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Abstract: Purpose: The aim of this study was to assess the efficacy of an artificial intelligence (AI) algo-
rithm that uses radiomics data to assess recurrence and predict survival in hepatocellular carcinoma
(HCC) treated with transarterial chemoembolization (TACE). Methods: A total of 57 patients with
treatment-naïve HCC or recurrent HCC who were eligible for TACE were prospectively enrolled in
this study as test data. A total of 100 patients with treatment-naïve HCC or recurrent HCC who were
eligible for TACE were retrospectively acquired for training data. Radiomic features were extracted
from contrast-enhanced, liver computed tomography (CT) scans obtained before and after TACE.
An AI algorithm was trained using the retrospective data and validated using the prospective test
data to assess treatment outcomes. Results: This study evaluated 107 radiomic features and 5 clinical
characteristics as potential predictors of progression-free survival and overall survival. The C-index
was 0.582 as the graph of the cumulative hazard function, predicted by the variable configuration
by using 112 radiomics features. The time-dependent AUROC was 0.6 ± 0.06 (mean ± SD). Among
the selected radiomics features and clinical characteristics, baseline_glszm_SizeZoneNonUniformity,
baseline_ glszm_ZoneVariance and tumor size had excellent performance as predictors of HCC re-
sponse to TACE with AUROC of 0.853, 0.814 and 0.827, respectively. Conclusions: A radiomics-based
AI model is capable of evaluating treatment outcomes for HCC treated with TACE.

Keywords: hepatocellular carcinoma; chemoembolization; radiomics; artificial intelligence; contrast-
enhanced CT; treatment response; overall survival

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor and is re-
sponsible for a half million deaths annually worldwide [1]. Curative treatment options such
as surgical resection, local ablation and liver transplantation have been the most effective
treatments for HCC. However, less than 20% of HCC patients are treated surgically, mainly
because of associated cirrhosis and advanced stage of cancer at diagnosis [2,3]. Based on the
survival benefits with increasing evidence [4,5], transarterial chemoembolization (TACE) is
the widely-used, standard treatment modality for intermediate-stage HCC.

Multi-detector computed tomography (CT) is the most widely used imaging tool for
assessing therapeutic response after TACE [6]. However, previous studies have reported
that the detection of viable nodules, using lipiodol, is usually ambiguous since hepatic
lesions are frequently hyper attenuated in arterial phase images, such as arterio-portal
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shunts [7,8]. Manual assessment, which is observer-dependent, is based on the tumor
diameter measured in only one axial plane rather than its full three-dimensional nature [9].
Certainly, these methods are not always applicable considering the various conditions
that HCC tumors can present with after TACE treatment, including those with irregular
shapes, ill-defined margins, or heterogeneous necrosis [10]. Previous studies have shown
that overall response rates range from 15% to 85% after TACE and cumulative local tumor
progression rates at 1 and 5 years are 33% and 73%, respectively [11,12]. Therefore, it is
important to assess tumor response to TACE treatment, which can help guide subsequent
treatment strategies.

Recent emerging technologies in quantitative computational image analysis offer
promising opportunities. Bioinformatic analysis transforms images into mineable data,
enabling the characterization of lesions beyond visual recognition. Radiomics, a high-
dimensional quantitative analysis approach, can compute a set of features that uniquely
characterize a tumor [13,14]. Radiomics has been successfully applied to predict outcomes
through tumor imaging for various cancers [15,16]. However, using radiomics to predict
survival in HCC has not been explored.

Recently, deep convolutional neural networks have been gaining recognition in imag-
ing research [17]. A neural network is a modality used for artificial intelligence (AI), and
convolutional layers are an effective tool for imaging pattern recognition. Previous studies
demonstrated that deep learning with convolutional neural networks has achieved good
performance in imaging pattern recognition [18,19]. Therefore, further studies are needed to
support the robustness of radiomics approaches for predicting recurrence in HCC patients
after HCC treatment.

The aim of this study was to evaluate an AI-based radiomics model applying CT
studies after TACE that could predict HCC recurrence and be a prognostic biomarker for
the survival of HCC patients.

2. Materials and Methods
2.1. Patients

This study was approved by the institutional review board of the Gil Medical Center
(GAIRB2019-038) and was performed in accordance with the Declaration of Helsinki. All
participants provided written informed consent. Between May 2019 and August 2021, we
enrolled 57 patients with treatment-naïve intrahepatic HCC, or recurrent HCC (no marginal
recurrence), and were eligible for TACE as their first-line therapy. Exclusion criteria were
as follows; (1) Tumor thrombus in main portal vein; (2) Infiltrative HCC; (3) Extrahepatic
tumor spread.

2.2. Methods Including Dose of Contrast Agent and CT Protocol

All patients received baseline CT scans within one month prior to TACE and follow-
up CT scans 4–12 weeks after TACE. The CT liver protocol was used for all patients by
including non-enhanced, arterial, portal venous, and wash-out phases. After enhancement
in the descending aorta had reached 100 Hounsfield units, images of the arterial and portal
venous phases were obtained with 18 and 50 s delays, respectively. The equilibrium phase
was obtained with a fixed delay of 180 s after initiating the contrast injection. Contrast
material, containing iobitridol (Xenetics; Guerbet, Aulnay sous Bois, France), was injected
at 1 mL/kg of body weight (to a maximum of 150 mL) via 18-gage, peripheral venous
access (generally an antecubital vein), at a flow rate of 4 mL/s with a power injector. No
side effects from the CT contrast media were reported by any patients.

2.3. TACE

TACE treatment was administered with a mixture of 5 mL iodized oil contrast medium,
lipiodol (Guerbet, Aulnay sous Bois, France), and 30–50 mg of adriamycin. We selectively
embolized the feeding artery using absorbable gelatin sponge particles until flow stasis.
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TACE was performed repeatedly in an “on-demand” fashion during follow-up examina-
tions 4–12 weeks after the initial TACE treatment.

2.4. Assessment of Actual Treatment Responses

The modified RECIST (mRECIST) guideline was used for response evaluations [20].
According to mRECIST, the longest diameter of the viable portion of the tumor with
viability is defined as tumor tissue with enhancement in the arterial phase of contrast-
enhanced CT. Complete response (CR) is defined as the disappearance of any intratumoral
arterial enhancement in all target lesions; partial response (PR) is considered when the
sum of the longest viable tumor diameters of target lesions decrease at least 30% from
their baseline sum; progressive disease (PD) occurred when the sum of the longest viable
tumor diameters increase by at least 20% to the baseline sum of diameters of target lesions
since the beginning of treatment; and stable disease (SD) is any case that shows neither
a sufficient decrease or increase in the viable tumor diameter sum to qualify for PR or
PD, respectively.

2.5. Radiomics and Artificial Intelligence

Radiomics approaches include texture analysis as a subset and compute hundreds of
features to describe tumor characteristics. The tumor phenotype was quantified and images
were converted into mineable data with high-dimensional features. We also extracted
image features related to tumor intensity (histogram), shape, texture and wavelet (high or
low-frequency feature).

To extract image features from CT data, a binary mask is created by specifying the
lesion area of the image as an ROI. Using the pyradomics library, we input the original
image data and the generated binary mask to extract radiomics features for the lesion area
of the original image. Radiomics feature extraction is the process of quantifying the imaging
features of a specified region in image data through a mask into quantitative variables
such as shape features, first-order features, and second-order features. Shape features
are features related to the shape of the ROI specified by the mask, which are variables
that quantify the size, shape, surface, and orientation of the image. The extracted shape
features include the number of pixels contained within the ROI (volume), the number of
surface pixels to measure the surface area (surface area), how close to spherical the ROI is
(sphericity), and how elongated the shape of the ROI is (elongation). First-order features
are features related to the distribution of pixel values within the ROI and are computed
using a histogram of the frequencies of pixel values. These features quantify information
such as the brightness, contrast, and sharpness of the image. Second-order features are
features related to the spatial correlation of pixel values in the ROI of a medical image, and
are calculated by constructing a matrix that represents the spatial relationship of each pair
of pixels in the region of interest and performing a matrix product with the image data. It
is expressed as Gray-Level Dependence Matrix (GLDM), Gray-Level Run Length Matrix
(GLRLM). The features computed in this way can quantify and express information such
as texture or pattern in the image.

The extracted radiomics variables consist of 107 features, including shape features
(14 features), first-order features (18 features), and second-order features including GLCM
and GLDM (75 features). The authors added 5 clinical variables to this, for a total of
112 features used in the study.

We conducted the training phase using retrospective CT data (100 patients, from
January 2015 to February 2016) and performed the prediction phase using prospective
data (57 patients) (Table 1). Radiomic features were extracted from CT images of the
arterial phase. The location of the tumor was marked by the radiologist, and the tumor
was segmented by the medical imaging engineer. Finally, the segmentation result was
confirmed by the radiologist.
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Table 1. Baseline Patient Characteristics of Prediction and Training Set.

Parameter Prediction Set (n = 49) Training Set (n = 98)

Age (years), mean (range) 65.9 (10.4) 63.5 (9.8)
Sex, male/female 36/13 77/21
Etiology of liver cirrhosis, n (%)

Hepatitis B virus 30 (61) 63 (63)
Hepatitis C virus 7 (14) 12 (12)
Alcoholic 9 (19) 16 (16)
Hepatitis B virus + Alcoholic 2 (4) 6 (6)
Hepatitis C virus + Alcoholic 1 (2) 3 (3)

HCC
Number

1 46 (94) 81 (82)
2 3 (6) 17 (18)

Tumor size
<2 cm 17 (34) 34 (35)
2 ≤ x < 5 cm 27 (55) 46 (47)
≥5 cm 5 (11) 18 (18)

Child–Pugh score, n (%)
A 41 (84) 84 (86)
B 8 (16) 14 (14)

Survival
Progression-free survival (months) 16.2 (12.2) 16.1 (17.9)
Overall survival (months) 31.4 (13.3) 50.7 (26.7)

We used radiomics to extract variables from the baseline and follow-up CT data
(107 variables each). The variables extracted from the baseline and follow-up data were
combined with clinical variables to create one dataset (112 variables in total, 98 cases). The
model was trained using the scikit-survival framework, which was analyzed using the
Random Forest Survival method. A total of 98 cases was used as the training set, and a
prediction group of 48 cases was used as the test set. We used TensorFlow 2.6 framework.

2.6. Statistical Analysis

We used a Concordance Index (C-index) score to measure the performance of the
model. The C-index is a performance metric used in survival analyses, which measures
the degree of agreement between the relative order of events predicted by a model and
the actual order in which they occur. The higher the C-index score, the better the model’s
predictions [21,22]. We also measured the time-dependence area under the receiver op-
erating characteristics (AUROC) by comparing the prediction of survival over time with
the actual event occurrence. Analyses were performed by an independent investigator
using scikit-survival 0.22.1. The AUROC and optimal thresholds were obtained by the
multipleROC package in R. All reported p values are two-sided and considered statistically
significant at <0.05. Statistical analyses were performed using R software/environment (R
version 2.9.1).

3. Results
3.1. Patient Demographics

Patient demographic information is presented in Table 1. Of the 57 patients in the pre-
diction group, two were lost to follow-up and one patient expired before undergoing TACE.
Five additional patients were excluded from the analysis because tumor segmentation was
not possible. As a result, 49 patients were included in the prediction phase of the analysis.
Of the 100 patients in the training group, two were excluded from the analysis because
tumor segmentation was not possible. As a result, 98 patients were included in the training
phase of the analysis (Figure 1).
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The mean age of the prediction and training groups were 65.9 ± 10.4 and 63.5 ± 9.8
(mean ± standard deviation [SD]) years, respectively. Etiology of liver cirrhosis in the
prediction and training groups included hepatitis B virus (61% and 63%), hepatitis C virus
(14% and 12%), and alcoholic (19% and 16%). Some viral carriers in the prediction and
training groups were also chronic alcoholics; hepatitis B virus (4% and 6%); and hepatitis C
virus (2% and 3%), respectively. In the prediction and training groups, Child–Pugh Class A
was 84% and 86% and Child–Pugh Class B was 16% and 14%, respectively. The number
of HCCs in the prediction and validation group included single (94% and 82%) and two
(6% and 18%) HCCs, respectively. The HCC tumor sizes in the prediction and validation
groups included <2 cm (34% and 35%), 2 ≤ x < 5 cm (55% and 47%) and ≥5 cm (11% and
18%), respectively. Progression-free survival (PFS) of the prediction and validation groups
were 16.2 and 16.1 months and overall survival (OS) was 31.4 and 50.7 months, respectively
(Table 1).

3.2. Survival Models

We compared 107 radiomics features between the baseline and follow-up data and
analyzed 5 clinical characteristics (gender, age, tumor number, tumor size, and Child–Pugh
score) as potential predictors of PFS and OS by the scikit-survival framework model, using
the Random Forest Survival method. We calculated the C-index score to measure the perfor-
mance of the model. The C-index was 0.582 (p = 0.020) as the graph of the cumulative hazard
function, predicted by the variable configuration by using 112 features. (Figure 2). The time-
dependent AUROC was 0.6 ± 0.06 (mean ± SD, p = 0.014) when comparing the prediction
of survival over time with the actual event occurrence (Figure 3). Feature selection was
performed based on the C-score of the model, and finally, four variables were extracted. The
selected four variables were follow-up_glszm_LargeAreaHighGrayLevelEmphasis (weight
0.088), baseline_glszm_SizeZoneNonUniformity (weight 0.007), baseline_glszm_ZoneVari-
ance (weight 0.006), baseline_firstorder_Kurtosis (weight 0.005) (Figure 4). We further
determined whether the selected factors were good predictors of tumor response in HCC
treated with TACE. According to mRECIST criteria, 33 patients (68%), achieved a CR
and 15 (32%) had a PR, SD and PD. We then evaluated whether radiomics features and
clinical factors perform optimally in the diagnosis of viable tumors. The AUROC of
Baseline_glszm_SizeZoneNonUniformity, baseline_glszm_ZoneVariance and tumor size
was 0.853 (p < 0.001), 0.814 (p < 0.001) and 0.827 (p < 0.001), respectively, and showed
excellent performance as predictors of HCC response treated with TACE, while follow-
up_glszm_LargeAreaHighGrayLevelEmphasis and kurtosis performed relatively well
(AUROC, 0.812 (p < 0.001) and 0.681 (p < 0.001), respectively) (Figure 5).
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4. Discussion

This study evaluated the utility of radiomics derived from contrast-enhanced CT
scans and AI models in predicting the response and prognosis to TACE treatment in
patients with HCC. We conducted a comparative analysis between tumor responses to
TACE predicted by the radiomics model and actual responses measured using mRECIST
guidelines. Additionally, comparisons of PFS and OS were made between the mRECIST
guidelines and radiomics model prediction. Variables were extracted using radiomics from
both baseline and follow-up contrast-enhanced CT scans, and ultimately, four variables
were selected through feature selection calibration. Ultimately, the C-index of the radiomics
prediction model for survival analysis yielded a value of 0.582.
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TACE is the established standard treatment for intermediate-stage HCC, and CT
serves as the primary imaging modality for evaluating treatment response. Lipiodol is
commonly utilized in TACE, exhibiting high attenuation on CT scans. The region exhibiting
high attenuation due to lipiodol uptake demonstrates a robust correlation with tumor
necrosis [23]. However, the high attenuation displayed by lipiodol on CT scans creates
challenges in evaluating small enhancing viable lesions, as it gives rise to beam-hardening
artifacts in the surrounding area [24]. The sensitivity of CT in detecting residual or recurrent
disease after TACE with lipiodol is less than 50% when MR is considered the reference
standard [25,26]. These findings indicate constraints in the assessment of TACE treatment
response on CT scans through conventional visual assessment.

Radiomics is a technique employed for the quantitative characterization of medical
images, involving high-dimensional, quantitative data [27]. In contrast to conventional
methods that treat medical images as visual data for manual inspection, radiomics presents
a novel approach to extracting information embedded within the medical images [28], mak-
ing it possible to identify high-dimensional variables beyond semantic features obtained
through conventional visual assessments.

There have been several radiomics studies aiming to identify variables associated with
the response to TACE in patients with HCC. Several studies have shown that a radiomics
model based on MRI effectively predicts the response to TACE [29–32]. Bernatz et al. found
that a model, incorporating radiomics of post-TACE CT and clinical scores, effectively
predicted the prognosis after TACE [33]. This model includes a single radiomic feature,
Large Dependence High Gray Level Emphasis, and achieved a C-index of 0.67 for overall
survival. This is in line with the results of our study that Large Dependence High Gray
Level Emphasis in follow-up CT scans was the most significant feature associated with
overall survival. This feature assesses the joint distribution of large dependence involving
higher gray-level values [34]. Furthermore, it was one of the key features for distinguishing
between histologic grades 1 and 3 in an MRI radiomics study of HCC [35]. In our study, the
model was created incorporating a total of four features from baseline and post-TACE CT
and demonstrated a C-index score of 0.582 and time-dependence AUROC of 0.6 for overall
survival. Although the C-index and AUROC were not excellent, the radiomic features
extracted in this process predicted treatment response better than manual analyses.

Our study has several limitations. First, the study was limited to a relatively small
number of samples, which may cause instability in the feature values. The sample size,
especially the number of patients in the prospective test data (57 cases), may limit the
generalizability of the study results. Future studies with larger samples are needed to fully
validate the findings. Second, the quality and consistency of radiomic features extracted
from various CT scans can be influenced by various factors, including imaging protocols,
equipment variations, and image artifacts. Third, for the training phase, the authors used
retrospective data. Retrospective data collection can introduce bias and confounding factors
that can affect the accuracy and reliability of AI algorithms.

Radiomics features can provide valuable quantitative information, but their clinical in-
terpretation and integration into existing prognostic models and treatment decision-making
processes can be challenging. The use of AI algorithms in medical decision-making raises
ethical and regulatory considerations regarding patient privacy, consent, and potential
biases. Addressing these limitations through rigorous research design, data validation, and
collaboration between clinicians, radiologists, and data scientists can improve the reliability
and clinical usefulness of AI algorithms in predicting treatment outcomes in HCC patients
treated with TACE.

In conclusion, a radiomics-based AI model would be beneficial for evaluating treat-
ment response and predicting overall survival through CT in patients with HCC treated
by TACE.
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