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Abstract: In recent years, the continuous progress of wireless communication and sensor technology
has enabled sensors to be better integrated into mobile devices. Therefore, sensor-based Human
Activity Recognition (HAR) has attracted widespread attention among researchers, especially in
the fields of wearable technology and ubiquitous computing. In these applications, mobile devices’
built-in accelerometers and gyroscopes have been typically used for human activity recognition.
However, devices such as smartphones were placed in users’ pockets and not fixed to their bodies,
and the resulting changes in the orientation of the sensors due to users’ habits or external forces
can lead to a decrease in the accuracy of activity recognition. Unfortunately, there is currently a
lack of publicly available datasets specifically designed to address the issue of device angle change.
The contributions of this study are as follows. First, we constructed a dataset with eight different
sensor placement angles using accelerometers and gyroscopes as a prerequisite for the subsequent
research. Second, we introduced the Madgwick algorithm to extract quaternion mode features and
alleviate the impact of angle changes on recognition performance by fusing raw accelerometer data
and quaternion mode features. The resulting study provides a comprehensive analysis. On the one
hand, we fine-tuned ResNet and tested its stability on our dataset, achieving a recognition accuracy of
97.13%. We included two independent experiments, one for user-related scenarios and the other for
user-independent scenarios. In addition, we validated our research results on two publicly available
datasets, demonstrating that our method has good generalization performance.

Keywords: human activity recognition; sensor data fusion; sensor orientation

1. Introduction

In recent years, Human Activity Recognition (HAR) has gained massive attention [1]
from researchers and the academic community due to its important role in various fields,
including healthcare [2], sports monitoring [3], intelligent surveillance [4], gaming [5], and
rehabilitation [6]. HAR systems have been developed to monitor and recognize human
activities through the use of various wearable sensors [7] or vision-based [8] datasets such
as images [9,10] and videos [11]. In the past decade, significant improvements have been
made in wireless communication and sensor technology in terms of capacity, affordability,
and energy efficiency, as well as in the rapid development of mobile communication devices.
As a result, sensors such as accelerometers, gyroscopes, and magnetometers are now able
to be embedded in mobile devices such as smart bracelets and watches for human activity
recognition [1,2,7].

As a standard for evaluating the performance of HAR tasks, accuracy is one of the
important metrics. For greater accuracy, existing research primarily categorizes sensor
placement into two methods: multiple sensors fixed on various parts of the body [12,13],
such as the wrists, ankles, and chest, or a single mobile device such as a smartphone
placed in the user’s pocket [14,15]. The former provides more sensor data, leading to
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greater recognition accuracy, but is inconvenient and costly, while the latter is low-cost
and convenient, but may not be as accurate. Another issue involves device angle changes
during data collection. In [16], for example, the sensors were not easily fixed on the human
body when participants were performing tasks such as running. When only a single
mobile phone was placed in the participant’s pocket, the issue of device angle change was
augmented due to the sensor not being physically fixed to the human body.

The issue of device angle change in sensors which can affect the accuracy of HAR tasks
has always been present. Our goal here is to find a more robust method that can eliminate
the impact caused by device angle changes. At present, there are several publicly available
HAR datasets on the market, such as WISDM [14], UCI HAR [17], Opportunity [18], and
others. These datasets are comprehensive, but lack the different angle orientation data
needed to simulate real-life scenarios accurately. For example, users may have different
habits when using the devices, and are able to freely adjust the angles and positions of the
devices according to their preferences. Additionally, device angle fluctuations may vary
among different users during movement [19].

Existing research has mainly focused on machine learning or deep learning model
architectures, with limited emphasis on the sensor data specifically. This means that impor-
tant sensor data information, such as gyroscope readings that indicate angle information,
may be underutilized. In other words, these studies often input only raw data into their
models and apply the same feature extraction strategy to all sensors. Several studies have
pointed out that the angle information in gyroscopes is rich and valuable [20]. Typically,
combining gyroscopes with accelerometers yields better results than using accelerometers
alone. Therefore, effectively utilizing the angle information from gyroscopes is crucial for
HAR tasks. In addition to the HAR field, gyroscope data play an important role in fields
such as inertial navigation [21], virtual reality [22], robotics [23], and more. The Madgwick
algorithm [24] has been proposed to address some of the issues associated with traditional
attitude estimation algorithms, and is widely used in these fields. It calculates attitude by
fusing data from accelerometers, gyroscopes, and magnetometers, then converts sensor
data (including from accelerometers and gyroscopes) into attitude information. It is derived
by minimizing the error in attitude estimation based on the difference between the sensor
measurements and the expected measurements, thereby avoiding the need for accurate
model parameters and noise statistics. Furthermore, this algorithm is based on quaternions,
which effectively addresses the problem of attitude estimation in nonlinear systems [25]
with low computational demands and good real-time performance.

Therefore, in this research we examined the impact of sensor orientation with sensors
embedded in mobile devices such as smartphones during the execution of HAR tasks.
The contributions of this study are outlined as follows. First, due to the lack of publicly
available datasets specifically addressing the device angle change problem, we collected a
dataset containing using accelerometer and gyroscope data, including various device angles.
Second, the sensor data were fused, and superior results were achieved by concatenating
the raw data with the fused data as input.

The rest of this article is structured as follows. Section 2 provides a review of related
works. Section 3 introduces the datasets used in our research and presents our proposed
application of the Madgwick algorithm along with a brief overview of our baseline method.
Section 4 details the experimental setup, results, and analysis, demonstrating our method’s
superiority. Finally, our findings are concluded in Section 5.

2. Related Works

The deviation of sensor installation position and angle caused by body movement
during user motion has been a persistent problem, impacting the accuracy of human mo-
tion recognition. Researchers have made numerous efforts to address this issue over the
past decade. For instance, Jennifer et al. [14] collected data from different users perform-
ing various actions by using the accelerometer sensor in a single mobile phone device.
The device was placed in the user’s pants pocket. The researchers extracted 43 sets of
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handcrafted features and achieved high accuracy. Spinsante et al. [26] integrated motion
sensors and utilized decision tree algorithms to evaluate activity monitoring models for
preventing sedentary lifestyles in the workplace. They found that placing the mobile
phone in the user’s thigh pocket yielded optimal results. However, there were limitations,
such as inevitable angle deviation and device position deviation due to differences in user
habits. To overcome these drawbacks, Morales et al. [19] proposed a method based on
Principal Component Analysis (PCA) orthogonal transformation. This method eliminates
the influence of angles by linearly transforming data from the accelerometer and gyroscope
sensors into the same coordinate system.

When the device is placed in different orientations, the coordinate system of the device
is different. Even during the execution of the same activity, the distribution of sensor data
from different positions differs [27]. Sun et al. [28] considered the correlation among sensor
data from varying positions based on human behavioral characteristics. They argued
that combining sensor information from different positions can more effectively capture
human motion traits, harness the latent information in the available data, and enhance
behavior recognition accuracy. Janidarmian et al. [29] comprehensively identified ten major
body parts (such as the upper arms, ankles, and chest) using accelerometer measurements.
Nweke et al. [30] employed accelerometers and gyroscopes for recognition and found that
the optimal results were obtained when sensors were positioned on the chest and wrist.
Jayita Saha et al. [31] addressed the variance due to different hardware configurations and
usage behaviors in terms of where the smartphone was kept.

However, the aforementioned studies all relied on laborious manual feature engi-
neering. Deep learning algorithms have achieved remarkable success in domains such as
image classification [32], object detection [33], and natural language processing [34], over-
coming the limitations of traditional machine learning methods by automatically learning
features from data [35]. Among these algorithms, Convolutional Neural Networks (CNNs)
have proven to be a popular choice for extracting temporal features [36]. Cho et al. [37]
introduced a 1D-CNN for classifier learning and refining test data. The 1D-CNN classifier
method enhances activity recognition accuracy by refining test data during the prediction
phase. Lee et al. [38] combined multiple CNN structures with varying kernel sizes to
capture temporal features at different scales. However, using multiple-kernel CNNs incurs
greater computational cost and can provide insufficient results. Xi et al. [39] addressed this
by applying dilated CNNs to expand the receptive field without losing resolution. Shu
et al. [40] proposed ESE-FN for activity recognition in an elderly population. ResCNN and
SeNet are among the more complex CNN architectures that are able to tackle temporal
problems. Ronald et al. [41] introduced iSPLInception, a resource-efficient model with
high accuracy inspired by Inception-ResNet that caters to devices with limited resources.
Mekruksavanich et al. [42] addressed the challenges of complex human activity recognition
using a deep neural network with attention mechanisms. They demonstrated the superior-
ity of deep residual networks for accurate activity recognition. Yan et al. [43] were able to
enhance human activity recognition using a novel ResNet-like CNN model that integrates
residual learning, achieving improved accuracy with significantly reduced parameters.

3. Methodology

The proposed solutions discussed above do not explicitly account for the impact of
the device angle change problem, primarily due to the datasets employed in these works
lacking diverse angle information. Therefore, we embarked on an initiative to collect a
dataset including different angles. We used the Madgwick algorithm to fuse our sensor
data. To adapt to the data our work, we built an optimized ResNet-34 model to solve the
device orientation change problem. In this section, we introduce the datasets used in our
research and delve into the Madgwick algorithm and its optimization strategies, followed
by an introduction to ResNet-34 and our refined version. The primary workflow of the
entire study is illustrated in Figure 1.
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Figure 1. The main workflow of our HAR task.

3.1. Datasets

To enhance the robustness of the experimental comparison, three datasets were utilized:
our dataset, and two publicly available datasets (WISDM [14] and UCI HAR [17]). This
approach aimed to facilitate a more comprehensive evaluation. The following subsections
provide an introduction to these three datasets.

3.1.1. Our Dataset

Our dataset was collected to overcome the limitations of publicly available datasets,
which lack varied angle information. Data capture was conducted using a single mobile
device equipped with an accelerometer and gyroscope and securely positioned on the
participant’s midsection. The data were captured at a sampling rate of 1000 Hz and subse-
quently downsampled to 200 Hz. Our dataset was comprised of 31 college students who
participated in seven daily activities (Still, Running, Jumping Upward, Upstairs, Down-
stairs, Cycling, and Walking 50 m). Our data collection platform is shown in Figure 2 as per
our prescribed sequence, all while carrying the data-capturing devices. The distribution of
our dataset is visually depicted in Figure 3.

Figure 2. Data collection platform.
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Figure 3. The zero degree angle sample distributions of our dataset.

Participants were tasked with repeatedly performing these activities while carrying the
fixed device at various angle orientations (0, 45, 90, 135, 180, 225, 270, and 315 degrees, as
depicted in Figure 4) to collect accurate angular information. We divided the mobile device
into eight orientations and fixed it to the front of the user’s thigh instead of freely placing it
in the user’s pocket. After the data collection phase, our dataset was categorized into five
distinct groups as outlined below: (a) ACC_0, representing data with only the accelerom-
eter readings at the 0-degree angle; (b) ACC_All, representing data with accelerometer
readings from all angles; (c) ACC+GYR_ALL (6D), representing data with accelerometer
and gyroscope readings from all angles; (d) Fusioned (3D), representing data with ac-
celerometer and gyroscope readings fused for all angles; and (e) ACC+GYR_ALL_Fusioned
(9D), representing data with accelerometer and gyroscope readings fused for all angles and
concatenated onto ACC+GYR_ALL.

Figure 4. The device angles from left to right, top to bottom are 315, 0, 45, 90, 135, 225, 270, 180.

The “ACC+GYR_ALL_Fusioned” feature requires further explanation. we integrated
information from different sensors to provide more accurate estimates, with certain infor-
mation being filtered or discarded. This information loss was typically used to address
the uncertainties and noise associated with sensors. The accuracy and noise levels of the
sensors directly impacts the performance of the fusion algorithm; if the accelerometer or
gyroscope exhibits significant noise or inaccuracies, then the fused data may be affected
by these issues as well. Combining these three types of data can help to comprehensively
consider the device’s position, motion, and orientation information, thereby improving
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performance on motion recognition tasks. Such a combination offers a more holistic view
of information, compensating for potential shortcomings in each sensor’s data.

After the waveform of the sensor data was analyzed, it was deduced that the cycles
during participants’ motion lasted approximately 0.8 to 1.2 s. Figure 5 portrays an instance
of a participant’s running waveform. Through careful adjustments, favorable results were
obtained by employing a sliding window of 1.5 s with 50% overlapping.

Figure 5. A participant’s running waveform, including accelerometer (top) and gyroscope (bottom).

3.1.2. WISDM [14]

The WISDM dataset was collected from accelerometer data of Android smartphones
for use in activity recognition research. This dataset supports supervised learning tasks
by monitoring users’ engagement in various daily activities such as walking, jogging,
ascending/descending stairs, sitting, and standing. The data collection process involved
users carrying Android smartphones and recording their acceleration data while perform-
ing specific daily activities. Before data collection, the research team obtained approval
from the Institutional Review Board (IRB) of Fordham University due to the experimental
nature involving human subjects and potential risks. Volunteer participants carried the
smartphones in their front pants pockets during activities. For our task, we used raw data
and set the sliding window to 80 (4 s).

3.1.3. UCI HAR [17]

In an experiment involving 30 volunteers aged between 19 and 48 years, six activities
(walking, walking_upstairs, walking_downstairs, sitting, standing, laying) were performed
while a Samsung Galaxy S II smartphone (Samsung Electronics, Suwon-si, Republic of
Korea) was worn on the waist. The embedded accelerometer and gyroscope in the smart-
phone captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of
50 Hz. The dataset obtained from the experiments was randomly divided into two sets,
with 70% of the volunteers used for generating the training data and 30% for the testing
data.

To preprocess the sensor signals, noise filters were applied and the signals were
sampled using a fixed-width sliding window of 2.56 s with a 50% overlap (128 readings
per window). The sensor acceleration signal was then separated into body acceleration and
gravity components using a Butterworth low-pass filter, assuming that the gravitational
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force has only low-frequency components. A filter with a cutoff frequency of 0.3 Hz was
employed for this purpose. Finally, a feature vector was generated from each window by
calculating variables from the time and frequency domains.

The details of the datasets and related settings are presented in Table 1.

Table 1. Datasets setup.

Our Dataset WISDM UCI HAR

Sample rate (Hz) 200 20 50
Subjects 31 29 30

Catagories 7 6 6
Window size 300 80 256

Stride 150 40 128
Overlap rate (%) 50 50 50

3.2. Madgwick Algorithm

The Madgwick algorithm implementation incorporates magnetic distortion and gy-
roscope bias drift compensation [24]. This algorithm is based on quaternions, which
effectively addresses the problem of attitude estimation in nonlinear systems while main-
taining low computational demands and good real-time performance [44]. An object’s
orientation is represented using a quaternion, denoted as

q = [q0, q1, q2, q3]. (1)

The unit quaternion is usually initialized as [1, 0, 0, 0]. The attitude adjustment gain
parameter, denoted as β, is used to control the fusion rate and noise compensation. Typically,
it is set to a small positive value, e.g., 0.1.

To address the problem of device orientation change, data preprocessing was necessary.
We preprocessed the accelerometer (acc) data and gyroscope (gyr) data, which included
unit conversion and coordinate system adjustments. In addition, we aligned them with the
coordinate system of the orientation quaternion q. The preprocessing of the magnetometer
(mag) data, which we did not collect, made no difference.

The main steps of the Madgwick algorithm are as follows:

a. Calculate the attitude update time step (∆t), which depends on the update frequency
of the attitude fusion.

b. Update the orientation quaternion based on gyroscope measurements:

q̇ =
1
2

q⊗


0

gyrox
gyroy
gyroz

, (2)

where ⊗ denotes quaternion multiplication and gyrox, gyroy, gyroz represent the
gyroscope’s 3-axial measurements.

c. Correct the orientation quaternion using accelerometer and magnetometer measure-
ments.

For this, first, the accelerometer and magnetometer measurements must be normalized
to ensure that they are unit vectors:

accnorm =
acc
∥acc∥ , magnorm =

mag
∥mag∥ (3)

where || · || denotes the vector’s magnitude (length).
Next, the gravity’s reference direction needs to be calculated, which is derived from

the current orientation quaternion q:
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gravity =


0

2(q0q2 − q1q3)
2(q1q2 + q0q3)

q2
0 − q2

1 − q2
2 + q2

3

. (4)

Then, the reference direction for the accelerometer and magnetometer is derived from
the current orientation quaternion q and the normalized accelerometer and magnetometer
measurements:

ref =


0

2mny(0.5− q2
1 − q2

2) + 2mnz(q1q3 − q0q2)

+2mny(q1q2 − q0q3) + 2mnz(q0q1 + q2q3)

+2mny(q0q2 + q1q3) + 2mnz(0.5− q2
1 − q2

2)

. (5)

Next, it is necessary to calculate the error term error

e = ref⊗ gravity∗, (6)

where ∗ denotes the quaternion’s conjugate.
Then, the cross-coupling term between the gyroscope and accelerometer is calculated:

h = q̇ · β (7)

along with the correction term correction:

c = e · h. (8)

Finally, the correction term correction is used to correct the rate of change of the
orientation quaternion q̇:

q̇− = c. (9)

d. Normalize the orientation quaternion q to ensure that it has a unit length of

qnorm =
q
∥q∥ . (10)

The above steps are repeated while continuously updating the orientation quaternion
q based on real-time sensor data in order to achieve attitude estimation.

3.3. Madgwick Algorithm using Gradient Descent

In the Madgwick algorithm, quaternion-based rotation is used to correct the orienta-
tion. This involves constructing reference vectors based on accelerometer and magnetome-
ter measurements, then correcting the difference between these vectors and the measured
gravity vector [24,45]. As our dataset only included accelerometer and gyroscope sensors,
gradient descent was used to minimize the error vector and update the quaternion values:

f =

 2(q1q3 − q0q2)− accnx

2(q0q1 + q2q3)− accny

2(0.5− q2
1 − q2

2)− accnz

 (11)

j =

−2q2 2q3 −2q0 2q1
2q1 2q0 2q3 2q2
0 −4q1 −4q2 0

 (12)

where f is a vector representing the error (residual). Equation (11) was used to calculate the
difference between the current quaternion q and the accelerometer measurement. This error
vector is the objective function of the gradient descent algorithm; we minimized this error
through gradient descent. The Jacobian matrix j represents the partial derivatives of the
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error vector f with respect to the quaternion q. It describes how changes in the quaternion
affect the error vector. During gradient descent, we updated the quaternion values in the
direction of the negative gradient of the Jacobian matrix, gradually reducing the error.

Then, the direction of the quaternion update was calculated and normalized as follows:

step = jT · f (13)

step =
step
∥step∥ (14)

where step is the dot product between the transpose of the Jacobian matrix and the error
vector, representing the direction of the quaternion update.

The gradient descent algorithm used here is an optimization method to minimize
the objective function (in this case, the error vector) and find the variable values (in this
case, the quaternion) that minimize the objective function. Gradient descent is an iterative
method in which the values of the variables are updated in each iteration based on the
gradient direction of the objective function in order to gradually approach the optimal
solution.

3.4. Sensor Data Fusion

Applying the Madgwick algorithm to human activity recognition is not the novelty
of this research; M. Zmitri et al. [46] used the Madgwick algorithm for feature extraction
in their study. However, they extracted features such as the Euler angle (pitch, yaw, roll)
features and quaternion features. In contrast, this study is based on extracting quaternion
features and further integrating quaternion features with raw accelerometer data, effectively
transforming accelerometer data into inertial acceleration data. The fusion process is shown
in Figure 6. The advantage of this approach is that it utilizes the physical significance of the
sensor data. The pseudocode for the algorithm is shown in Algorithm 1.

Figure 6. The fusion procession of our method (green indicates fused data).
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Algorithm 1 Pseudocode for transforming accelerometer data into inertial acceleration.

1: procedure BODYACCETOINERTIALACCE(acce, quat)
2: if len(quat) ̸= 4 or len(acce) ̸= 3 then
3: raise Exception(“Wrong Parameter.”)
4: end if
5: a, b, c, d← quat

6: rot_matrix ←

a2 + b2 − c2 − d2 2bc− 2ad 2bd + 2ac
2bc + 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd + 2ab a2 − b2 − c2 + d2


7: ai ← acce · rot_matrixT

8: return ai
9: end procedure

3.5. Optimized ResNet-34

The residual building block forms the foundation of the ResNet-34 network, making
up the majority of the network [47]. By incorporating a shortcut connection, the residual
building block bypasses convolutional layers, effectively addressing the issue of gradient
vanishing or exploding that can occur when neural networks become deeper. This ap-
proach allows for greater flexibility in constructing CNN structures, leading to improved
recognition of daily human activities.

Figure 7 illustrates the layout of the fundamental unit, called the basic block, utilized
for ResNet’s 34 layers. The residual building block encompasses convolutional layers
(Conv), batch normalizations (BN), the rectified linear unit (ReLU) activation function, and
a shortcut. The resulting output of the residual building block can be expressed as follows:

y = F(x) + x (15)

where F represents the residual function and x and y denote its input and output, respec-
tively. The complete residual network is formed by combining the initial convolutional
layer with multiple building blocks.

Figure 7. A simple building block of ResNet-34.

The typical ResNet-34 consists of 34 layers, including convolutional layers, batch
normalization layers, activation functions, pooling layers, and a final fully connected layer
for classification [48]. To enhance task adaptation, the ResNet-34 model was fine-tuned.
A pooling layer, a flattening layer, three fully connected layers, and four dropout layers
were incorporated after the final block. The output was produced through softmax. Table 2
illustrates the architecture of the model.
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Table 2. The optimized ResNet-34 structure.

Layer Name 34-Layer Output Size

conv1 7× 7, 64, stride 2 112× 112

conv2_x 3× 3 max pool, stride 2 56× 56
[

3× 3, 64
3× 3, 64 ]× 3

conv3_x [
4× 3, 128
3× 3, 128 ]× 3 28× 28

conv4_x [
6× 3, 256
3× 3, 256 ]× 3 14× 14

conv5_x [
3× 3, 512
3× 3, 512 ]× 3 7× 7

average pooling, flatten, 64d
fully connected×3,

dropout×4
1× 64

softmax 1× 7

Additional layers were added to the original ResNet-34, primarily to reduce training
instability, as discussed in Section 4. These added layers increase the complexity of the
model, allowing it to capture more intricate patterns and representations within the input
data. This enables the model to better distinguish between different human activities. The
additional dropout layers help to mitigate overfitting by randomly dropping a fraction
of neurons during training. This prevents the model from relying too heavily on specific
neurons, which encourages the learning of more robust and generalizable features. The
details of our model structure are shown in Figure 8.

Figure 8. Our model structure.
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4. Experimental Setup, Results, and Analysis

The evaluation indicators used in this experiment were accuracy, loss (sparse categori-
cal cross-entropy), precision, and recall:

Accuracy =
TP + TN

TP + TN + FP + FN
, (16)

Precision =
TP

TP + FP
, (17)

Recall =
TP

TP + FN
, (18)

F1 Score = 2 · Precision · Recall
Precision + Recall

, (19)

where TP (True Positive) represents the number of true positive samples, TN (True Negative)
represents the number of true negative samples, FP (False Positive) represents the number
of false positive samples, and FN (False Negative) represents the number of false negative
samples.

4.1. Stability Testing

We trained the following models and data groups separately using EarlyStopping,
with the patience set to 5. Here, “epoch” represents the number of training rounds required
to converge with the patience set to 5. Remarkable outcomes were achieved by ResNet,
which facilitated the training of highly intricate networks while simultaneously maintaining
superior accuracy and quicker convergence speed compared to shallower networks [49].

Initially, the unaltered ResNet-34 architecture was chosen for the task. However, upon
further observation it was determined that its effectiveness was unsatisfactory, as illustrated
in Figure 9. The accuracy reached only 90.64%, with a loss of 0.3189. This discrepancy
was attributed to substantial training oscillations, leading to challenging convergence that
deviated from our expectations.

Figure 9. The accuracy (left) and loss (right) curve of ResNet-34.

In comparison, as illustrated in Figure 10, the accuracy of the optimized ResNet-34
surged to 96.08%, with a loss of 0.1379. This modified configuration facilitated smoother
convergence, aligning with our anticipated results. Next, we amalgamated data from all
angles and applied the Madgwick algorithm to our dataset. This refinement resulted in
an even flatter training curve, which propelled the validation accuracy to an impressive
96.65% and reduced the loss to 0.1475, as shown in Figure 11. This outcome highlights
that the challenge posed by device angle change can be significantly mitigated through
the synergistic fusion of accelerometer and gyroscope data facilitated by the Madgwick
Algorithm. The confusion matrix is shown in Figure 12.
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Figure 10. The accuracy (left) and loss (right) curve of the optimized ResNet-34.

Figure 11. The accuracy (left) and loss (right) curve of the optimized ResNet-34 with data fusion.

Figure 12. The confusion matrix of the optimized ResNet-34 with data fusion.

4.2. Deep Learning Baseline Analysis

In light of the potential randomness associated with single training, we opted for
a five-fold cross-validation approach, utilizing the KFold method for experimentation.
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Three deep-learning baseline models were used for comparison. The results are detailed in
Table 3.

Table 3. User-dependent performance comparison based on five-fold cross-validation (Accuracy %).

ACC_0 ACC_All 6D 3D 9D

MLP 86.93 82.42 87.49 80.12 86.57
CNN-2D 91.25 89.62 86.33 90.60 92.25

ResNet-34 92.08 91.14 92.31 96.52 96.58
Optimized
ResNet-34 95.83 96.24 96.25 96.16 97.13

Note: The titles are explained in Section 3.1.1.

The device angle change problem has a significant impact on the accuracy of human
motion recognition. Upon comparing the first two columns of Table 3, namely, ACC_0
and ACC_All, noticeable trends emerge. When MLP was utilized, the accuracy decreased
from 86.93% to 82.42%; similarly, employing CNN-2D resulted in a decrease from 91.25%
to 89.62%. In the case of ResNet-34, despite observable fluctuations (the five-fold cross-
validation accuracy and loss and the average confusion matrix are shown in Figure 13), the
average accuracy declined from 92.08% to 91.14%.

Figure 13. Loss/accuracy per fold (top) and average confusion matrix (bottom) of ResNet-34 on
ACC_0.
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The utilization of the optimized ResNet-34 resulted in an elevation in accuracy from
95.83% to 96.24%, showcasing minimal impact. This effect can be attributed to the greater
volume of training data, enabling deeper networks to more comprehensively capture data
features in the past.

As shown in the last row of Table 3, the optimized ResNet-34 outperformed other
baselines; as model complexity increased, the influence of the angles gradually diminished
and the accuracy remained steady at around 96%. After fusion, ResNet-34 and optimized
ResNet-34 exhibited comparable results.

The performance of the MLP (Multi-Layer Perceptron) with the fused data was not
as satisfactory as expected. The accuracy decreased from 87.49% to 80.12%. This decline
in performance can be attributed to the fact that the fused data lose some of the original
information that is advantageous for classification. Therefore, we concatenated the original
data with the fused data, which proved effective (e.g., CNN-2D was marked by its highest
result of 92.25%). The optimal outcome was demonstrated by the optimized ResNet-34,
which achieved an accuracy of 97.13%. Details on its accuracy and loss per fold are shown
in Figure 14.

Figure 14. Accuracy (left) and loss (right) per fold of the optimized ResNet-34 on 9D.

4.3. User-Independent Analysis

To thoroughly validate the effectiveness of our approach in practical applications (i.e.,
ensuring accurate predictions when dealing with new user data), we divided the dataset
containing 31 participants into distinct user groups at a ratio of 21:5:5. Specifically, 21 users
were selected for the training set, five for the validation set, and an additional five for the
test set. Table 4 shows the results.

Table 4. User-independent performance comparison of different models (Accuracy %).

ACC_0 ACC_ALL 6D 3D 9D

MLP 86.89 84.04 88.35 80.68 88.19
CNN-2D 91.26 91.02 90.39 89.42 86.16

ResNet-34 89.01 92.53 92.51 94.04 92.73
Optimized
ResNet-34 89.83 94.27 94.40 94.22 95.65
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Comparing the results from Tables 3 and 4, it can be observed that there is no a signif-
icant difference in accuracy between MLP and CNN-2D. This observation was obtained
after different users were divided into training, validation, and test sets and the results were
compared to the dataset without user-specific divisions. The optimized ResNet-34 model
showed a slight decrease in performance compared to the previous results; nevertheless, it
remained the best-performing model, with an accuracy of 95.65%. A detailed comparison
of the results is presented in Figure 15, where the solid lines represent user-independent
data and the dashed lines represent user-dependent data.

Figure 15. Performance comparison with user-dependent and user-independent data.

Table 5 provides a detailed comparison between ResNet-34 and the optimized ResNet-
34 on Fusioned (9D), including accuracy, loss, precision, recall, F1 score, and training
time.

Table 5. User-independent performance comparison of ResNet-34 and optimized ResNet-34 on
Fusioned (9D).

ResNet-34 Optimized ResNet-34

Accuracy 92.73% 95.65%
Loss 0.6749 0.5254
Precision 0.9343 0.9587
Recall 0.9273 0.9565
F1 Score 0.9281 0.9568
Training Time 10636 12798s

Figure 16 demonstrates the training curves and confusion matrix of the ResNet-34
model, while Figure 17 displays the training curves and confusion matrix of its optimized
counterpart.
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Figure 16. Training curves (top) and confusion matrix (bottom) of the ResNet-34 model.

Figure 17. Training curves (top) and confusion matrix (bottom) of the optimized ResNet-34 model.
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4.4. Analysis on Publicly Available Datasets

To further validate the generalization performance of both the fusion algorithm and
the models, we conducted experiments on two major publicly available datasets, namely,
WISDM and UCI HAR. The experimental outcomes are illustrated in Table 6.

As shown in Table 6, ResNet-34 outperformed CNN and MLP. On WISDM, the accu-
racy of the optimized ResNet-34 model was 96.33%, a 0.99% improvement from ResNet-34.
On UCI HAR (12D), the accuracy of the optimized ResNet-34 model reached 92.08%,
surpassing ResNet-34 (91.89%) and outperforming the non-fused approach (90.80%). Com-
paring the results on UCI HAR, UCI HAR (6D), and UCI HAR (12D), it is evident that
simply fusing accelerometer and gyroscope data led to a slight decrease in accuracy; how-
ever, when employing the fused data as input features and concatenating these data with
the original data, the performance surpassed that with the original data. This underscores
the fusion algorithm’s capability to mitigate the device angle change problem.

Table 6. Ablation studies on two publicly available datasets: WISDM and UCI HAR (Accuracy %).

WISDM UCI HAR UCI HAR (6D) UCI HAR
(12D)

MLP 87.30 87.41 74.65 75.60
CNN-2D 94.23 88.09 78.25 90.60

ResNet-34 95.34 90.34 89.48 91.89
Optimized ResNet-34 96.33 90.80 87.13 92.06

Note: WISDM encompasses data from three-axis accelerometer sensors, while UCI HAR comprises data from
three sensors: total_acc, body_acc, and body_gyr. Employing the Madgwick algorithm, we fused the body_acc
and body_gyr components. In this context, UCI HAR (6D) signifies the combined data, while UCI HAR (12D)
denotes the concatenation of the fused data with the original UCI HAR dataset.

5. Conclusions

In this paper, we collected a dataset by capturing varied angle information in order
to overcome the limitations of publicly available datasets. The data collection process
used a mobile device with accelerometer and gyroscope sensors, followed by a number of
preprocessing steps. The dataset was categorized into groups based on sensor readings
and angle orientations. We then compared the performance of the original ResNet-34
architecture with an optimized version. The optimized model showed improved conver-
gence and accuracy. Next, we applied the Madgwick algorithm to fuse accelerometer and
gyroscope data from different angles, resulting in smoother training curves and increased
accuracy. Our results highlight the fusion algorithm’s effectiveness in mitigating the impact
of the device angle change problem. Our approach was further validated on the publicly
available WISDM and UCI HAR datasets. The results demonstrated the generalization
performance of our approach, showcasing its effectiveness in different scenarios and on
different datasets.
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