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Abstract: This paper presents the results of a study on the dimensional accuracy analysis of models
produced by 3D printing technology—Fused Filament Fabrication (FFF). Geometric measurements
were conducted using a dial caliper, a 3D scanner and a coordinate measuring machine. In addition, a
statistical analysis of the test results was carried out, considering the division into different numbers
of test samples (3, 5, 10, 20, 30). The analysis of the test results made it possible to assess the influence
of the measuring tools used and the number of samples tested on the final measurement result, as
well as to determine the consequences associated with it.

Keywords: FFF; PLA; 3D scanning; coordinate measuring machine; statistical analysis

1. Introduction

Developing 3D printing technologies are increasingly competing with conventional
manufacturing technologies. This is mainly due to the development of 3D printers, the
increasing accuracy of the models produced, and the growing range of materials available.
Nowadays, 3D printing is based on both plastic-based materials, metal powders, and
ceramics. In the case of the 3D printing process, the dimensional and shape accuracy of the
produced models depends on the technological parameters of the manufacturing process,
which are variable depending on the 3D printing technology used.

Studies of the dimensional and shape accuracy, and surface texture of models produced
by 3D printing have been described in many scientific publications [1–5] and doctoral
dissertations, but in many cases, the number of samples tested has been significantly
limited. There are cases where studies aimed at determining the influence of technological
parameters on the accuracy of 3D printing manufacturing have been carried out on only
three or five manufactured samples. In such a situation, reporting the average value
result alone is an incomplete representation of the actual result. Such situations may
occur in the case of high production costs or a time-consuming process, but in the case
of technologies such as FFF, they are unjustified. Therefore, in the present work, the
study of the dimensional accuracy of models manufactured by 3D printing technology-
FFF from the material based on pure PLA using three measuring tools, along with a
comprehensive statistical analysis of the test results, was undertaken. This approach
will make it possible to determine the influence of the measuring instrument used for
testing and the number of samples evaluated on the value of the result. The results of
metrological measurements of dimensional accuracy in many cases carry consequences
regarding the decisions made on their basis, and therefore the information presented in this
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publication can be used by both 3D printing technologists and decision-makers responsible
for the manufacture of prototypes. In the case of technologists, decisions made based
on the dimensional accuracy testing performed can impinge on decisions regarding 3D
printer service, calibration, component replacement, or the ability to manufacture a custom
order. For scientists, knowledge of measurement methods, and their advantages and
disadvantages, can contribute to the development of appropriate measurement methods,
strategy [6], and improvement of the measurement processes for 3D printed models [7,8].

The rapid development of additive technologies observed in recent years requires
the determination of the current dimensional and shape accuracy of the manufactured
parts. Accordingly, research work is being carried out on the metrology of measurement of
geometric quantities of models produced by 3D printing. Various measuring devices such
as hand-held measuring instruments, coordinate measuring machines (CMM—coordinate
measuring machine), 3D scanning (3DS), computer tomography (CT) [9], etc., are used
for this purpose. In addition, there are publications where the authors also conduct a
comparison of the accuracy of the mentioned systems. Ref. [10] presents the results of
measurements for the three systems analyzed: coordinate measuring machine (CMM), 3D
scanning, and computed tomography for samples produced using 3D printing technology:
fused filament fabrication (FFF) and selective laser sintering (SLS). The results of the study
indicate differences in measurement results for the different measurement systems and
point to, among other things, equal measurement procedures and parameters as the reason.
Very often, when describing the results of the tests, the issues of the number of samples
on which they were conducted are overlooked. In the lack of information on the number
of samples tested, it can be concluded that the tests were carried out on a single sample,
which affects the reliability of the results obtained and is undoubtedly an inappropriate
action [9,11]. The results of testing for a small number of samples in determining the
type A standard uncertainty and for the expanded uncertainty are crucial and affect the
final results [12]. The most common instruments for measuring geometric quantities
such as shaft diameters are hand-held measuring instruments such as calipers and bore
gages. These instruments usually have a measurement resolution of about 0.01 mm, and
their accuracy is at a similar level. Measurements made with these devices are subject to
numerous errors such as observer error and low-precision pressing force. In Ref. [13], the
authors described the results of tests conducted using hand-held measuring instruments
such as calipers and the errors associated with this type of measurement. The authors
pointed out that upper limb motor skills (especially finger coordination) significantly affect
the accuracy of measurement using a caliper.

Coordinate measuring machines (CMMs) are another common method for measuring
the geometry of 3D printed parts. Measurement using CMM for 3D printing involves
the need for stable mounting of the test sample, proper selection of the diameter of the
probe tip, and appropriate force of the probe tip on the test piece. In an article [9] on the
measurement of 3D printed parts manufactured using fused deposition modeling/fused
filament fabrication (FDM/FFF) technology on a CMM, the authors pointed out that the
results obtained from the measurement of internal diameters were lower than the nominal
diameters of these holes. On the other hand, the authors of Ref. [13], who conducted a
study on the geometric accuracy of stationary 3D printers using a CMM, obtained similar
results for internal diameters, where in each case the diameter had a value lower than the
nominal one. However, when measuring external diameters for a nominal value of 20 mm,
the diameter value was higher, and for a nominal value of 30 mm, the value was lower
than expected.

One of the popular methods of measuring the geometry and surface of a component is
3D scanning. It is distinguished by its remarkable measurement speed as well as technolog-
ical intuitiveness. However, it has its limitations [14], such as the requirement for adequate
illumination of the sample under examination; for example, if it has deep narrow holes,
errors in the virtual model and inaccurate representation of the geometry are possible.
Another important aspect of the scanning method is that it is a non-contact measurement,
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which prevents potential changes in the surface of the measured sample, although there
may be larger deviations created in the intermediate stages and the performance of 3D
model fitting [15–19]. Associated with the measurement of the geometry of parts manu-
factured by 3D printing technologies is the problem of estimating the uncertainty of the
results of these measurements. Measurement uncertainty u is a parameter that allows one
to determine the limits of the interval containing, with assumed probability, the unknown
true value of the measured quantity. Measurement uncertainty is affected by a number of
uncertainty components. Their determination can be made based on the evaluation of stan-
dard deviation estimators for the obtained scatter of the results of a series of measurements
or, in the case of single measurements, by means of standard deviations determined on the
basis of predicted probability distributions [20].

Ref. [21] proposed a general method for establishing a mathematical model of spatial
uncertainty based on the measured geometry of microstructures created in the manufac-
turing of parts by 3D printing technology. Whereby, the spatial uncertainty was defined
as the deviation between the planned and actual geometry of the model structure made
by 3D printing. The dimensions of a part produced by an additive method often deviate
from the nominal values of 3D model features due to factors such as printer resolution,
printing parameters, printing technology, and measurement method. Using the example
of a standard test artifact from the National Institute of Standards and Technology (NIST)
containing a set of different features that can be used to characterize the performance of 3D
printers, comparative tests were performed using different additive technologies [22].

The standard [23] for additive manufacturing recommends different shapes of master
samples, for evaluating, among other things, the spatial uncertainty of parts that can be
made using different 3D printing technologies.

Achieving high dimensional accuracy in 3D printing technology, selecting a suit-
able measurement method for geometric dimensions, and estimating the uncertainty of
measurement results is a considerable problem, as demonstrated in this work.

In scientific research, a frequently used concept is measurement uncertainty, but in the
presented work, the so-called production uncertainty was examined, which has been shown
to be significantly influenced by the number of samples tested, and the final result varies
depending on the measurement method used. The main purpose of the measurement is
the diameter of the sample and the assessment of the impact of measurement accuracy on
its values. Moreover, an additional goal of our research was to show how an accidental
encounter of a seam by the operator of both the caliper and the coordinate measuring
machine can be misinterpreted and falsify the result of the diameter, not the distance. We
treat the seam as a defect that the operator taking the measurement is unaware of, because
the seam may be scattered across the diameter and invisible at first view.

2. Materials and Methods
2.1. FDM/FFF Technology

The FDM (fused filament fabrication) method, also known as FFF (fused filament
fabrication), is one of the most popular 3D printing methods. These technologies have
been included in the so-called group called MEX—material extrusion—for less than 3 years,
according to the ISO/ASTM 52900:2021 standard [24]. In the presented article, due to the
slow coming into use of the nomenclature mentioned in the standard, the widely used
names FDM/FFF were used. In accordance with the above standard, the short name
for the samples used in the article, describing the technology and material, is as follows:
MEX-TRB/P/PLA, where TRB means thermal reaction bonding, and P-polymer material.
It involves building the model layer by layer. The material, which is supplied in the form
of a filament usually with a diameter of 1.75–3 mm to the printer’s extruder, is heated to a
temperature slightly below the melting point of the material, and it is spread in the form of
a thin filament, where during solidification it combines with another filament deployed by
the device along a predefined trajectory [25].
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2.1.1. Samples

The sample model was designed using a 3D CAD program—SolidWorks 2024. The
created model was cylindrical in shape with a diameter of 15 mm and a height of 15 mm,
as shown in Figure 1.
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Figure 1. 3D CAD model of the sample.

The 3D CAD model was saved in STL form (Figure 2), which creates a solid model
using a triangle mesh. The created model was approximated using 1440 triangles. The
parameters of the STL file are: linear deviation—0.002 mm, and angle—1◦.
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2.1.2. PLA Material

The samples were made from one of the most popular materials used in FDM/FFF
technology, namely, PLA produced by MakerBot. Selected mechanical properties of the
material used are shown below in Table 1.

Table 1. Selected parameters of PLA material [26].

Mechanical Properties Standard Value and Unit

Tensile Strength (X-Y) ISO 527 45~49 MPa
Elongation at Break (X-Y) ISO 527 13.5~15.5%

Modulus of Elasticity (X-Y) ISO 527 1000~1100 MPa
Bending Strength (X-Y) ISO 178 69~75 MPa

Izod Impact Strength (X-Y) ISO 180 4.5~5 KJ/m2
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2.1.3. Samples Manufacturing

The samples were printed using a MakerBot Sketch printer (MakerBot, New York,
NY, USA) [27]. The digital models of the samples were placed on the virtual platform
of the MakerBot Sketch printer and printed during one printing cycle in the amount of
30 pieces. Table 2, below, presents the most important printing parameters set in the
MakerBot Print program.

Table 2. MakerBot Sketch printer parameters for PLA.

Printing Parameters Value and Unit

Base layer Raft
Extruder temperature 220 ◦C

Infill density 20%
Supported Materials MakerBot PLA

Built plate temperature 50 ◦C
Layer height 0.2 mm

Figure 3 below shows the layout (manufacturing paths) of the models on the work
platform in MakerBot Print for the MakerBot Sketch printer.
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Figure 3. Placement of sample models on the virtual 3D printer platform in MakerBot Print.

Each of the printed samples had a seam [28], i.e., a place where the device began
and ended the placement of the next layer of building material in each model. A seam
is an unintentional defect on the surface resulting from the technological process of 3D
printing, and there is only a possibility of its random scattering on the surface—in our
case, a cylindrical surface. A seam is a defect similar to that found in machining—a burr
that, if not removed, may cause error in the measurement. Moreover, it is possible to make
the seam in one line, as shown in Figure 4c; this seam location is convenient for research
purposes, and that is why it was chosen in the research.

2.2. Measurement Methods

One of the manufactured samples is shown in Figure 4, displaying the macrostructure
of the surface in its various sections using different magnifications of the digital microscope.

The macrostructure (shape) of the surface affects the results of geometric quantities
depending on the measurement method used, as illustrated in Figure 5.
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Figure 4. Printed sample with characteristic spots observed under the microscope; (a)—view of
the entire sample with marked observation spots, (b)—edge of the sample at observation spot 1,
magnification 40×, (c)—seam of the sample, observation spot 2, magnification 60×, (d)—bottom
part of the sample, contacting the printer working platform, observation spot 3, magnification 40×,
(e)—top part of the sample, observation spot 4, magnification 240×, (f)—side surface of the sample,
observation spot 5, magnification 125×.
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Figure 5. An example model of the effect of surface macrostructure on the result of measuring a
geometric quantity, 1—the flat tip of a caliper or other contact sensor, 2—the blade of a caliper or
other contact sensor, 3—the contact sensors of a measuring machine with a spherical blanket, 4—the
light rays of a scanner, 5—the shadow effect from surface irregularities, 6—fragment of the sample.
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Figure 5 shows how the geometric structure (shape) of a printed sample can affect
the measurement result. Different shapes of contact measurement sensors are used during
measurements, and this has certain consequences, e.g., a flat tip (1) makes surface contact
only with the tops of irregularities. On the other hand, blade-type (2) or ball-type (3) tips
can plunge into the so-called “valleys” of irregularities, which affects the value of the final
result of the measurement of a geometric quantity. The use of a scanner, which uses a light
beam (4) is also not without disadvantages, as the so-called “shadow effect” (5) can be
created, which affects the surface doping in the image processing on the basis of which
the inspection of dimensions is carried out. When carrying out measurements using a dial
caliper and a coordinate measuring machine, this phenomenon was considered and two
types of measurements were made, the so-called diameter measurement with seam and the
measurement without it. Each of the measuring tools had a different measurement strategy
as described below, but in all cases, the values measured at three different heights were
analyzed. It was decided to carry out the measurement with the diameter measurement
omitted at the top surface due to a defect in the print in the form of excessive material
flowing out, and the bottom surface due to the formation of a defect in the form of the
so-called “Elephant foot”.

Metrology tests were conducted using three pieces of equipment:

- Dial Caliper,
- Coordinate Measuring Machine,
- 3D scanner.

The INSIZE 1311-150A Dial Caliper (INSIZE Co., Ltd., Suzhou, China) was the first
device used to make measurements. The resolution of the Dial Caliper used was 0.01 mm,
according to the producer. According to the manufacturer, the accuracy of this caliper for a
measuring range of 15 mm is equal ± 0.02 mm. The Dial Caliper had a valid calibration
certificate at the time of measurement. The research involved measurement using a flat
measuring tip (Figure 5—type 1) of a caliper in the place closest to the main body.

The seamless measurement strategy involved taking four diameter measurements ev-
ery 45◦ in the same cross-section (at the same height—Figure 6). The sample was measured
in three different cross-sections at varying heights, resulting in a total of 12 measurements
for each sample. The top surface of the sample was considered to be the face where the
printing machine finished printing.
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The measurement strategy with a seam involved taking four diameter measurements
at one location—the occurrence of a seam in the same cross-section—and at three different
heights (a total of 12 measurements).

Another measurement tool was a coordinate measuring machine (CMM), Optiv Reference
543 (Hexagon AB, Stockholm, Sweden), with metrological software PC-Dmis (https://hexagon.
com/products/product-groups/measurement-inspection-software/metrology-software/pc-
dmi (accessed on 24 March 2024)), equipped with the HP-S-X1 probing system. For this, ma-
chine length measurement error according to ISO10360-2 [29] is MPE_E(xy) = (0.8 + L/300) µm.
The CMM measurement process is characterized by an uncertainty of 1.4 µm.

https://hexagon.com/products/product-groups/measurement-inspection-software/metrology-software/pc-dmi
https://hexagon.com/products/product-groups/measurement-inspection-software/metrology-software/pc-dmi
https://hexagon.com/products/product-groups/measurement-inspection-software/metrology-software/pc-dmi
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A 5 mm diameter measuring tip with a force of 0.015 N was used during the measure-
ments (Figure 7). The measurement strategy without seam involved the determination of a
single diameter based on the measurement of 14 points (to avoid seam location) equally
spaced around the circumference of the sample in the same section. In addition, the sam-
ple was measured in three different cross-sections at varying heights. The measurement
strategy not excluding seam (with seam) involved the determination of a diameter us-
ing over 370 measurement points (few of them were in seam location) taken during a
scan around the circumference of the sample in the same three cross-sections as in the
point-to-point strategy.
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Figure 7. Sample clamping during CMM measurements.

In this work for 3D scanning, a Creaform Handyscan Black mobile laser scanner
(Canada, resolution: 0.025 mm, accuracy: 0.025 mm) was used. Scanning methods for
measurement were obtained on the presented form. The scanned data were aligned using
the Interactive Alignment function in GeomagicDesignX (2019) software. When carrying
out the measurement using a 3D scanner, each sample was placed on the scanner platform
with the flat surface of the sample, the base of the cylinder, i.e., in the same way as it was
printed, as shown in Figure 3. Plane, vector, and point were used to align the polygon mesh.
The plane was derived from the bottom surface of the sample, on which approximately
20 grid surface points were selected and intersected by the plane. For obtaining the axis of
the cylinder, the Auto Segment function was used, which, based on the specified parameters
and sensitivity, can find geometric shapes in the polygon network such as cylinder, plane,
cone, etc. The Find Cylinder Axis method was used to create a center vector. The point
was obtained by intersecting the plane and the vector. The alignment of the coordinate
system using the Interactive Alignment function was performed to the obtained point,
where the Z-axis of the coordinate system is identical to the vector and the XY-axis lies in
the created plane derived from the surface. To evaluate the diameter of the printed samples,
a silhouette was created in six planes derived from the XY base plane at the intersection
of the plane and the polygon mesh using the Mesh Sketch function. From the silhouette,
a circle was derived using the Perimeter Circle function, which, based on three selected
points from the silhouette, creates a circle in the sketch, as can be seen in Figure 8.
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2.3. Statistical Analysis

Statistical analysis is a key factor in the reliable presentation of measurement results,
and also allows comparison of the results of different studies, so the calculation method-
ology used is presented [30]. The basic statistical parameter that allows further in-depth
analysis is the standard deviation, which, in the presented test results, was calculated
according to Equation (1) shown below.

s =

√
1

(n − 1) ∑n
i=1(xi − x)2 (1)

where:
n—number of samples,
xi—results of sample measurement,
x—average value for series of measurements.
Another parameter that makes it possible to assess the value of results in a much more

precise way is the so-called standard uncertainty. The way of estimating the uncertainty is
the criterion for its division into two types:

- Type A uncertainties—determined by statistical methods,
- Type B uncertainties—determined by other methods.

Measurement results are subject to both type A and type B uncertainties, and they can have
comparable values or significantly dominate each other. When the dominant uncertainty is:

- Type A standard uncertainty specified as type A overall uncertainty,
- Type B standard uncertainty shall be referred to as type B overall uncertainty.

When the two uncertainties have comparable values, the total uncertainty will be the
type AB uncertainty.

The type A uncertainty for the study was calculated according to Formula (2), shown below.

uA =

√
1

n(n − 1) ∑n
i=1(xi − x)2 (2)

The final statistical parameter that, for experimental studies, allows one to determine
the result of a measurement that depends on the number of samples tested, is the Extended
Uncertainty using Student’s t, or according to Gauss normal distribution. In the case of the
presented research, Formula (3) was used, which takes into account an additional expansion
factor—kp, the value of which in the following calculations is shown in Tables 3 and 4. The
expanded uncertainty was calculated using the Student’s t-distribution because the size of
the largest series of samples did not exceed the number 30.

UCA = kpuA (3)

where:
kp—expansion factor for a series of measurements selected for a confidence level of 95%.
There may be a situation where the measurement uncertainty calculated by the type A

method is exceedingly small, which may be questionable. Therefore, it is necessary to refer
to the limiting error of a single measurement.

Table 3. Statistical analysis included statistical population size (number of samples) with seam.

Measurement
Tool

Series
n

Coefficient
kp

Standard
Deviation

s, mm

Standard
Uncertainty,

uA, mm

Expanded
Uncertainty UCA,

mm

Result
x ± UCA,

mm

Dial Caliper 3 4.3 0.012 0.007 0.029 15.11 ± 0.029
5 2.78 0.023 0.010 0.029 15.10 ± 0.029
10 2.26 0.023 0.007 0.016 15.09 ± 0.016
20 2.09 0.023 0.005 0.011 15.08 ± 0.011
30 2.05 0.022 0.004 0.008 15.08 ± 0.008
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Table 3. Cont.

Measurement
Tool

Series
n

Coefficient
kp

Standard
Deviation

s, mm

Standard
Uncertainty,

uA, mm

Expanded
Uncertainty UCA,

mm

Result
x ± UCA,

mm

CMM 3 4.3 0.009 0.005 0.023 15.05 ± 0.023
5 2.78 0.015 0.007 0.018 15.04 ± 0.018
10 2.26 0.022 0.007 0.016 15.03 ± 0.016
20 2.09 0.027 0.006 0.013 15.02 ± 0.013
30 2.05 0.026 0.005 0.01 15.02 ± 0.010

3D Scanner 3 4.3 0.003 0.002 0.007 14.99 ± 0.007
5 2.78 0.017 0.008 0.021 14.99 ± 0.021
10 2.26 0.028 0.009 0.020 14.97 ± 0.020
20 2.09 0.029 0.006 0.013 14.96 ± 0.013
30 2.05 0.029 0.005 0.011 14.95 ± 0.011

Table 4. Statistical analysis included statistical population size (number of samples) without seam.

Measurement
Tool

Series
n

Coefficient
kp

Standard
Deviations,

mm

Standard
Uncertainty,

uA, mm

Expanded
Uncertainty

UCA, mm

Result
x ± UCA,

mm

Dial Caliper 3 4.3 0.031 0.018 0.078 15.06 ± 0.078
5 2.78 0.025 0.011 0.031 15.05 ± 0.031
10 2.26 0.030 0.009 0.021 15.04 ± 0.021
20 2.09 0.030 0.007 0.014 15.03 ± 0.014
30 2.05 0.032 0.006 0.012 15.03 ± 0.012

CMM 3 4.3 0.016 0.009 0.039 15.04 ± 0.039
5 2.78 0.018 0.008 0.022 15.03 ± 0.022
10 2.26 0.022 0.007 0.016 15.03 ± 0.016
20 2.09 0.025 0.006 0.012 15.02 ± 0.012
30 2.05 0.023 0.004 0.009 15.02 ± 0.009

3. Results

After taking measurements with three different measuring tools, a statistical analysis
of the obtained results was performed. For each sample, an average value consisting of
the values from three different sections was calculated. Measurements of diameters with
seam (Figure 9) and without seam (Figure 10) were also taken into account during the
calculations. One of the main objectives of the study was to evaluate the effect of the
number of samples analyzed on the values of the diameter measurement results and the
measurement uncertainty, so Figures 9 and 10 show the results of the aforementioned
issues, taking into account the presence or absence of a seam in the measurement.
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The next step was to divide the obtained results into a series of samples of 3-5-10-20-30
in a random manner. The arithmetic diameter was calculated for each series. Figures 11
and 12 show the results of the arithmetic means, and indicate the trend lines, where a
decrease in this value can be observed as the number of samples increases.
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4. Discussion

Analyzing the test results presented in Tables 3 and 4 and Figures 9–12, one can notice
some characteristic trends regarding the influence of the number of samples tested on
the final result. In addition, an evaluation of the three surface geometry measurement
methods used allows conclusions to be drawn about the results obtained depending on the
method used.

Analyzing the overall test results for 30 samples measured by the three methods, it
can be seen that in the case of samples where the longitudinal seam was included in the
measurements, the smallest values were registered for the measurement method using a
3D scanner, where the obtained average value was 14.95 ± 0.011 mm. In the next order, the
obtained results were as follows: CMM 15.02 ± 0.01 mm, Dial Caliper 15.08 ± 0.008 mm.
Thus, we obtain an average result differing by as much as 0.13 mm, where such a large
difference is only due to the measurement method used.

In the case of measurements excluding the seam, where only two methods allowed the
exclusion of this area from the measurements, the results of the diameters for 30 samples
look as follows: CMM 15.02 ± 0.009 mm, Dial Caliper 15.03 ± 0.012 mm. In the case of
the measurement with the seam omitted, the difference between the largest result and the
smallest is only 0.01 mm, which is 13 times smaller than above for the measurement with
the seam (CMM 15.02 ± 0.01 mm, Dial Caliper 15.08 ± 0.008 mm, 3D Scanner 4.95 ± 0.011).
The measurement using CMM and skipping the seam, despite taking the same average
value of the diameters, has a smaller error in the form of expanded uncertainty, which is due
to the fact that CMM included over 370 measurement points in the measurement strategy
averaging the final result. In the case of the Dial Caliper, the difference in the average
measurement value is as much as 0.05 mm, which is due to the fact that the seam/defect
site was omitted from the measurements. It seems that randomly selecting a spot without
analyzing the occurrence of a seam can result in an additional error of at least 0.05 mm and
a larger diluted uncertainty in the measurement, which is all the easier because there are
cases where the model is made with a so-called randomly scattered seam.

Both cases have shown, in a great quantity of the test specimens without a seam, the
difference between the measured values for the two methods blurs, as shown in Figure 10.

Analyzing the values of the diameters, it can be clearly seen that the measurements
with the exclusion of the seam are characterized by smaller average values of the obtained
results, which is a natural phenomenon. It can also be seen that the values of the expanded
uncertainty for Dial Caliper are significantly smaller when the seam location is omitted.
Such a relationship is important from the point of view of analyzing the test results, as it
can be seen that skipping the seam area more accurately depicts the actually reconstructed
cylindrical surface, and the seam location slightly distorts both the result of the average
diameter and the expanded uncertainty of the measurement. Dial Caliper measurement
performed without knowledge of the described relationship regarding the occurrence of
the seam is currently considered unreliable, since the seam is a fixed element regarding
FDM/FFF technology. The research presented on this object is relevant insofar as the
development of 3D printing technology in terms of the software of printers now offers
the possibility to choose how to arrange the seam, for example, in a single line as was
the case in the presented research, or as a scattered seam in different places of the printed
object. Regardless of the chosen option, the seam as a fixed defect always occurs in
FDM/FFF technology.

Analyzing Figures 11 and 12 on the effect of the number of samples tested on the
value of the result and its statistical interpretation, it can be concluded that in both the
variants without and with seam, the average value of the diameters decreases with the
increase of the analyzed population and stabilizes at a similar level already for 20 an-
alyzed samples. The largest difference occurs for the test with seam using 3D scanner
measurement. Tables 3 and 4, for all samples tested and the methods used, clearly show
that for 20 samples, the average values have the same values as for the measurement of all
30 samples. Moreover, not only the average value stabilizes with 20 tested samples, but also
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the expanded uncertainty. In the case of Figure 12 (seamless measurement) and the corre-
sponding Table 4, the average values for 20 and 30 samples have the same values: 15.03 mm
(caliper) and 15.02 (CMM), and the difference in the expanded uncertainty between both
series is only 0.02 and 0.03 mm, respectively. Comparing the expanded uncertainty values
for a series of 10 and 20 measurements, these differences are 0.07 mm (caliper) and 0.04 mm
(CMM), respectively. The quantitative interpretation of the test results for measurements
depending on the number of samples is shown in Tables 3 and 4.

In Table 3, where the results of tests for samples with seam using Dial Caliper are
presented, it can be clearly seen that as the number of samples tested increases, not only
the average value of the measurement decreases, but also the expanded uncertainty, which
is for the analyzed measurement methods and sample sizes respectively: n-3, UCA–0.029;
n–30, UCA–0.008. As can be seen, the actual UCA value considering the measurement from
30 samples with seam is almost 3.5 times lower than for the series of three samples analyzed.
The same characteristic styles can be seen when analyzing the data in Table 4, where the
results for Dial Caliper were n-3, UCA-0.018; n-30, UCA-0.006. As can be seen, the actual UCA
value considering the measurement from 30 samples without seam is 3 times smaller than
for the series of three samples. In the case of CMM for measurement with and without seam,
an identical trend can be seen, where, however, the differences in the value of the expanded
uncertainty depending on the number of analyzed samples differ for the measurement
with seam more than twice, and for the measurement without seam-three times.

It seems that the application of good measurement practices should take into account
the minimum statistical number of samples in accordance with the adopted statistical
principles at the level of 30 samples. In the case of the presented test results for 20 sam-
ples, there was a satisfactory stabilization of both the average diameter value and the
expanded uncertainty. Good measurement practice should take into account whether the
measurement was carried out at the seam or not, and how the measurement method, and
measurement strategy, was selected. The measurement strategy should take into account
the nature of the surface, the selection of appropriate sensors, measuring jaws, etc., which
affect the average value, as shown by the results for 3D scanning, which are not sensitive
to the influence of the measuring probe tip. Each time, the scanner measures the entire
surface, including the seam, but also the valleys occurring at the junction of the layers,
which is not obvious in the case of mechanical contact measurements.

Based on the evaluation of the influence of the number of samples on the final mea-
surement result, it can be concluded that the interpretation of test results carried out for a
small number of samples, despite the statistical calculations carried out, gives a completely
different final result both regarding the average value and in terms of statistical evaluation.
Such a situation means that in numerous cases we may consider the technology or manu-
facturing strategy as inaccurate, which may affect the final decisions made by customers
ordering 3D prints, technologists calibrating their devices, repairing 3D printers, as well as
in the case of buying or selling 3D printers. The results of this study can certainly be used
to evaluate other 3D printing technologies, including those based on metal powders.

5. Conclusions

Three-dimensional printing technologies are state-of-the-art manufacturing methods,
which require a reasonable approach in terms of studying quality characteristics such as
geometric accuracy. Based on the conducted research and statistical analysis, the following
general conclusions can be formulated.

Metrological studies of the dimensional accuracy of models manufactured using 3D
printing technology must have a detailed evaluation of the measurement site and determine
whether they consider permanent defects in the technological process or avoid them on
purpose, since not paying attention to the so-called seam does not give full knowledge of
the final measurement result.

The use of each of the metrological methods of diameter measurement analyzed has
its own advantages and disadvantages, but the knowledge gained during the study allows
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informed decision-making about the measuring instrument used and the consequences as-
sociated with it. Incorrect selection of the measuring method depending on the application
for measuring selected geometric features (e.g., valleys between layers) will not allow for
obtaining correct results, on the basis of which we decide on additional calibration of the
3D printer, its service, replacement with a new one (purchase), or change of production 3D
printing technology.

The reliability of the methods used also depends on the method of measurement and
analysis of the results, which can only be carried out properly knowing the nature of the
surface unevenness and the defects caused by the technological process.

The number of samples tested can have a very large impact on the statistical interpre-
tation of the final measurement result, the values of which vary even several times.
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