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Abstract: Non-metallic additive manufacturing technology has seen a substantial improvement in
the precision of the parts it produces. Its capability to achieve complex geometries and very small
dimensions makes it suitable for integration into strategic industrial sectors, such as aeronautics and
medicine. Among additive manufacturing technologies, resin development processes demonstrate
enhanced precision when compared to other methods, like filament printing. This study conducts
a comparative analysis between digital light processing (DLP) and liquid crystal display (LCD)
photopolymerization processes to assess the performance of the technologies and how process
parameters affect the accuracy of the resulting parts. The research evaluates the impact of the
discretization process used during the digital model export, determining the optimal mesh size and
then analyzing the geometric deviations that occur by altering various operating parameters of the
process. Statistical methods will be employed to identify the most significant parameters in the
manufacturing process. Among other aspects, the precision of manufacturing technologies regarding
the movement axis has also been evaluated. Regarding the minimum size of the features that can be
fabricated, DLP technology has surpassed LCD technology, successfully producing features as small
as 200 µm, compared to 500 µm for LCD technology.

Keywords: additive manufacturing; DLP; LCD; metrology; photopolymerisation; quality; VPP

1. Introduction

Additive manufacturing (AM) has generated increasing interest in recent years and
is currently undergoing tremendous development. The possibility of creating customised
and complex parts in a relatively short time makes AM a very interesting manufacturing
process on an industrial level. Therefore, this technology serves as a complement and
extension of conventional subtractive manufacturing technologies [1–3]. More and more
companies are using this technology in their production processes, as in many cases, it con-
siderably reduces costs and times compared to those of other conventional manufacturing
techniques [4–9].

Despite these advantages, AM, compared to other manufacturing processes, is a
very recent technology and in certain aspects, still requires further maturity. The main
technological challenge is still to improve the ability to obtain parts that are functional and
can be used in industrial sectors [10]. This is why the technology is constantly evolving.
This can be seen in the efforts made in recent years to develop specific regulations for
implementing AM as a general manufacturing process [6,11]. Although it should be
noted that in certain aspects, such as metrology, this technology still lags far behind the
development of other more consolidated processes.

Appl. Sci. 2024, 14, 3607. https://doi.org/10.3390/app14093607 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8385-966X
https://orcid.org/0000-0002-9944-9144
https://orcid.org/0000-0002-1227-7344
https://doi.org/10.3390/app14093607
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093607?type=check_update&version=2


Appl. Sci. 2024, 14, 3607 2 of 17

AM is very useful when low production volumes, high design complexity, and fre-
quent design changes are required, as it offers the possibility of producing complex parts,
overcoming the design limitations of traditional manufacturing methods [5,7] and becom-
ing a highly virtualised process. For this reason, the starting point of any AM process
is considered to be the design of the part to be manufactured, from which a geometric
information exchange model is obtained. One of the most widely used interchange formats
in AM is STL (Standard Tessellation Language), developed in 1986 together with the stere-
olithography and has since become a standard, although there are formats that offer more
features, such as the AMF (additive manufacturing file) format [12,13]. The STL format
performs a decomposition of the modelled surface geometry by discretising it into flat
tessellated triangles that share their edges to form a mesh [14].

In this way, an approximation is made to the designed model and if the goal is to
reduce the approximation error committed when discretising the model, the density of
the facets or faces of the mesh is increased. This increases the resolution of the mesh,
although this entails an increase in the information contained in the file and therefore,
an increase in the file’s post-processing time. Therefore, the meshing process must be
optimised to improve processing times [12–15]. This is very important in the case of AM,
as a non-optimised STL file can lead to increased pre-processing time or geometric errors
in the final parts caused by approximation errors.

Although this effect will be more determinant in those AM processes in which a
high quality of the parts is sought or in those where it is possible to obtain more precise
details, as in the case of VAT photopolymerisation processes. In these processes, a liquid
photopolymer is selectively cured inside a tank by the action of a light source, usually
ultraviolet, which activates polymerisation [13,16]. When the resin is exposed to the curing
light, photoinitiators release species that act as catalysts for the formation of chains between
monomers and oligomers. The chemical–thermal process of chain formation is irreversible,
and the prototypes cannot return to their liquid form. Using this principle, consecutive
layers of resin are gradually fabricated from a 3D model [17].

The low layer thicknesses used in this process, together with the high lateral accuracies,
make it one of the polymer AM processes from which the highest quality is obtained [18,19].
In recent years, the use of this technology has undergone a major expansion, with the
number of studies carried out on this process doubling. This has resulted from the increase
in low-cost light sources such as UV LCD (liquid crystal display) screens or UV DLP (digital
light processing) projectors that allow a complete layer to be cured simultaneously, without
the need to scan the photopolymer point by point, as in stereolithography (SLA), making it
a much faster manufacturing system [20,21].

In the case of DLP, the curing process of each layer is performed by projecting a specific
section of the layer onto the resin surface, which solidifies due to the photon-activated
photochemical reaction. After curing of each layer, the platform is moved upwards, and an-
other section view is projected onto the resin for curing, forming the additional layers. The
light distribution and intensity of the light is arbitrarily modulated, as light exposure time
is required to cure the resin [22]. Due to the high precision of the process, it is suitable for
many applications in the medical and healthcare fields [23–26]. DLP technology has been
widely used for microfabrication applications reaching micrometre accuracies [27–29]. Sev-
eral studies have been carried out to observe the accuracy limits offered by this technology,
including the study of microstructured surfaces [30,31].

LCD, on the other hand, is based on the use of LCD screens as a system for generating
images of the sections of the part to be manufactured. LCD screens allow UV light to pass
through their panels so that it can reach the resin directly, and the corresponding layer of the
material is cured. This prevents the light from expanding, and therefore, pixel distortion
is less of a problem in this technique compared to that noted for DLP manufacturing.
However, the quality is a priori inferior, so efforts are being made to improve this system by
using screens with better resolution and light transmission, which improve the efficiency
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of the system [32]. On the other hand, the low cost of LCD displays makes it a highly
interesting process [33].

However, there are limitations in these techniques that must be overcome, such as the
force required to separate the cured layer and the transparent film from the tank, since dur-
ing light-curing, the part remains adhered to the film and can suffer deformations [34–37].
Another important limitation is the material reloading rate, which is the amount of material
that fills the gap in the light-cured resin when it separates from the film. This gap must be
filled under vacuum, which can lead to incomplete fills, pores, or cracks [34,38–40]. This
filling time is directly related to the viscosity of the resin, the size of the part, the pressure
gradient, the space between the cured part and the interface, and the part geometry [41,42].
It is therefore necessary to optimise the reloading time to obtain defect-free parts. In addi-
tion to these limitations, it is necessary to optimise the operating parameters of the process
to achieve adequate light curing.

In this study, a comparison is made between the DLP and LCD VAT photopolymerisa-
tion processes (VPP), with the intention of analysing the limits of the technology and how
the operating parameters of the process can affect the final result of the parts obtained.

We will begin by studying the influence of the discretisation process carried out when
exporting the model, establishing the most suitable mesh size and subsequently, analysing
the geometric deviations obtained by modifying the different operating parameters of the
process. Statistical evaluations will be carried out in order to analyse the influence of the
different operational factors, as well as of the technology itself.

2. Materials and Methods

This article compares DLP and LCD manufacturing techniques using VPP technology.
The two devices used are the Photon Ultra, which uses DLP technology, and the

Photon S, which uses LCD technology, both from Anycubic (Anycubic, Kowloon, Hong
Kong). In the case of the Photon Ultra, it is the first desktop unit to be marketed with
this technology. The Photon S uses a high resolution (FHD) LCD screen as part of the
projection system. Table 1 shows the general characteristics of both devices. These devices
have been selected because they are mid-range devices with similar characteristics and
the same manufacturer, so that the comparison is based exclusively on the technology as a
differentiating element.

Table 1. Specifications of manufacturing machines.

Specifications Photon S Photon Ultra

Technology LCD DLP
Light source UV-LED Optical projector DLP

System resolution FHD (2560 × 1440 px) HD (1280 × 720 px)
XY resolution 47 µm (0.047 mm) 80 µm (0.080 mm)

Z-axis accuracy 0.00125 mm 0.01 mm
Suggested layer thickness 0.01~0.2 mm 0.01~0.15 mm

Exposure time 6–9 s/capa 1–3 s/capa
Manufacturing speed 20 mm/h 60 mm/h

Power rating 50 W 12 W
Manufacturing volume 165 × 65 × 115 mm (HWL) 165 × 102.4 × 57.6 mm (HWL)

System durability 2000 h 20,000 h
Wavelength 405 nm 405 nm

The same concept has been followed in the choice of material. In this case, the
premium resin from Copymaster 3D in dark grey was used. This resin has intermediate
characteristics, it is water washable, which facilitates cleaning, and is suitable for both
devices, as it can be used in equipment operating at a wavelength between 395–405 nm as
a light source.

At the end of the fabrication of the parts, they will be subjected to the post-processing
process, which includes the washing of the part and the UV post-polymerisation treat-
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ment. This process will be carried out in a system from same manufacturer as the
initial equipment.

Subsequently, the parts obtained will be analysed using a Nikon SMZ 800 (Nikon,
Tokyo, Japan) stereo optical microscope. After calibration of the equipment, the images
will be processed and digitally measured in order to obtain the geometric deviation data of
the different specimens designed.

This process will be applied to three types of samples in order to analyse the differences
between the precision of the technologies and the influence of the operating parameters of
the process. As previously mentioned, the creation of the STL file and the mesh it contains
is of great importance in an AM process where high quality is sought. In order to observe
the influence of the STL mesh resolution on the manufacturing process of a part, a test
part, which includes four different hemispheres, each with a different resolution, has been
designed. In addition, five different sizes have been produced for each of the resolutions
with the aim of examining the minimum size at which the mesh resolution no longer
influences the constructed part. The choice of spherical geometries is based on the difficulty
of discretisation processes to approximate this type of geometry by means of triangles.
For this reason, hemispherical parts will be manufactured in which both the radius of the
hemisphere and its export resolution will be varied (Figure 1). This analysis will be used to
study the influence of meshing on the final quality of the parts obtained.
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Figure 1. Schematic diagram of the specimen, with hemispherical test patterns.

Subsequently, a part with a positive geometry (shaft) and a negative geometry (hole),
with a square-based prism, will be manufactured (Figure 2). This part will be used to study
the deviations that appear in the X and Y axes by modifying different operating parameters
of the process.
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In the specific case of this study, a factorial design of experiment (DOE), with three
factors, was carried out to evaluate the geometric characteristics of the different parts
obtained. The three factors taken into account for this experiment are: exposure time,
direction of the geometry, and machine used.

In the case of exposure time, three different levels have been considered (1, 2, and 3).
These levels correspond to different exposure times that vary according to the technology
used, based on the time recommended by the manufacturer. In the DLP process, the
exposure times are 1.5, 2, and 2.5 s, and for LCD, the exposure times are 6, 7, and 8 s
(Table 2). On the other hand, the geometry direction factor consists of two levels: female,
defined as a gap, or male, defined as an axis (Table 2). The last factor that has been assessed
in the experiment is the technology used in the manufacture, which, as mentioned above,
would be DLP or LCD.

Table 2. Design of Experiment.

Experiment Number Exposure Time (s) Geometry Technology

1 1 (1.5) Shaft (Positive) DLP

2 1 (1.5) Hole (Negative) DLP

3 2 (2) Shaft (Positive) DLP

4 2 (2) Hole (Negative) DLP

5 3 (2.5) Shaft (Positive) DLP

6 3 (2.5) Hole (Negative) DLP

7 1 (6) Shaft (Positive) LCD

8 1 (6) Hole (Negative) LCD

9 2 (7) Shaft (Positive) LCD

10 2 (7) Hole (Negative) LCD

11 3 (8) Shaft (Positive) LCD

12 3 (8) Hole (Negative) LCD

Furthermore, in order to obtain sufficient data to carry out the statistical study and
to evaluate the repeatability of the manufacturing process, 6 repetitions of each case have
been carried out, resulting in 72 repetitions for the designed geometry.

In order to observe the influence of the factors mentioned in this study, in the specific
case of this experiment, the perimeter has been taken as the response variable, since the
shape of the pieces is designed so that they can fit together hollow–axis, and this depends,
to a large extent, on the perimeter measured in each of the pieces.

The third type of the pieces consist of a pyramid with a cylindrical base where the
different steps have been designed with the same height, but different sizes (Figure 3). All
of the previous studies focused mainly on the analysis of the geometric characteristics of
the parts, oriented towards the horizontal resolution of the manufacturing equipment used.
However, it is also important to analyse the vertical resolution of the machines. For this
reason, the part has been designed in the form of a stepped pyramid, with a circular base
(Figure 3).

Each pyramid consists of 16 steps, with a height of 200 µm for each step, i.e., the total
height of the pyramid, with respect to the base, is 3.2 mm. On the other hand, the diameter
of the base ranges from 3 mm to 100 µm.

The study consisted of evaluating the heights of all the steps of each piece obtained.
Three repetitions of each piece were carried out for each technology. In order to evaluate the
differences between the two technologies, the heights of the different steps were measured
to see if they were close to the design values, establishing the standard deviation of the data.
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3. Results

The interest in the use of additive manufacturing in various application fields has
been based on the resolution, manufacturing quality, and manufacturing speed in order to
compare this process with other conventional manufacturing techniques [43,44]. Therefore,
an increasing amount of research is focused on improving manufacturing speed for the
process itself, as well as on the scalability or mass production capability, known as mass
customisation [19,45,46]. Therefore, this study will analyse the deviations when processing
the model and the deviations that appear when manufacturing the model.

3.1. STL Performance Analysis

As has previously been mentioned, the increase in resolution during the export of a 3D
model results in a longer file processing time and a higher computational cost. However,
in the specific case of VPP manufacturing technology, a high surface quality is usually
sought in the parts obtained, so the discretisation process is of great importance, as it will
decisively affect the final quality of the part. If we analyse the amount of information stored
in the files (Table 3), we can see that there is an almost linear relationship with the increase
in size, so the processing can become more complicated as the resolution increases, this
being understood as the size of the polygons that make up the mesh. For this reason, we
will analyse how this resolution and the size of the figures affect the pieces obtained.

Table 3. STL file size for a sphere with different radiuses.

STL File Size (kB)

Resolution
Elements by

Radius of
Curvature

Elements by
Edge R = 10 mm R = 100 mm R = 1000 mm

Highest 10 8 94 950 9760
High 8 5 50 497 4909

Medium 5 3 30 297 2850
Low 2 3 18 175 1580

Figure 4 shows the geometries obtained, depending on the different resolutions and
sizes, for LCD technology.
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technology.

In the case of the lowest resolution, the polygons with which the geometry has been
discretised can be seen, and as the resolution increases, the polygons into which the part is
divided are smaller and therefore, less visible, until, in the case of the highest resolution,
they are no longer visible to the naked eye, and the cylindrical layers that make up the part
can be seen. In this way, the increase in resolution causes the upper portion of the part
to go from being seen as irregular hexagons to concentric circles that are stacked to build
the part.

On the other hand, when analysing the influence of the size of the hemispheres, it
can be seen that, regardless of the resolution, as the size of the hemispheres decreases,
the manufactured features have a similar visual appearance. In this way, in parts with a
diameter of 4 mm, the discretisation is not as visible, but there are still irregular shapes that
make up the part. However, from 2 mm diameter parts onwards, the triangles discretised
by the STL file are no longer visible to the eye, and only circular layers are visible. Thus,
this is the point at which the necessary limit of resolution is found.
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In the case of DLP technology, the result is similar: in the larger hemispheres, the
triangles that form the mesh are visible, while from 2 mm in diameter, they are no longer
noticeable (Figure 5).
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Therefore, it can be said that, in the case of the manufacture of parts with spherical
characteristics with a diameter of 2 mm or less, the resolution of the mesh is not significant.
However, for larger parts, a high resolution is required when meshing; otherwise, the
polygons that make up the mesh will be visible. On the other hand, there are no significant
differences between the two technologies; however, it can be seen that the higher XY
resolution of LCD technology means that the smaller hemispheres are better defined. This
is something that will have a decisive effect on the analysis of 2D deviations.

However, in both cases, defects associated with the reloading of the material can be
seen, which is a negative effect that appears in these processes [34,38] and which can be
seen in the upper area of the figures, mainly in the larger ones (Figure 6). It can therefore be
deduced that this effect is independent of the resolution of the figure and the technology.
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3.2. The 2D Deviation Analysis

As mentioned above, a study of the lateral deflections has been carried out from the
analysis of the perimeter of the designed geometries. Once the manufactured specimens
were analysed, the data obtained were processed.

When analysing the figures, the first thing that can be seen is a pixelated effect in the
case of DLP technology, something that is characteristic of this technology [17] and which
is not seen with LCD technology. This effect appears, independently of the geometry and
resolution, as can be seen in Figure 7.
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On the other hand, if the images are analysed as a whole, it can be seen that in the
case of the LCD technology (Figure 8), regarding the positive and negative geometries,
increasing the exposure time slightly improves the accuracy of the corners up to 8 s. If it is
increased further, negative effects occur. In the case of DLP technology, similar behaviour
occurs (Figure 9), so it follows that exposure times significantly affect figure accuracy. To
study the effects more concretely, the perimeter of these figures will be analysed.

In order to study these effects, firstly, the main effects graph was obtained for each
of the different geometries. This type of graph provides an overview of the influence, or
lack thereof, of the factors on the measured variable, in this case, the perimeter (Figure 10).
Analysis of the graph shows that the most significant factors are the direction of manufac-
ture and the type of technology used. On the other hand, it is generally observed that the
exposure time has practically no effect on the measured perimeter.
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Figure 8. Image of the square test specimen obtained with LCD technology.

Taking into consideration the manufacturing direction factor, there is a clear trend
showing that the manufacture of shafts is able to reproduce average values of the perimeter
close to the design perimeter. On the other hand, the parts manufactured as hollows
significantly exceed the design values, regardless of the exposure time applied and the
manufacturing equipment used.

Likewise, it can be seen that the parts manufactured with LCD technology present
mean experimental values of the perimeter closer to the design values, while those manu-
factured with DLP technology far exceed the values of the established model. It can also
be seen that the average of the perimeter values obtained exceeds the theoretical design
perimeter, without taking into account any of the aforementioned factors.

It can be seen that the mean value of the perimeter measured in all experiments is
24.2122 mm, while the theoretical value of the designed perimeter is 24 mm. The relative
error between the two measurements is 0.884%.

It can be concluded that the experimental results of the average circumference obtained
were above the design values, i.e., parts with larger dimensions have been manufactured,
although the relative error between both values is very small.

These graphs provide some information about the main effects of the proposed factors
on the selected measurements. However, in order to correctly establish the significant
factors of an experiment, it is necessary to carry out an ANOVA test. With this analysis,
the actual significant factors of a study are obtained. The common ANOVA test has a
confidence level or interval of 95%, where α = 0.05. Table 4 shows the p-values obtained for
each factor, with the aim of establishing those that are significant in this study.
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Table 4. ANOVA results.

Pattern Factor p-Value H0 Significance

Square
Exposure time (s) 0.347 Accepted No

Geometry 0.000 Rejected Yes
Technology 0.000 Rejected Yes

It can be seen that the significant factors in the three geometries correspond to those
listed above in the main effects plots. This shows that the values observed in the main
effect plots are valid, in this particular case, to establish the significant factors affecting the
response variable. This table shows that the exposure time in the different geometries is
still not a significant factor in the study; on the other hand, as shown in the main effect
plots, both the manufacturing direction and the machine used are significant factors in the
process, and as a consequence, these factors influence the perimeter.

As in the main effects graphs and in the ANOVA tests carried out, the Pareto diagram
(Figure 11) shows that the main significant factors in the study are the manufacturing
direction and the technology used, as they exceed the critical value, indicated by the
red dashed line. Furthermore, the interactions between the different factors are shown
in this graph, and the interaction between exposure time and manufacturing direction
is significant.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 17 
 

It can be seen that the mean value of the perimeter measured in all experiments is 
24.2122 mm, while the theoretical value of the designed perimeter is 24 mm. The relative 
error between the two measurements is 0.884%. 

It can be concluded that the experimental results of the average circumference 
obtained were above the design values, i.e., parts with larger dimensions have been 
manufactured, although the relative error between both values is very small. 

These graphs provide some information about the main effects of the proposed 
factors on the selected measurements. However, in order to correctly establish the 
significant factors of an experiment, it is necessary to carry out an ANOVA test. With this 
analysis, the actual significant factors of a study are obtained. The common ANOVA test 
has a confidence level or interval of 95%, where α = 0.05. Table 4 shows the p-values 
obtained for each factor, with the aim of establishing those that are significant in this 
study. 

Table 4. ANOVA results. 

Pattern Factor p-Value H0 Significance 

Square 
Exposure time (s) 0.347 Accepted No 

Geometry 0.000 Rejected Yes 
Technology 0.000 Rejected Yes 

It can be seen that the significant factors in the three geometries correspond to those 
listed above in the main effects plots. This shows that the values observed in the main 
effect plots are valid, in this particular case, to establish the significant factors affecting the 
response variable. This table shows that the exposure time in the different geometries is 
still not a significant factor in the study; on the other hand, as shown in the main effect 
plots, both the manufacturing direction and the machine used are significant factors in the 
process, and as a consequence, these factors influence the perimeter. 

As in the main effects graphs and in the ANOVA tests carried out, the Pareto diagram 
(Figure 11) shows that the main significant factors in the study are the manufacturing 
direction and the technology used, as they exceed the critical value, indicated by the red 
dashed line. Furthermore, the interactions between the different factors are shown in this 
graph, and the interaction between exposure time and manufacturing direction is 
significant. 

 
Figure 11. Pareto plot of standardized effects for square geometry.

All the graphs and diagrams shown above represent the influence of each of the factors
on the response variable; however, it is also important to consider the interaction between
the different factors. Figure 12 shows the factor interaction graph.

Observing the graphs, it can be seen that in the interaction of the machine–direction
factors, there are appreciable differences between the values. On the one hand, it can
be seen that parts manufactured using DLP technology show higher average perimeter
values than those manufactured with LCD technology. In addition, the difference between
manufacturing a hollow and a shaft is easily visible, since it is the significant factor that has
the greatest impact on the response variable, according to the data obtained.

Analysing the interaction between exposure time–machine, it can be seen that there
are small variations in the data when the exposure time varies. However, analysing the
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variations in the technology used, there are notable differences between the elements
manufactured with DLP and LCD technology, with those obtained with LCD being closer
to the design specifications.
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Finally, looking at the exposure time–direction interaction graph, there are also vari-
ations among the data. There is a tendency for the perimeter values between the shaft
and hole to equalize as the exposure time increases. In the case of exposure time at level 1
(lower exposure), there are notable differences between the perimeter values for the shaft
and hole; however, when the exposure time is at level 3 (higher exposure), these data tend
to equalize, and there are practically no differences between the shaft and hole.

However, it has been determined that the exposure time is not a significant parameter
in regards to the response variable, so it has been difficult to establish an optimal exposure
time for each technology.

Going deeper into the research, the designed pieces have the shape of sockets, so their
function could be the union between shaft and shaft; therefore, it would be important to
take into account the situation in which the perimeter measurements are similar in both the
shaft and the shaft. Observing the interaction graphs between variables, specifically the
interaction between exposure time–direction, it can be seen that the minimum difference
between the experimental values of the mean perimeter obtained for the axis and shaft
occurs when the exposure time is the highest, i.e., level 3. This corresponds to an exposure
time of 2.5 s, in the case of DLP technology, and 8 s, in the case of LCD technology. Therefore,
these exposure times could be the optimum parameters of the study, since although the
values are far from the theoretical value, they are similar for the shaft and gap.

This has also been analysed in a practical way, fitting the pieces obtained to observe
their behaviour. It has been observed that practically all the pieces have fitted correctly.
In the case of the parts obtained with shorter exposure times (level 1 and 2), for both
technologies, the parts fitted easily, due to the looseness of the hollow-shaped parts and
the smaller size of the shaft-shaped parts. However, it is of interest that these parts fit
without clearance, so the parts obtained with the longest exposure time have fulfilled this
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requirement. The interaction graphs between factors show that the dispersion of values
is low.

In short, examining all the data obtained, it can be said that with the realization of this
study, optimal exposure times have been taken for each of the manufacturing equipment
used. In the case of the DLP technology machine, the optimum exposure time is 2.5 s, while
for the LCD technology, it is 8 s. This choice of exposure times was based on the design
objective of these parts, i.e., the way they fit together. As mentioned above, the choice of
shorter exposure times could have been valid because the parts fit together, but they fit
loosely, and this is due to the difference in perimeters between the gap and the shaft of the
same part. With the longer exposure time, therefore, the pieces fit correctly and without
looseness, since the perimeters of the shaft and shaft are similar.

3.3. Pyramidal Speciments

Figure 13 shows the pyramid-shaped parts obtained with DLP technology and LCD
technology, respectively. The first noteworthy aspect is that the only pyramid that exhibits
all the design features is the one produced with DLP technology. The rest of the pyramids
manufactured with LCD technology have only been able to build 15 steps out of the
16 designed, where the last step has a diameter of 200 µm. Moreover, it can be seen that the
pyramids obtained with DLP technology seem to better represent the designed model.
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The results obtained after the measurement process are shown in Table 5. Analysing
the data, it is observed that the experimental values are generally about 20 µm away from
the theoretical value. This means that there is a relative error of between 12% and 9% for
the experimental values, with respect to the theoretical values. Although this error is not
significantly large, the experimental results can be considered to be relatively far from the
theoretical specifications.

Table 5. Experimental results for the height of pyramidal specimens.

Manufacturing Technology

LCD DLP

Geometry Average (µm) Standard
Deviation (µm) Average (µm) Standard

Deviation (µm)

Cylinder 180 7 176 10

4. Conclusions

VPP techniques are pivotal in advancing additive manufacturing (AM), with their
research crucial for enhancing products across various sectors, particularly in medical and
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industrial fields. This study presents a geometrical analysis to examine the behaviour
of LCD and DLP technologies. By analysing the geometrical aspects of both DLP and
LCD methods, the impact of manufacturing parameters on the resulting features has
been identified. Moreover, notable differences between these two technologies have been
observed. The study also establishes optimal exposure times for each technology, based
on the outcomes of various experiments. For LCD technology, the ideal exposure time is
8 s, which aligns with the default lamination program’s recommendation. In contrast, DLP
technology requires an optimal exposure time of 2.5 s, which is slightly longer than the
manufacturer’s suggestion of 2 s.

The precision of each technology along the XY axis has been assessed as well. Re-
garding the minimum feature size that can be fabricated, DLP technology consistently
outperforms LCD technology, achieving feature sizes as small as 200 µm compared to
LCD’s 500 µm. Additionally, DLP technology tends to produce features that are closer to
the intended design values, especially in regards to smaller features, whereas LCD technol-
ogy shows marginally better results in manufacturing larger parts. This enhanced precision
in micro-feature fabrication using DLP may stem from the more intense light source used
in DLP projectors compared to that used in LCD displays. However, LCD technology
generally yields better visual quality in parts due to superior anti-aliasing systems that
mitigate the staircase effect, which can distort the dimensions of features away from the
design values. Geometrical analysis supports that features made with DLP are closer to
design specifications compared to those made with LCD in micro-feature production. The
study also explores the significance of the STL file resolution. It finds that for features
smaller than 2 mm, the resolution of the STL file becomes less critical, whereas for larger
features, the resolution of geometry discretization can significantly impact surface quality.
A high-resolution STL file, when used for manufacturing larger parts, may significantly
increase both processing time and file size. Finally, the accuracy of both technologies in the
vertical axis was evaluated by measuring the heights of various pyramids, demonstrating
that both technologies achieve similar accuracy in the Z-axis.
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