance (L value) along with a change in the color component parameters (Figure 11):
a – (red/green axis value) the decrease shows a shift to green color, and b – (yellow/ blue
axis value) the increase shows a shift to yellow color. The arrows shown in Figure 11
(Supplementary Materials Figure S5) present the shift of certain components values, while
the vertical bars show the standard deviation of values obtained from whole digital image of
investigated sample. The obtained data show the major cause of the material’s degradation,
which is photo-oxidation. One could take into account the aesthetic issue, as the film is
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planned to be used in equipment for everyday use. It has to be emphasized that below a
certain thickness, the film can not be investigated using the colorimetric analysis, as the
distances between the material–photon interactions are insufficient. Again, coherently to
the AFM measurements, the analysis showed that the changes in the film properties after
aging with dose B can still be acceptable (the color change was close to distinction), while
for dose C, the discoloration is significant.
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The antibacterial activity of Ag NP films was investigated in a specialized biological
laboratory, according to the ISO 22196:2007 standard [14]. The bacteriological test using
Escherichia coli ATCC25922 was performed. Two samples were delivered: the aluminum
profiles covered with acrylic-based film containing the silver nanoparticles and acrylic-
based film without Ag NPs (control sample). On both surfaces, 0.4 mL of fluid containing
microorganisms was placed. Then, samples were stored in a humid environment. In order
to determine the amount of bacteria, the inoculum was washed from the tested surfaces
and incubated using TSA agar. The incubation lasted 24 h at 37 ◦C. The amount of living
Escherichia coli bacteria in the inoculum was 1.2 × 106 jtk/mL. The test results are shown in
Table 3.

Table 3. The antibacterial activity test results.

The Results Obtained for Test and Control Sample

Determined
Parameter

Tested Sample
Directly at Start Moment

Control Sample
after 24 h

Tested Sample
after 24 h

Amount of living
cells on sample 9.9 × 103 1.0 × 104 9.2 × 103 7.2 × 106 6.0 × 106 4.3 × 106 3.8 × 101 1.3 × 101 3.8 × 101

Average 9.8 × 103 5.8 × 106 => 6.77 log 2.9 × 101 => 1.46 log

The results revealed satisfying efficacy of the investigated film in terms of bacteriostatic
properties, while the R parameter was 5.30 log (78.3%).

4. Discussion and Conclusions

This paper presents the results of the development and utilization of the unique test
protocol designed to investigate the deterioration process of bacteriostatic films. The tests
were performed according to the customer-tailored protocol, developed in cooperation
with the equipment producer and were aimed at the verification of the resistance of the
acrylic-based films containing silver nanoparticles to the conditions typical for the hospital
environment. The utilization of advanced diagnostic techniques allowed us to observe
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specific indications of the material’s degradation. As a result, once the exposure conditions
are determined for accelerated aging, one can verify the lifetime of the nanomaterial-based
product. The acquisition of complex data at certain periods of exposure provided an
analysis of the aging progress of the film and determination of its application in specific
conditions. The combined methodology was practically utilized to evaluate a new possible
product line. Further research will be carried out to verify the most suitable product.

As presented here, AFM-based diagnostic methods provide a considerable amount of
data to understand the degradation process of the tested film. In particular, the specific
dimensions of the investigated object required the utilization of a high-sensitivity diagnostic
tool, while both nanoparticles and film thickness would not be efficiently investigated
using macroscale techniques.

Having such a complex experimental methodology, one can determine the market
for this kind of test to be a few hundreds of thousands of dollars annually worldwide,
and as nanomaterials become more popular, this market will grow exponentially. The
obtained outcome confirmed the diagnostic readiness of the developed approach to be of
interest to the industry (TRL 7–8). In fact, the next projects for both scientific and industrial
applications were carried out recently. It should be underlined that one can implement it
easily by utilizing the described protocol or its modified version tailored to the particular
request of the end user. The main issue that requires implementation to enable common
utilization of the probe technique in the assessment of the material’s deterioration is the
acquisition of sufficient data to correlate measurable changes in the surface’s nanoscale
properties with the product’s usability limits and to standardize the AFM measurements
to provide fully reliable and comparable data acquisition at each laboratory. Further
industrial cooperation is recently desired, as it will provide the necessary data to continue
the optimization of the presented diagnostic approach in terms of applications for various
products and observation of a number of degradation processes. As a result, we expect the
submicron measurements to be introduced in the market as a standard investigation tool in
the abovementioned applications.
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