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Abstract: This study aimed to improve the mechanical properties of 3D concept designs by combining
the design capability of a generative adversarial network with finite element analysis. This approach
offers an innovative perspective on the conditioning of generative models while improving design
properties and automation. A new design and evaluation framework has been developed for GAN
models to generate 3D models with improved mechanical properties. The framework is an iterative
process that includes dataset generation, GAN training, and finite element analysis. A “joint”
component used in the aerospace industry is considered to demonstrate the proposed method’s
effectiveness. Over six iterations, an increase of 20% is recorded in the average safety factor of the
designs, and the variety of designs produced is narrowed in the desired direction. These findings
suggest that the direct generation of structural components with generative models can expand the
potential of deep learning in engineering design. Another innovative aspect of this study is that it
provides a new option for the conditioning of data-dependent generative design models.

Keywords: generative adversarial networks (GANs); finite element analysis (FEA); parametric design;
mechanical properties; additive manufacturing (AM); 3D printing

1. Introduction

Machine learning models have recently been used in product and engineering design
in almost every field [1–3]. In particular, developing and using deep-learning-based
generative design methods has accelerated design processes such as inspiration, idea
generation, concept generation, evaluation, and optimization [4,5]. By using these methods,
better and comprehensive designs can be created in a very short time and with minimal
designer intervention. Generative deep learning models can include all design properties
within a feature space, a simple representation of the design space. The feature space makes
it possible to generate new concepts by capturing the critical points of the design [6].

A generative adversarial network (GAN) is one of the current data-driven generative
design systems. The ability of the GAN to generate new data (text, images, 3D models,
etc.) is utilized in design studies. One of the aims of this study was 3D concept generation.
Since 3D concepts contain more visual and physical features than 2D concepts, the level
of detail is higher. This makes data-driven generative design research that generates
3D models critical [7]. Classical GAN models can discover form features depending on
the design visualization. However, a good design representation should consider form
and function features. The form includes the geometric and topological properties of the
product. Function refers to the design purpose of the product. Designers can understand the
relationship between form and function. However, it is difficult for artificial intelligence to
grasp such complex relationships. For this reason, generative design studies generally aim
to produce new forms. The concepts created here are far from being functional/structural
workpieces and can only be used with additional modifications and improvements. These
extensive challenges constitute a new and broad area of research.
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In this study, a generative deep learning model and finite element analysis are com-
bined to evaluate the form and function properties of the generated designs. While 3DGAN
generates new data, finite element analysis (FEA) is used to evaluate the mechanical prop-
erties of the generated data. At the end of the evaluation, design options that are good
in terms of form, weight, and strength are added back to the GAN training set. Thus,
better designs improve the quality of the training set, and the new 3D models produced
have enhanced functional properties. The main objective of this study was to develop an
autonomous approach to improving the functional properties of 3D models generated by
deep-learning-supported generative design method. In that context, all design components
that transfer load, force, or power were evaluated by FEA and redesigned if necessary.
Unlike other studies, this study combined data-driven generative design and FEA methods
for the first time. Thus, the mechanical properties of structural components generated by
3DGAN were analyzed.

Another innovative aspect of this study is that it provides a new option for the
conditioning of data-dependent generative design models. These models are known to
generate data that reflect the distribution of the training dataset. With repeated design
and evaluation steps, the training dataset’s general properties are improved, and high
mechanical properties are achieved for the generated data. By conditioning the mechanical
properties of generative models, this can create a potential area for deep learning studies in
engineering design.

2. Literature Review

Idea generation, which starts with problem identification in the early design phase, is
the process of creating new, creative, and useful solutions [8,9]. Using deep learning meth-
ods in this process reduces design costs and enhances innovation [10–12]. In the literature,
the number of studies involving idea and concept generation and 3D model generation
based on deep learning models is rapidly increasing [13,14]. In one of these studies, Raine
et al. proposed an approach to imitating human design strategies using deep learning in
the idea generation process [15]. This image-processing-based approach aims to predict the
next design step in problems where rules and strategy are ambiguous. Li and McComb [16]
introduced a modified super-resolution generative adversarial network (SRGAN) model
incorporating a physics-informed loss function to boost multiphase turbulent fluid flow
simulations. This model shows that both traditional and physics-informed models outper-
form standard sampling methods, but the additional complexity of the physics-informed
approach does not significantly increase accuracy. In another generative design study, Yu
et al. [17] developed the DesignGAN model inspired by biological objects. This model
generates new biologically inspired images by combining target object and biological ob-
ject images. Yuan and Moghaddam created the design-attribute GAN (DAGAN) model
using a new loss function and a different discriminative loss mechanism. The DAGAN
model allows for modifying only the desired design features, thus enabling efficient fashion
product creation [10,18]. In another study, Chen et al. [19] presented the Generative Adver-
sarial Network-based Design Under Uncertainty Framework (GAN-DUF), for efficiently
modeling and quantifying geometric uncertainties in engineering designs. This frame-
work has effectively learned design variability without assuming specific distributions,
demonstrating improved design optimization and robustness in real-world applications.

On the other hand, generative models can create designs with balanced engineer-
ing properties [20–23]. Oh et al. [20] integrated topology optimization into boundary
equilibrium GANs (BEGANs) to obtain aesthetic product designs with high engineering
performance. The training data required for the success of the GAN models were obtained
by topology optimization to increase the diversity and quality of the training set. The
framework, which consists of exploration and evaluation steps, aims to achieve aesthetic
and feasible product designs. In a similar study, Yoo et al. [24] propose a deep-learning-
based framework that automatically generates 3D CAD models at the conceptual design
stage and evaluates their engineering performance. This framework allows the engineering
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performance of the generated 3D concepts to be predicted at the early design stage. In
another engineering design study, Chen and Fuge [25] presented a generative model for
generating real-world designs bounded by one or more parts. This model generates part
designs individually through a low-dimensional representation based on specific master
parts. The model was verified on various design examples. Lee et al. [26] presented a
method that uses GANs to simplify 3D CAD models of mechanical parts using a training
dataset. This method effectively simplified the models while preserving essential features
for the target domain. In another study, Chen and Ahmed [27] developed a model called
Multi-Objective Performance Augmented Diverse Generative Adversarial Network (MO-
PaDGAN) to solve multi-objective optimization problems in engineering design. This
model has shown a 180% better performance than other methods in real-world applications
thanks to adding a special loss function to the GAN to increase design diversity and quality.
Nobari et al. [28] proposed the Continuous Conditional Diverse Generative Adversarial
Network (PcDGAN) model to generate new designs that meet the targeted performance
requirements. The authors stated that the design space coverage capability of PcDGAN is
higher than that of standard GAN models. In another study, Nobari et al. [29] proposed a
Range-Constrained Generative Adversarial Network model to meet engineering design
constraints. This proposed model aims to generate data that satisfy the targeted design
constraints with a self-expansion approach and a new loss function. In another training
success improvement study, Giannone et al. tried to find a solution to the problem of
generative models generating faulty geometries. The proposed new training method aims
to outperform the generative model by utilizing erroneous data points [30].

Another field where generative design methods have been applied is that of design
options’ evaluation and optimization process [31,32]. In one of these studies, Behzadi
and Iliesh [33] proposed a convolutional neural network (CNN)-based transfer learning
model to overcome the computational costs of topology optimization. The authors aimed
to process high-resolution 3D design space in real-time with fewer samples than traditional
deep learning methods. In another study, Rawat and Shen [34], addressing high compu-
tational costs, created a model that can generate 3D geometries with an approach based
on Wasserstein generative adversarial networks (WGANs). This model demonstrates the
potential of deep learning to significantly reduce iterative optimization processes in design.
Shu et al. [6] developed a functional generative design model using GANs and computa-
tional fluid dynamics (CFD) methods. The authors introduce an iterative process of CFD
evaluation of 3D aircraft models generated by GANs. This results in good aircraft designs
with a low drag coefficient. Although the presented approach obtained coarser results
than topology optimization methods, it converged faster. In another design evaluation
study, Wu et al. [35] proposed a CNN model that predicts the success of a product from
product sheets generated for design competitions. In another study, Oh et al. [20] aimed
to produce aesthetic wheel designs with high engineering performance by integrating
topology optimization and boundary equilibrium GANs (BeGANs). In this study, the
data obtained from topology optimization were incorporated into the training data to
produce high-performance models. The authors claim this approach provides lower-cost
optimization with minimal design and engineering domain knowledge.

There have been many studies in the literature on incorporating generative deep
learning methods into the engineering design process. These studies offer various applica-
tions, from idea and concept generation to design optimization. The potential of GANs
in the generative design process is remarkably emphasized in these studies. However,
these studies focus predominantly on the aesthetic aspects of design, often overlooking the
integration of functional or mechanical properties. This creates a gap in the application
of these systems to fields where functionality is as crucial as design, such as in engineer-
ing and industrial design. Additionally, while these papers demonstrate the capabilities
of generative models like GANs, they often do not fully leverage the potential of these
models for improving the mechanical performance of the generated designs. Therefore,
more studies are needed that aim to improve the structural strength performance of work-
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pieces produced with GANs. Accordingly, the design framework proposed in this study
verifies and enhances the structural strength of innovative and creative design options
created with GANs using FEA. An autonomous approach has been developed to add
functional features to deep-learning-supported generative design methods. Within the
study context, generative design and FEA methods are combined with data-dependent
generative design to perform long/laborious analysis–redesign processes in a shorter time
and without human intervention. Another difference in this study from the existing studies
in the literature is that the concepts generated are real structural components. Generating
structural components using the GAN model provides direct applicability in engineering
design. This increases the efficiency and effectiveness of engineering design processes
by accelerating the translation of theoretical and experimental studies into practical ap-
plications. Finally, the fact that the dataset to be used in this study was generated by a
parametric design process provides a new way for the proposed framework to cover other
engineering problems.

3. Materials and Methods

Figure 1 presents a flowchart outlining the path to be followed and the methods to be
used to automate functional 3D model generation. The process begins with the generation
and preparation of a diverse synthetic dataset through parametric modeling. Following
this, the GAN model is trained to generate realistic 3D structures, with extensive testing
to optimize performance. Subsequently, the models undergo finite element analysis to
validate their mechanical integrity. The final stage involves physically producing the most
promising designs using additive manufacturing techniques. The aim of this cycle is to
improve mechanical properties through the design, production, and evaluation cycle in the
first three stages.

Figure 1. Flowchart depicting the process of creating functional design options.

3.1. Creating a Dataset and Performing Preparation

Deep learning methods are AI algorithms that learn patterns from the training set and
use them for image processing, object recognition, and generating new data. Therefore,
creating and compiling training sets is the main factor in deep learning model success.
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However, 3D model sets are limited for reasons such as differences in model representation
methods [35].

Three basic representation methods are used in 3D object recognition and model gener-
ation processes: voxel, point cloud, and polygon mesh. Volumetric pixels used to represent
a point in 3D space are called voxels. Point cloud is a data representation method formed
by the points on the surface of a 3D structure. Each point is represented by coordinates.
Point cloud model representations are often preferred in deep learning model training
due to their easy modeling and low computational cost [36,37]. Finally, polygon mesh
is a collection of vertices, edges, and surfaces that define the surfaces of 3D models. It
is widely used in applications requiring a realistic appearance and detailed representa-
tion [38]. These representation methods have various advantages and limitations. For
example, point clouds offer low computational cost and realistic representations but do
not provide complete surface description information. Polygon meshes provide detailed
surface information but may be less computationally efficient. On the other hand, while
voxel-based representations perform well in internal structure descriptions, they are not
compatible with applications where high surface quality is required. Therefore, the rep-
resentation method to be used is determined according to the needs of the process to be
applied [36]. In addition, different data representation methods can be used at various
stages of an application or project.

Another limitation of 3D model recognition and generating studies is the difficulty of
accessing accurate, diverse, and high-quality data. Although popular 3D data repositories
such as Princeton shape benchmark, McGill 3D shape benchmark, 7 scenes, ModelNet, and
ShapeNet contain 3D models of various classes and sizes, they are quite insufficient in terms
of having structural component (bracket, hinge, joint, arm, valve, etc.) models [39]. The
problem of data deficiency, which reduces the effectiveness of generative design models
in engineering design, can be overcome with synthetic datasets created with various algo-
rithms and software. For this purpose, a synthetic dataset was created with an algorithm
combining Voronoi diagrams and parametric design. Parametric design is an interdisci-
plinary field that combines mathematical operations, algorithms, and artificial intelligence
with design processes [40,41]. This approach provides flexible and efficient solutions by
automatically and rapidly updating design variants. Although the dataset creation capabil-
ity of parametric design gives successful results, additional algorithms and techniques are
required to increase the quality and diversity of the generated synthetic datasets.

One of these techniques, Voronoi diagrams, uses a diagram that divides an area or
volume into sections according to specific focal points. These partitions include all points
closer to the focal point than any other focal point [42]. Given n focal points in metric space,
the Voronoi diagram allows the space S = {s1, s2, . . ., sn} to be partitioned into n regions. Each
Voronoi cell V(si) consists of all points in space (S) closer to si than any other focal point. The
formal expression of a Voronoi cell is shown in Equation (1). Here, d(x, y) denotes the distance
function between points x and y, while S denotes the initial set of points.

V(si) =
{

x
∣∣ d(x, si) < d

(
x, sj

)
∀ sj ∈ S, j ̸= i

}
(1)

This study integrates Voronoi diagrams into the parametric design process to create
3D models that respond to design requirements and constraints [43]. This combination
offers advantages such as increasing design efficiency, generating unique and problem-
specific designs, and exploring large design spaces. Voronoi diagrams, known for their
ability to generate complex, natural-looking patterns, introduce an element of organic
randomness into the design process. These diagrams partition a space based on the
proximity to a set of predefined points, resulting in a mosaic of polygonal cells with unique,
non-repetitive patterns. When these diagrams are integrated into parametric models, they
imbue the structured and deterministic nature of parametric designs with an element of
unpredictability and complexity. This results in designs that are not just variations of a
theme but are genuinely diverse, offering a richer training ground for GANs.
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3.2. Generative Model Training

Generative adversarial networks (GANs) are unsupervised deep learning models
introduced by Ian Goodfellow et al. in 2014 [44]. A classic GAN model contains two
adversarial neural networks, a generative (G) and a discriminative (D) network. The
generator network generates fake data, while the discriminator network aims to separate
fake data from real data. 3DGAN models, on the other hand, can directly create 3D data
representations using 3D datasets [45,46]. 3DGAN models not only improve the capabilities
of generating realistic 3D data samples but also significantly contribute to deep learning by
addressing the increasing importance and complexity of data representation [47,48].

3DGAN architectures consist of two main components, a generator (G) and a dis-
criminator (D), similar to the classical GAN architecture. While the generator generates
synthetic 3D data representations, the discriminator distinguishes the generated samples
by comparing them to real 3D data. This process basically consists of noise sampling, gener-
ating fake data, distinguishing between real and fake data, and updating network weights.
In the noise sampling step, points from a normal or uniform distribution are converted
into a noise vector to obtain complex data structures. The second stage of 3DGAN is the
generation of fake data with a generative network consisting of deep learning layers. Here,
fully connected layers, convolutional transpose layers, normalization layers, and activation
layers are used to up-sample the noise vector to produce 3D representations. The third
stage of 3DGAN model training involves the discriminator network where real and fake
data are distinguished. Here, convolutional, normalization, fully connected, and activation
layers are used to determine the spatial relationships between the points forming the 3D
data. In the final stage of the training process, to improve the performance of the generator
and discriminator networks simultaneously, the network weights are updated using the
conventional loss function given in Equation (2) [44,49]. Here, the Ex term measures the
discriminator’s success in classifying data, while the Ez term evaluates the generator’s
ability to produce synthetic data. Thus, it aims to maximize the discriminator network’s
discrimination ability and minimize the generator error. In this equation, x represents the
real images, and z represents the noise input.

Minmax(D, G) = Ex[log(D(x))] + Ez[log(1 − D(G(z)))] (2)

3.3. Design Evaluation

A vital shortcoming of data-driven generative design methods (e.g., GANs) is the
inability to test the suitability of the resulting designs for the design purpose. Generative
models are trained using the probabilistic distribution of the training set. Therefore, the
generated data reflect the general characteristics of the training dataset in terms of form and
function. For generative models to generate designs with superior functional properties,
the training data must have superior design properties. The concept of functionality in
structural components can be defined as the load carrying capability of components during
operation. Physics-based approaches such as finite element analysis (FEA) are used to
determine a component’s functional (strength) properties in engineering design. FEA is a
numerical analysis method that attempts to predict the mechanical behavior of the part
and assembly under operating conditions [50].

In this study, a static structural analysis was performed on the workpieces using
CATIA. The models were discretized with tetrahedral elements using the patch confirming
technique, ensuring that the mesh size did not affect the results, and the mesh was refined
and validated until variations were reduced to less than 8%. The analysis includes a
comprehensive elasto-plastic analysis of strain behavior beyond the elastic limit using the
Newton–Raphson method detailed in Equation (3):[

KT
]
{∆u} = {F} − {Fnr} (3)
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where KT is the stiffness matrix, ∆u is the displacement matrix, and {F} − {Fnr} is the
force instability matrix.

This study focused on the post-yield behavior of AlSi10Mg materials modeled with
a bilinear stress–strain relationship to reflect hardening after the yield point. Material
properties included a yield strength of 270 MPa and a tangent modulus of 5 GPa. Boundary
conditions fixed the workpieces in small holes, and a 150 N bearing force was applied to
the large hole.

In this study, we aimed to develop design concepts with a high strength-to-weight
ratio using a data-driven generative design method. The generated designs were evaluated
in a design-simulation environment, and their mechanical properties were determined. The
von Mises values of all concept designs under the same conditions (boundary conditions,
mesh size, material properties, load, etc.) were determined autonomously. Von Mises is the
equivalent stress, which shows how much stress a material can carry without exceeding
the elastic limit.

A preliminary mesh optimization study was performed on a subset of approximately
10 samples to determine the optimal mesh size. This preliminary study involved repeating
the analysis with different network sizes and observing the results until a point was reached
where the analysis results were independent of network size. The mesh size that met this
criterion was then used equally across all designs in our automated analysis process.

In this study, the design concepts analyzed were ranked according to their von Mises
values, and the designs that fell in the 50% percentile were determined. High-performance
concept designs were converted into voxel format to be added to the training set. A
random 3D model was removed from the training set as much as the data were added to
the initial dataset. Thus, the average functional performance of the training dataset was
increased. Creating the training set, training the GAN model, evaluating the generated
design concepts, and adding high-performance concepts to the training set constituted the
functional generative design cycle. This cycle did not diminish the diversity of the dataset;
rather, it enhanced the dataset by incorporating designs that not only exhibited aesthetic
and geometric variety but also demonstrated improved mechanical properties. The cycle
continued until part of the training set consisted of GAN-generated models. Thus, design
concepts with high strength could be generated.

3.4. Additive Manufacturing (AM)

Advances in additive manufacturing (AM) technology have significantly spurred
on the development of generative design algorithms. AM techniques enable the produc-
tion of parts with complex geometries that are beyond the capabilities of conventional
manufacturing methods. Notably, design concepts generated by data-driven generative
design methods can incorporate complex geometries. However, the manufacturability
of such intricate designs often poses challenges when using traditional manufacturing
techniques. As a result, these advanced design concepts are typically only feasible through
AM technologies, which provide the necessary flexibility and precision to accommodate
their complexity.

Within the scope of this research, in the last step of the generation and evaluation
cycle, the concept designs were classified according to their weight and strength properties.
Then, we aimed to manufacture the ten design concepts with the best performance. In this
process, the defects (if any) on the parts were adjusted in the CAD environment. The voxel
model was converted into the STL format and made suitable for printing. Concept designs
can be manufactured by choosing printer settings according to the desired precision and
print quality. Although the production of parts in layers is a familiar working principle in
AM techniques, there are differences between the methods according to the materials and
printing technology used [51,52]. In this study, the performance of AM techniques in man-
ufacturing parts generated by generative design was evaluated by the stereolithography
(SLA) and fused deposition modeling (FDM) methods.
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SLA is a 3D printing method in which 3D objects are manufactured layer by layer
using special photopolymer resins that solidify when exposed to ultraviolet light. In this
method, the scanning system creates layers by directing the light to the surface to form
a specific cross-section. With SLA, it is possible to produce exact and detailed parts. The
other method, FDM, is one of the most commonly used methods in 3D-printing technology.
This method involves creating a 3D object by layering material in filament form through a
heated nozzle following a special design [53].

4. Application

A case study was carried out to verify the validity of the presented functional gen-
erative design approach. In this context, a special joint component that helps to steer a
helicopter by providing freedom of movement to the rotor was considered. The location,
mobility, and original design of this component in the assembly are shown in Figure 2. In
the first step of the application, a synthetic dataset was created, covering a wide design
space by integrating the Voronoi diagram into the parametric design. A 3DGAN model was
trained using this synthetic dataset in the second step. Various data preparation procedures
were applied to determine the mechanical properties of the pseudo data generated by this
model. In the third step, CATIA V5, a design and analysis software, was used to evaluate
the mechanical performances of the 3D components. As a result of this evaluation, designs
that were superior according to the von Mises performance criterion were included in the
training dataset. The same amount of data from the initial dataset was removed from the
process, and the training and analysis cycle was restarted. After the process was completed,
the manufacturability of the generated designs was evaluated by an AM method.

Figure 2. Position of the considered structural component in the helicopter rotor assembly and
parametric model.

4.1. Creating a Dataset and Performing Preparation

3DGAN model training requires datasets that are quite different and contain a large
amount of data. This study used a synthetic dataset created by the authors. The main
reason for using synthetic data is the insufficiency of real 3D model data for structural
components. A parametric model of the structural component was assembled to create the
synthetic dataset. In this model, parameter value ranges were determined by considering
geometric boundary conditions. Figure 2 presents a parametric model of the structural
components, showing the design parameters and boundary conditions. While the features
shown in red on the part have fixed values, the features in blue can change parametrically.
The determined parameters and boundary conditions are shown in Table 1. With the nine
parameters used here, over 60 billion (8 × 11 × 16 × 8 × 9 × 16 × 51 × 76 × 11) design
variants can be created. However, these concepts are insufficient for deep learning training
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regarding data diversity. Although each of these designs is different from the other, their
general geometries are quite similar to each other. Therefore, Voronoi diagrams were
included in the parametric design process to increase data diversity. Applying Voronoi
diagrams to the areas determined on the component created 4635 unique design variants.
This dataset consists of models with different wall thicknesses, element sizes, Voronoi
cell sizes, and Voronoi cell numbers. These variables help the dataset to mimic real data
diversity. The parametric design process and some of the data obtained are shown in
Figure 3. The dataset creation process was described in detail in a previous study prepared
by the authors. The general process is summarized here.

Table 1. Parameter value ranges.

Parameter Name Min. Value (mm) Max. Value (mm) Range of Change

Parameter A 8 15 8
Parameter B 5 15 11
Parameter C 10 25 16
Parameter D 3 10 8
Parameter E 3 11 9
Parameter F 5 20 16
Parameter G 0 50 51
Parameter H 15 90 76
Parameter I 0 10 11

Figure 3. Synthetic dataset creation process and samples from the created dataset.

First of all, the area on which the Voronoi diagram would be applied was determined.
In the second stage, Voronoi points were randomly placed in this predefined area. The
distribution and number of points determine the size and shape of cells, creating diversity.
In the third stage, Voronoi cells were created from point positions. In the fourth stage, the
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basic geometry for the hollow structure was created by offsetting each of the resulting
Voronoi cells by a fixed value. This offset distance can be adjusted parametrically to control
the detail and complexity of the design. In the final stage, the volumes between the walls
of the Voronoi cells were evacuated and a unique structure with cavities was designed.

For the training of the deep learning model, the 3D model dataset was subjected to
certain processes. In the first stage, faulty or missing data were identified and removed
from the dataset. Then, all data were standardized to a standard size to improve the
performance of the generative design. Using the “binvox” library on Python 3.10, the
models in OBJ format were converted into voxel format, which expresses an object as a
collection of unit cubes. Since voxels can represent complex internal structures, they were
chosen as the appropriate data representation method for the structural component data
generated in this study. However, part resolution depends on the amount/size of voxels.
For this study, the ideal grid size was determined as 128 × 128 × 128, depending on the
computer processing capacity.

Data representation methods appropriate for the specific demands of each phase
of this study were strategically selected, taking into account their different advantages
and limitations. Voxels were utilized during the 3DGAN training phase due to their
superior ability to represent complex internal structures. Voxels, as three-dimensional
units, are effective in capturing the volumetric detail necessary for modeling complex
designs. However, their suitability is reduced for applications requiring high surface
quality; this limitation is addressed in the next steps. Point clouds were used to reduce the
computational cost after training. Point clouds are effective at compressing large volumes
of data while preserving vital geometric details. Also, the mesh representation method
was used to edit the part in the CAD environment. Meshes are advantageous in terms of
detailed surface information and increase the accuracy of the overall design. The choice of
these representation methods allowed us to efficiently balance computational efficiency,
internal structural details, and surface quality.

4.2. Generative Model Training and Data Generation

In this study, a voxel-based 3D deep-convolutional generative adversarial network (3D
DCGAN) model developed by Wu et al. was used [45]. This model can generate realistic
3D objects from a low-probability distribution. In the first stage of training this model, the
probabilistic point distribution is converted into a noise vector. Then, this noise vector is
upscaled to the real object size by the generator network [38]. Meanwhile, the discriminator
network tries to distinguish between the generated object and the objects coming from the
dataset. The ultimate goal of the generator and discriminator network training process
is first to create more realistic fake data and then to be able to distinguish them from real
data [49].

In this context, a balance must be struck between optimal model quality and the
requirements for computation and memory. In practice, this balance is often adjusted based
on the available GPU capacity and the desired level of detail in the model. Figure 4 displays
three sets of 3D model variations at different resolutions (64 × 64 × 64, 96 × 96 × 96, and
128 × 128 × 128). Each set illustrates how the geometric fidelity of the generated models
improves with increasing resolution. In the first set, at the lowest resolution (64 cubic units),
the models created with 15,000 data points are quite rough and lack detail. In contrast, the
models in the last set, at the highest resolution (128 cubic units) with 4,600 data points,
exhibit much more detailed and accurate geometries.

However, increasing the resolution significantly raises computational costs and can
challenge the graphics processing unit’s (RTX 3090) capacity. This is a particular constraint
for large-scale GAN training as higher resolutions demand more memory and processing
power. The “number of data” in the image refers to the number of unique models used at
each level of resolution, where decreasing numbers reflect an increased computational load
due to a higher resolution.
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Figure 4. Comparison of GAN-generated 3D models between resolutions.

The determination of hyperparameters, including the number of epochs, data size,
pool size, and noise vector dimensions, was achieved through a meticulous trial-and-error
process. For each hyperparameter, the training process was iteratively repeated, enabling a
careful evaluation of its impact on the model’s output and overall performance. Similarly,
the network architecture was refined based on the quality of the produced parts. Various
architectural configurations were rigorously tested, with their effectiveness in generating
high-quality designs thoroughly assessed. This methodical approach facilitated precise
fine-tuning of the model, ensuring it was adeptly tailored to meet the specific requirements
of the application. The network architecture and hyperparameter values used are given in
Table 2.

In this study, the “PyTorch” library was used to create a 3D DCGAN architecture and
to increase the training process efficiency. A 200-dimensional noise vector was transformed
into a 3D matrix in the first stage. The size of this matrix was gradually expanded by
four transpose convolution layers in the generating network. A matrix with a higher
dimension than the previous layer was obtained in each layer. In the last layer of the
generative network, a fake 3D model was generated by a 128 × 128 × 128 matrix. The
discriminator network transformed the 128 × 128 × 128 matrix into a one-dimensional
array using feature maps of different sizes in four convolution layers. By reducing the
matrix size in each layer, the generalization capability of the network is increased while the
computational cost is reduced. This matrix was converted into a one-dimensional array to
train fully connected (FC) layers. In the last stage of the discriminator network, the Sigmoid
activation function was used to predict the class of the input matrix (fake or real), and the
process was completed. Batch normalization and activation (i.e., LeakyReLU) functions
were implemented between the convolution (transpose and normal) layers in both network
architectures. The parameters used in the network architecture, such as the number of
convolution layers, number of parameters, batch size, hidden vector size, number of epochs,
and learning rate, were determined heuristically. The main limitation in determining these
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parameters was the graphics processor capacity. After 250 epochs (approximately 9 h), new
3D models were obtained, as shown in Figure 5.

Table 2. Architecture of the 3D DCGAN: layer configuration and hyperparameters for the generator
and discriminator.

Layer Output Shape Activation
Function Hyperparameter

Generator

Input [200, 1, 1, 1] -

Epoch: 250
Resolution: 128 × 128 × 128
Batch size: 64
Noise vector size: 200
Generator learning rate: 0.00015
Discriminator learning rate: 0.0001

Layer 1 [256, 4, 4, 4] ReLU
Layer 1 [128, 12,12, 12] ReLU
Layer 1 [64, 28, 28, 28] ReLU
Layer 1 [32, 64, 64, 64] ReLU
Output [1, 128, 128, 128] Sigmoid

Discriminator

Input [1, 128, 128, 128] -
Layer 1 [32, 64, 64, 64] LeakyReLU
Layer 1 [64, 32, 32, 32] LeakyReLU
Layer 1 [128, 16, 16, 16] LeakyReLU
Layer 1 [256, 4, 4, 4] LeakyReLU
Output [1, 1, 1, 1] Sigmoid

Figure 5. Samples of new workpiece (joint) generated by the 3DGAN model.

These data in voxel format were converted to the mesh format for editing in a CAD
environment and to reduce the file size. Some editing and refinement operations, such as
reducing the number of points, removing noise, merging close points, removing duplicate
faces, scaling, and filling holes, were performed on the generated mesh. Then, the obtained
mesh-formatted data were saved in STL format. These processes were performed with
automation using the “pymeshlab” libraries on Python.
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4.3. Design Evaluation

The functionality of structural components was evaluated concerning von Mises
values. Von Mises stress is a scalar value used to predict the yields of materials under
multi-axial loading conditions. If this value exceeds the yield strength of the material,
plastic deformation starts. The concept components generated with the generative design
model were autonomously analyzed with a script in the CATIA V5 software, and von Mises
values were determined. The macro script prepared for this purpose converts the mesh
format workpieces into a solid model and performs structural analysis by defining the
boundary conditions.

Firstly, mesh-formatted data are taken into the CAD environment, and surface defects
are removed. In the next stage, mesh structures are converted into surface and solid models,
respectively (Figure 6). This solid model is transferred to the simulation module after holes
are drilled in the part. At this stage, structural analysis is performed under a linear force with
standard boundary conditions (fixed supports on small holes, bearing load on big hole). In
the final stage, the performance score (von Mises stress) and model volume are saved in an
Excel file. This structural analysis process was applied for all 3D models generated by the
GAN model. The data preparation and structural analysis process took, on average, 36.2 s per
component. The evaluation time of all models was approximately 5 h.

Figure 6. Preparation of 3D model and structural analysis process.

At each structural analysis stage, 500 3D models were evaluated, and 250 with rela-
tively superior mechanical performance were included in the dataset. The amount of data
was kept constant by randomly removing 250 3D models from the initial dataset. The GAN
model was retrained using the training dataset created with the newly added data. At the
end of each training step, the training data were updated by evaluating the mechanical
performance of the 3D models produced. This iterative process was completed after six
cycles. In the last cycle, approximately 20.3% of the training set consisted of data generated
by the GAN model. Table 3 shows some of the GAN models generated by the 3DGAN
model at the end of the sixth iteration. The physical and mechanical properties of these
models are also in the table. The table shows that some high-volume 3D models were
subjected to high stresses due to their thin sections.
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Table 3. Examples of joints produced by the 3DGAN model at the end of the fourth iteration and
their physical properties.
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4.4. Additive Manufacturing (AM)

Concept designs were ranked according to their weight and strength properties in
the last step of the generation and evaluation cycle. According to this ranking, the design
concept with the best performance was additively manufactured. In this process, the CAD
model was converted to STL format and made ready for printing. The concept design was
produced by adjusting the printer settings, such as layer height, infill density, and print
speed, according to the desired precision and print quality.

The final iteration’s concept design with the best mechanical properties was produced
using two different additive manufacturing methods: SLA (stereolithography) and FDM
(fused deposition modeling). Table 4 compares the production process of this part (model
generated by GAN) using SLA and FDM techniques. While polylactic acid (PLA) offers
an environmental advantage due to its biodegradability, the use of liquid resin in SLA
provides superior surface quality. Moreover, SLA’s finer layer thickness makes it more
suitable for this application, which demands high detail and surface quality. In terms of
production speed, SLA completes the process in 175 min, whereas FDM takes 317 min.
However, FDM emerges as a more cost-effective option with a cost of USD 0.61 compared
to SLA’s USD 1.17.

Table 4. Production comparison of SLA and FDM methods.

Methods Parts

SLA
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5. Results and Discussion

GAN is an effective generative design tool for generating new data similar to the
geometrical configurations of training data. The main shortcoming of GAN models in
engineering design is that mechanical properties such as elastic modulus, yield strength,
and energy absorption cannot be controlled in the generated data. Since the properties to
be learned by the GAN model are not specified by the user, it is very difficult to learn these
mechanical properties with existing GAN models. Instead, this study proposes an indirect
approach to learning mechanical properties. Since GAN models learn from the dataset,
building the dataset from only high-structural-performance workpieces ensures that the
3D models generated by the GAN model also exhibit high structural performance. Thus,
mechanical features are included in the generative deep learning training process.

The proposed design and evaluation cycle aims to improve the mechanical properties
of 3D models generated by GAN. In the first stage, a synthetic dataset is created using
parametric design techniques to overcome the data shortage problem. The 3DGAN model
is trained with this synthetic dataset in the second stage. In the last stage, 3D models
generated by the 3DGAN model are analyzed in a simulation software to determine the
mechanical properties. The 3D models with superior mechanical properties determined
here are included in the dataset to be used in the next iteration. Random data are removed
from the dataset equal to the amount of new data added. The proposed method analyzes
only the effect of data quality on GAN performance without changing the amount of data
and training parameters.

Strategically, we preferred to indirectly tune the training dataset rather than use a
physics-informed GAN. This approach was primarily applied with the aim of exploring the
potential of GANs to generate new designs that deviate significantly from standard models
while maintaining performance. By editing the training dataset, an attempt was made
to provide the GAN model with a variety of examples that enabled it to implicitly learn
the desired performance characteristics without explicitly defining them. This method
allows the GAN to learn and generate new designs that are not just variations of existing
models but also potentially innovative solutions that may not be immediately noticeable
with direct coding.

There are three reasons why the proposed method is not applied to the initial training
dataset. Firstly, pre-filtering the limited training data may leave insufficient data for deep
learning model training. Secondly, the reduction in data diversity may cause an over-
learning problem. Data diversity is necessary for GANs to learn the common features
of a design class. Finally, analyzing the whole dataset in a simulation environment is
computationally inefficient.

The main objective of this study was not to maximize the performance of a structural
component but to demonstrate the contribution of the presented method in improving
mechanical properties. Although only one joint model was considered in this study, the
proposed method can be applied to various structural components where mechanical
properties are crucial, such as brackets, hinges, and load-bearing parts. Similarly, von Mises
stress, which provides accurate predictions in multiaxial stress situations, was considered as
the primary performance metric for evaluating joint models. However, many other critical
material properties, such as elastic modulus, stiffness, fatigue strength, yield strength,
and natural frequency, are worthy of consideration in engineering design and evaluation.
Integration of other performance metrics into the proposed framework is necessary for a
comprehensive evaluation.

Figure 7 shows the calculated safety factor values according to the von Mises stress
obtained at each iteration step. In the graphs, the x-axis shows the volumes of the generated
designs, while the y-axis represents the safety factor of the design. In the first iteration,
the average safety factor (µSF) and its standard deviation (σSF) were 0.947 and 0.645,
respectively. No significant performance change was observed in the second and third
iterations. However, a notable increase in the average safety factors of the designs was
seen after the fourth and fifth iterations. Compared to the first iteration, there was a slight
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decrease of 0.01% in the safety factor at the end of the second iteration. In subsequent
iterations, the average mechanical performance characteristics of the generated designs
showed increases of 3.8%, 11.2%, 16.6%, and 20.3%, respectively. The findings revealed
that there was a statistically significant improvement in the mechanical properties of 3D
models generated with the revised dataset. In addition, the included 3D models, produced
with GANs in the dataset, also affected data diversity. We found that 3D models with
more organic forms increased the depth of the dataset and thus the volumetric diversity
of the designs produced. On the other hand, when the safety factors were analyzed, there
was a linear decrease in the standard deviation values. Figure 8 shows the average safety
factors at each iteration. The circle diameters on the graph are sized according to the
standard deviation values of the safety factors, expressing the data diversity. The first
training iteration generated the highest data diversity, while this value was lower in the
sixth iteration, as expected. Additionally, the ratios of data generated by GANs within
the dataset used in each iteration are depicted on the graph. Figures 7 and 8 show the
positive conditionability of the designs produced with GANs. Data diversity improves in
the desired direction as the number of iterations increases.

When evaluating the initial dataset and the datasets developed through subsequent
iterations in terms of geometric diversity, innovation, and quality, it was evident that the
initial dataset assured both diversity and robustness. This assurance stemmed from the
fact that the initial dataset was created using parametric design techniques. In repeated
processes, while the design quality generally improved in the desired direction, there was
a slight decrease in diversity. This suggested that repetitive processes can somewhat limit
design diversity while maintaining certain quality standards. However, these processes
also facilitated the emergence of more innovative and applicable designs for real-world
applications. The potential of GAN models to produce designs that were dissimilar to the
training dataset demonstrated their contribution to innovative design approaches and their
scope for producing more original designs.

Another criterion taken into account in determining the performance of the gener-
ated 3D models was applicability, which refers to the success of the design in real-world
applications. Although the GAN model could generate realistic data, in some cases, it
generated incomplete or incorrect geometries. This situation revealed the potential of the
GAN model to create designs that did not resemble the training dataset. On the other
hand, the applicability of designs that did not fully reflect the dataset characteristics was
weak. Some models could not be analyzed in the simulation environment due to fragile
sections or discontinuities on the 3D models. The proportions of 3D models that could
not be analyzed were 12.8%, 12.3%, 11.8%, 12.9%, 11.5%, and 13.1% for the six iterations,
respectively. These statistical results showed that the reorganized data did not have a
significant effect on applicability.

The mechanical properties of the best-performing workpiece generated in the final
iteration were precisely validated using Ansys 2022 r2 software. The results from this
assessment closely aligned with those obtained through FEA automation. Figure 9 illus-
trates the mechanical behavior of the component under loading conditions, with a focus
on critical sections. Here, the highest stress occurs at the area farthest from the point of
force application and closest to the support point, while other sections experience lower
stress levels. The figure also provides information on the von Mises stresses and weights
of the original, GAN-generated, and edited models. Initially, the original model has a
relatively high weight (579.79 g) but its sharp corners lead to stress concentrations. The
GAN-generated model, despite its lower weight (266.39 g), exhibits mechanical properties
similar to the original model. This model was further enhanced by manually thickening the
thin sections and removing volumes not subjected to stress, achieving better mechanical
performance characteristics (43,618 MPa).
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Figure 7. Volume and safety factors of the generated designs.
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Figure 8. Average safety factors for training iterations.

Figure 9. Verification of finite element analysis automation. (a) Original model, (b) GAN-generated
model, (c) edited model.

The proposed design and evaluation framework enables the automation of the follow-
ing steps carried out in the traditional design process: needs identification, idea and concept
generation, modeling, evaluation, and redesign. Thus, product development processes,
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which are part of the product life cycle, can be performed automatically without human
intervention. This minimizes human errors, shortens the design process, and saves on
qualified labor. Furthermore, compared to traditional topology optimization, this method
aims to generate a variety of feasible design options rather than a single ideal design option.
With the network weights obtained at the end of training, designs with superior mechanical
properties can be produced in seconds.

The inclusion of finite element analysis in the GAN training process enables the
generation of designs with targeted mechanical performance. Moreover, the generative
deep learning model, which is partially trained with a limited amount of data, can produce
an unlimited number of functional 3D models. This generative design framework offers
a potential solution to the problem of data shortage thanks to its capacity to generate
new datasets. This feature offers a new way to create the necessary training data for
deep learning studies, especially in the defense, aerospace, and automotive industries
where the number of data points is insufficient and/or data are difficult to access due to
confidentiality. Training 3DGANs directly with 3D model data makes them suitable for
many different applications.

On the other hand, this approach presents certain potential challenges and limitations.
One notable issue is that as the mechanical performance of the generated designs improves,
there is a corresponding increase in the volume of these designs. In addition, it may be
necessary to develop more complex GAN architectures because of the need for a high
learning capacity in large datasets. This requires more computational power and time.
At the same time, some targeted mechanical properties may be more difficult to learn.
In addition, if factors such as real-world material properties, manufacturing methods,
and conditions of use are ignored, the generated designs may not perform as expected
in practical applications. Furthermore, this method cannot take into account traditional
manufacturing constraints. This may limit the use and application of designs generated
by GANs in real-world applications. For example, while a design may be suitable for
3D printing, it may not be suitable for casting or machining. Therefore, future work may
consider incorporating manufacturing-process-specific constraints into the GAN model.

While the 3DGAN model enables the creation of organic and fine-geometry designs,
these designs are difficult to manufacture with traditional manufacturing methods due
to limitations in tooling and the need for support structures. The SLA method, which is
prominent in additive manufacturing, was used in this study to investigate the manufac-
turing potential of designs obtained with 3DGAN and verified with FEA. SLA enables
the production of complex geometries and fine details. The 3D prints obtained show the
potential of the proposed method to be applied to real life. However, other methods, espe-
cially metal additive manufacturing methods, should be tested for more comprehensive
results [54].

6. Conclusions

This study presents a new framework for enhancing the mechanical properties of 3D
concepts generated by the 3DGAN model. The proposed framework consists of parametric
design, deep learning training, and finite element analysis (FEA). The integration of 3DGAN
and FEA enables the production of products with superior mechanical properties in an
automated process. The proposed iterative design and evaluation framework aims to
overcome the problems of lack of control of mechanical properties and data scarcity in
engineering design. The framework provides an approach that attempts to optimize both
design quality and design variety.

The results obtained show that 3DGANs have significant potential in engineering
design. In particular, autonomous generation of components that fulfil certain mechanical
properties can speed up design processes and make the product development process
more efficient. Although only one synthetic dataset was used in this study, the proposed
framework can be used in the design and development of many structural components
used in engineering design. However, to reveal the full potential of this approach, further
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research may be required to overcome its current limitations and challenges. In particular,
the adaptation and optimization of this approach for different engineering disciplines and
application areas is an important research topic.

In future work, the application of optimization techniques to improve the stability and
accuracy of the GAN model may help to minimize the potential errors. Including advanced
GAN architectures in the proposed framework will increase the level of detail and appli-
cability of the generated designs. Furthermore, the applicability of the proposed method
to more complex engineering problems, such as multi-material components, functionally
graded materials, and parts subjected to dynamic loading, should be investigated.
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