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Abstract: With the development of social media, the internet, and sensing technologies, multimodal
data are becoming increasingly common. Integrating these data into knowledge graphs can help
models to better understand and utilize these rich sources of information. The basic idea of the
existing methods for entity alignment in knowledge graphs is to extract different data features, such
as structure, text, attributes, images, etc., and then fuse these different modal features. The entity
similarity in different knowledge graphs is calculated based on the fused features. However, the
structures, attribute information, image information, text descriptions, etc., of different knowledge
graphs often have significant differences. Directly integrating different modal information can
easily introduce noise, thus affecting the effectiveness of the entity alignment. To address the above
issues, this paper proposes a knowledge graph entity alignment method based on multimodal data
supervision. First, Transformer is used to obtain encoded representations of knowledge graph
entities. Then, a multimodal supervised method is used for learning the entity representations in the
knowledge graph so that the vector representations of the entities contain rich multimodal semantic
information, thereby enhancing the generalization ability of the learned entity representations. Finally,
the information from different modalities is mapped to a shared low-dimensional subspace, making
similar entities closer in the subspace, thus optimizing the entity alignment effect. The experiments
on the DBP15K dataset compared with methods such as MTransE, JAPE, EVA, DNCN, etc., all achieve
optimal results.

Keywords: multimodal data supervision; entity alignment; knowledge graph; transformer

1. Introduction

With the development of cross-disciplinary research between knowledge engineering
and multimodal learning, multimodal knowledge graphs (KG) [1] have become increas-
ingly crucial as a means to assist computers in understanding the entity background
knowledge in many artificial intelligence applications, such as question answering sys-
tems [2], recommendation systems [3], natural language understanding [4], and scene
graph generation [5]. In recent years, many researchers have constructed numerous multi-
modal knowledge graphs targeting different domains and languages. Some of the widely
used ones include DBpedia, YAGO, and Freebase, which store vast amounts of knowledge
and can support various downstream applications. However, most real-world KGs are
highly incomplete, primarily because they are often constructed from single data sources.
To facilitate knowledge fusion, the task of knowledge graph entity alignment (EA) has
received increasing attention from researchers [6]. EA aims to identify equivalent entities
across KGs while addressing challenges such as multiple languages, heterogeneous graph
structures, and different naming conventions.

Early EA was mostly heuristic, and entity mapping was constructed using techniques
such as logical reasoning and lexical matching. The recent EA methods are often based

Appl. Sci. 2024, 14, 3648. https://doi.org/10.3390/app14093648 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093648
https://doi.org/10.3390/app14093648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0004-8370-4317
https://doi.org/10.3390/app14093648
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093648?type=check_update&version=2


Appl. Sci. 2024, 14, 3648 2 of 12

on embeddings, learning an embedding space to represent the KG to be aligned so that
similar entities are located closer while dissimilar entities are far apart, thereby mitigating
heterogeneity issues [7]. Specifically, the existing methods can be classified into two cate-
gories: (1) translation-based EA methods, employing methods like TransE [8] based on the
translation of KG embeddings to capture entity structural information from relation triplets;
and (2) graph neural network (GNN)-based EA methods, primarily utilizing methods like
graph convolution network (GCN) [9] and GAT [10] for aggregating the neighborhood
entity features. In addition to the above-mentioned methods, the effectiveness of EA can be
enhanced through various strategies, such as parameter sharing [11] (sharing entity embed-
dings across KGs, explicitly linking the seed sequences across multiple heterogeneous KGs),
iterative learning (IL) [12] (iteratively proposing more alignment seeds from unaligned
entities), attribute value encoding [13], collectively stable matching of interdependent
alignment decisions [14], or guiding EA through ontology patterns [15].

Translation-based methods primarily learn embeddings based on the translation
assumption within each KG. For instance, TransE regards a relation r as a translation
from the head entity h to the tail entity t and confirms that a correct knowledge triplet
should satisfy the |h + r − t| function, specifically extracting a vector from both the entity
matrix and the relationship matrix, performing L1 or L2 operations, and obtaining a result
that approximates the vector of another entity in the entity matrix, thereby achieving the
representation of the relationship between the existing triplets in the knowledge graph
through word vectors. Methods like MTransE [16] and ITransE [17] introduce linear
transformations to improve the EA performance of KG with multiple mapping relationships
at the cost of increasing the model complexity. JAPE [18] and RSNs [19] use parameter
sharing to maintain the same embedding between pre-aligned entities. Additionally,
Transedge [20] and BootEA [21] integrate entity embeddings into relational embeddings,
which together serve as relational representations to solve “one-to-many” and “many-to-
one” problems. However, due to the fact that embedding based on triples is constrained on
a single triplet, it is difficult to capture global graph structure information, which makes it
difficult to achieve overall consistency during the alignment process.

To address the aforementioned issues, embeddings based on GNN are utilized to
achieve local subgraph-level consistency. The first endeavor in this direction is GCN-
align [22], which utilizes the entity relationships in each KG to construct the network
structure of GCN. This method embeds multiple languages into a unified vector space
and discovers entity alignment based on the distance between the entities in the embed-
ding space. However, GCN-align is mainly aimed at aligning isomorphic graphs, but
its processing ability for heterogeneous graphs is weak, resulting in the loss of hetero-
geneous edge information. Therefore, in recent years, many studies have attempted to
integrate edge information into GCN to enhance the relationship perception ability of the
model. MuGNN [23] and NAEA [24] introduce attention mechanisms to learn different
weights for different types of relationships. HMAN [25] uses GCNs to combine multi-
ple aspects of entity information, including topological connections, relationships, and
attributes, to learn entity embeddings. RDGCN [26] merges relational information via the
attentional interaction between the original graph and the dual relationship graph, and
further captures adjacent structures to learn better entity representations. MRAEA [27]
models cross-linguistic entity embeddings directly by focusing on the metasemantics of
the incoming and outgoing neighbors and their connection relationships regarding the
nodes. PSR [28] proposes a simplified graph encoder with relation graph sampling, which
achieves high performance, scalability, and robustness through symmetric non-negative
alignment loss and incremental semi-supervised learning. All these efforts demonstrate
the importance of relation information in entity alignment. However, these methods do
not consider the role of edge alignment in EA and only consider the integrated semantic
information of the relationships regarding entity embeddings. Additionally, some recent
works incorporate extra external information as weak supervision signals. For instance,
EVA [29] proposes a structure-aware uncertainty sampling strategy that can measure the
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uncertainty of each entity in KG and its impact on the adjacent entities. JEANS [30] jointly
represents multilingual KG and text corpora in a shared embedding scheme and seeks
to improve the alignment of entities and text with accompanying supervisory signals.
Furthermore, CG-MuAlign [31] employs a designed attention mechanism to facilitate the
collaborative alignment of positive information from the entity neighborhood and com-
parably effective negative messages, achieving a joint alignment of multiple types for the
entity. ActiveEA [32] designs an active learning framework to create seed comparisons
with large amounts of information in order to obtain more effective EA models at lower
annotation costs.

With more and more research beginning to explore how to combine visual content in
the internet with EA, a new trend is to associate images with entity names to enrich the
information of entity pairs. At present, the research mainly focuses on designing fusion
methods suitable for cross-modal data to achieve cross-modal EA. Chen et al. [33] generated
entity representations of relational knowledge, visual knowledge, and digital knowledge
and integrated them through a multimodal knowledge fusion module. Chen et al. [34]
employed a modal enhancement mechanism to integrate visual features to guide relational
feature learning, and adaptively assigned attention weights to capture valuable attributes
for alignment. Lin et al. [35] learned multiple individual representations from multiple
modalities and then performed contrastive learning to jointly model the interactions within
and between modalities. However, these methods learn multimodal fusion weights at the
knowledge graph level, ignoring the intra-modal differences for each entity (such as node
degree or relationship quantity) and inter-modal preferences (such as modality absence or
ambiguity). This is crucial in real-world EA scenarios since knowledge graphs (especially
MMKG) discovered from the internet or professional domains inevitably contain errors
and noise, such as those with unrecognized images. Additionally, intra-modal feature
differences and inter-modal phenomena such as modality absence, imbalance, or ambiguity
are common in KGs. These shortcomings affect their robustness to some extent.

Through research, it was found that the current entity alignment methods have the
following three issues:

(1) The existing entity alignment methods focus more on the entity alignment of tradi-
tional textual knowledge graphs. Some research embeds knowledge graphs from
different sources into a low-dimensional space and achieves entity alignment by
calculating the similarity between entities, yielding good results. However, these
methods only utilize single-modal data (text) and ignore other modal data (images),
thus failing to fully exploit the entity feature information in other modal data.

(2) Traditional cross-modal entity alignment methods often require extensive manual
data annotation or carefully designed alignment features. For example, Zhang [36]
proposed an adaptive co-attention network that selected Twitter as the data source,
crawled and annotated a dataset containing images, and controlled the preference
level of each word for the images and text using gate and filter mechanisms. While
these traditional entity alignment methods can achieve high alignment effectiveness,
they require a considerable amount of manual annotation, resulting in time wastage
and increased labor costs. Moreover, the entity features designed by such methods
often lack scalability and universality.

(3) Multimodal pre-trained language models achieve cross-modal entity alignment by
pre-training on a large amount of unlabeled data. However, this method mostly
focuses on global image and text features and is designed only for English text–
image pairs. Models like CLIP pre-trained language models do not model the fine-
grained relationships between text and images, which are valuable in domain-specific
multimodal knowledge graph cross-modal EA tasks. Additionally, image–text pairs
often contain noise in practice.

Based on these issues, this paper proposes a knowledge graph entity alignment
method based on multimodal data supervised (MDSEA). It first uses Transformer to
obtain knowledge graph entity encoding representations. Then, it employs a multimodal
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supervised method for knowledge graph entity representation learning, ensuring that
the vector representation of the entities contains rich multimodal semantic information,
enhancing the generalization ability of the learned entity representation. Finally, it maps
information from different modalities to a shared low-dimensional subspace, making
similar entities closer in the subspace, thus optimizing the effect of the entity alignment.
The main contributions are as follows:

(1) An embedding-based cross-lingual entity alignment method was proposed that uses
Transformer to obtain knowledge graph entity encoding representations. Under
multimodal information supervision, different models of information are mapped to
a shared low-dimensional subspace to achieve entity alignment.

(2) We proposed a multimodal supervised strategy for knowledge graph entity represen-
tation learning, ensuring that the vector representation of the entities contains rich
multimodal semantic information, enhancing the generalization ability of the learned
entity representation.

(3) We evaluated the proposed method on a real cross-lingual dataset from DBpedia. The
experimental results showed that the proposed method outperforms several cross-
lingual entity alignment methods on Hits@1, Hits@10, and MRR. The framework is
simple, fast, and has strong interpretability.

2. Method

We define a knowledge graph as G = {E, R, A, I, T}, where E, R, A, and I represent
the set of entities, relationships, attributes, and images, respectively, and T = {E, R, E}
is the set of relationship triplets. Given two knowledge graphs Gs = {Es, Rs, As, Is, Ts}
and Gt = {Es, Rt, At, It, Tt}, EA aims to identify entity pairs (es, et), where es ∈ Es, et ∈ Et.
The model framework is illustrated in Figure 1. Given two multimodal knowledge bases
(KBs), the model learns vector embeddings representing different KBs and expects closely
embedded entities with potential alignment. The specific algorithmic steps are as follows:

(1) Firstly, the Transformer is utilized to obtain encoding representations of knowledge
graph entities.

(2) Then, multimodal data supervision is employed for learning knowledge graph en-
tity representations, ensuring that the vector representations of entities contain rich
multimodal semantic information, thus enhancing the generalization capability of the
learned entity representations.

(3) Entity embeddings are obtained for all entities, followed by the computation of simi-
larities between all pairs of entities, which are then constrained using neighborhood
component analysis (NCA) loss. Iterative learning helps to expand the training set.
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Figure 1. The framework of the proposed MDSEA.
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2.1. Transformer-Based Knowledge Graph Entity Encoding

This section elaborates on how entities from two knowledge graphs, denoted as
Gs and Gt, are embedded into low-dimensional vectors. The LT layer of the Transformer is
employed as the entity encoder to extract entity features. This layer is composed of multi-
head attention (MHA) and feed-forward network (FFN) blocks. When a token sequence
{w1, . . . , wn} is embedded into a word embedding matrix FT ∈ Rn×dT , the entity encoding
is computed as follows:

FT,l = FT + Tp

F̄T,l = LN(FFN(FT,l−1)) + FT,l−1, l = 1, . . . , LT

FT,l = LN(FFN(F̄T,l)) + F̄T,l , l = 1, . . . , LT

(1)

where Tp represents positional embeddings, LN( · ) denotes layer normalization, FT,l is the
hidden feature of the entity at the l-th layer.

MHA is utilized to compute the weighted hidden states for each head, which are then
concatenated as

MHA(x) = [head1, · · · , headh]Wo

headi = Attn(xWq,i, xWk,i, xWv,i) = Attn(Qi, Ki, Vi)
(2)

where Wo ∈ Rd×d and d represents the dimensionality of the hidden embeddings.
dh = d/Nh is typically set in MHA.

The FFN consists of two layers of linear transformations with a ReLU activation function:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (3)

where W1 ∈ Rd×dm and W2 ∈ Rdm×d.

2.2. Multimodal Supervised Learning Network

After obtaining entity encodings using an entity encoder, the entities are fine-tuned
to incorporate multimodal information representations through multimodal supervised
learning. Specifically, for the relationship and attribute information of entities, features
are extracted using a feed-forward network, while graph structure information is acquired
using GCN, and image information is extracted using ResNet.

Relationship and Attribute Embedding: Since modeling relationships and attributes
using GCNs might result in contaminated entity representations due to noise interference
from neighbors [25], a simple feed-forward network is employed to map relationship and
attribute features in a low-dimensional space:

FR = WR · R + bR

FA = WA · A + bA
(4)

where WR and WA are parameter matrices for the relationship features FR and attribute
features FA, respectively.

Graph Structure Embedding: To mimic the structural similarity between Gs and Gt,
capturing the proximity of entities and relationships, a GCN is employed to extract graph
structural information. Specifically, a graph can be defined as G = (V, b), where V is a
series of nodes {v1, v2 . . . , vG}, and b represents the edge set. The entire feature matrix
X ∈ RN×G comprises N feature vectors, X = [x1, x2, . . . , xN ]

T . The sparse symmetric
adjacency matrix, denoted by A ∈ RN×N , reflects the connection between each pair of
nodes. Aij can be computed using the following radial basis function (RBF):

Aij = exp(−
∥∥xi − xj

∥∥2

γ1
) (5)
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where the parameter γ1 is empirically set to control the width of the RBF. The diagonal
matrix is defined as D = diag(d1, d2, . . . , dN), where di = ∑M

j=1 Aij represents the sum of
the i-th row of the adjacency matrix.

The multi-layer GCN at the l-th layer is represented as

H(l+1) = [D̃− 1
2 M̃D̃− 1

2 H(l)W (l)] (6)

where [·]+ represents the ReLU activation function, M̃ = M + IN is the adjacency matrix of
Gs
⋃

Gt plus the identity matrix (self-connections), D̃ is the trainable layer-specific weight
matrix, H(l) ∈ RN×D is the output of the previous layer of GCN, where N is the number of
entities and D is the feature dimensionality. H(0) is randomly initialized, and the output of
the last layer of GCN is used as the embedded graph structure FG.

Visual Embedding: Resnet-152 has been pre-trained on the ImageNet recognition
task and serves as the feature extractor for all images. For each image, we use trainable
Resnet-152 to extract image features and use the output of the last layer as a feature
representation to obtain visual embedding:

FI = WI · ResNet(I) + bI (7)

The visual representations extracted by Resnet are expected to capture both low-level
similarity and high-level semantic correlation between images.

In multimodal supervised learning, the feature similarity matrix of entity embeddings
from different modalities is utilized as supervision information, and the following objective
function is minimized:

Li
s = ||Fs

T − S(1,2)Ft
T ||2F + γ2(||Fs

T − S(1)Fs
T ||+ ||Ft

T − S(2)Ft
T ||2F) (8)

where i ∈ {R, A, G, I} represents four different embeddings, and γ2 is a hyperparameter
used to balance the similarity between KBs and their internal similarity. S(1,2) = ⟨Fs

T , Ft
T⟩ ∈

R|Es |×|Et |, S(1) = ⟨Fs
T , Fs

i ⟩ ∈ R|Es |×|Es |, and S(2) = ⟨Ft
T , Ft

i ⟩ ∈ R|Et |×|Et |. The objective is to
minimize Ls to tightly embed semantically similar entities across KGs.

2.3. Knowledge Graph Entity Alignment

First, obtain all entity embeddings FJ obtained through multimodal data supervised
learning, then compute the similarity of all entity pairs, and constrain them using the NCA
loss. Simultaneously, use IL to expand the training set.

Embedding Alignment: Let Fs
J and Ft

J , respectively, represent the embeddings of the
source entity Es and the target entity Et. Compute their cosine similarity matrix:

S = ⟨Fs
J , Ft

J ⟩ ∈ R|Es |×|Et | (9)

where each entry Sij corresponds to the cosine similarity between the i-th entity in Es and
the j-th entity in Et.

NCA Loss: Inspired by the NCA-based text–image matching method proposed in [37],
a similar form of NCA loss is adopted. It measures the importance of samples using local
and global statistics and penalizes hard negatives with a soft weighting scheme. The
formula for the NCA loss is as follows:

LNCA =
N

∑
i=1

(
log ∑

yi=yj

eSij − log
N

∑
k=1

eSik

)
(10)

where N is the number of samples, Sij is the cosine similarity between entity sample pairs.



Appl. Sci. 2024, 14, 3648 7 of 12

Applying NCA loss for classification in the context of producing matches between
two sets of entities:

Ls =
1
M

M

∑
i=1

(
1
α

log

(
1 + ∑

m ̸=i
eαSmi

)
+

1
α

log

(
1 + ∑

n ̸=i
eαSin

)
− log(1 + βSii)) (11)

where α, β are hyperparameters; M is the number of pivots in a mini-batch. This loss is
applied separately to each modality and also to the merged multimodal representation as
shown in Equation (10). The joint loss is written as

LJoint =
n

∑
i
Li

s + LT
s (12)

where Li
s represents the loss term supervised learning under different embeddings, with

losses LR
s ,LA

s ,LI
s ,LG

s ; LT
s ; LT

s applied to the multimodal representation FJ .
Iterative Learning: In order to improve learning with few training points, this paper

adopts an IL strategy to propose more alignment seeds from unaligned entities. Specifically,
for each iteration, a new round of proposals is created. Each pair of cross-graph entities,
which are nearest neighbors to each other, is proposed and added to the candidate list.
If a proposed entity pair remains each other’s nearest neighbors in consecutive k rounds
(i.e., trial stage), they are permanently added to the training set. Thus, the candidate list is
refreshed every Ke · Ks times.

3. Experiment

In this section, we conducted experiments on three subsets of the DBP15K dataset
(Section 3.1), compared the entity alignment effects (Section 3.3.1) of different methods
under the same experimental settings (Section 3.2), and provided an efficiency analysis
of the model (Section 3.3.2). At the same time, we also conducted a detailed study on the
ablation experiments of different modules of MDSEA (Section 3.3.3).

3.1. Experiment Dataset

The DBP15K dataset is a multilingual dataset containing English, Chinese, Japanese,
and French, shown in Table 1. It is constructed from the multilingual versions of DBpedia,
a large-scale multilingual knowledge base that includes language interlinks from English
entities to entities in other languages. During the construction of the DBP15K dataset,
15,000 popular entities were extracted separately from English to Chinese, Japanese, and
French, and these were used as reference alignments. The extraction strategy involved
randomly selecting a language interlink pair, where the involved entities had at least four
relation triples, and then extracting relation and attribute information triples for the selected
entities. The number of entities involved in each language far exceeds 15,000, with attribute
triples contributing significantly to the dataset.

Table 1. DBP15K dataset distribution.

Dataset KG Entity Relationship Attribute Relationship Triplet Attribute Triplet Figure Entity Pairs

DBP15KZH−EN
ZH 19,388 1701 8111 70,414 248,035 15,912 15,000EN 19,572 1323 7173 95,142 343,218 14,125

DBP15KJA−EN
JA 19,814 1299 5882 77,214 248,991 12,739 1500EN 19,780 1,153 6066 93,484 320,616 13,741

DBP15KFR−EN
FR 19,661 903 4547 105,998 273,825 14,174 15,000EN 19,993 1208 6422 115,722 351,094 13,858

In this experiment, three datasets from DBP15K were utilized: DBP15KZH−EN (Chi-
nese to English), DBP15KJA−EN (Japanese to English), and DBP15KFR−EN (French to En-
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glish). Each of these datasets contains approximately 400,000 triples and 15,000 pre-aligned
entity pairs, with 30% used as seed alignments (Rs = 0.3). The English, French, and Japanese
versions of the entities contain images provided by DBpedia, while Chinese images are
extracted from the original Chinese Wikipedia dumps. Additionally, not all entities have
images; only around 50–85% of entities have images. For entities without images, a random
vector sampled from a normal distribution is assigned, parameterized by the mean and
standard deviation of other images.

3.2. Experimental Parameter Settings

The experimental platform utilized a server equipped with an Intel i9-12900k CPU (In-
tel Corporation, Santa Clara, CA, USA) and Nvidia RTX 3080Ti GPU (Nvidia Corporation,
Santa Clara, CA, USA). The proposed algorithm was implemented using the Adam opti-
mizer in PyTorch. For training on the DBP15K dataset, the number of epochs was set to 500,
with a learning rate of 0.001. To ensure fair comparison, the experimental setup employed
the same training/testing split as common methods: 30% of pre-aligned entities were used
for training, while the remaining 70% of anchor links were used for testing, with 20% of
training entity pairs reserved for validation. To demonstrate the model’s stability, the visual
encoder was set to ResNet-152 with visual feature dimensions of 2048. Each experiment
was conducted 10 times, and the results were averaged to reduce randomness.

In the experiments, the effectiveness of multimodal entity alignment was evaluated
as an indicator of the proposed model’s performance. Specifically, three common metrics
were employed: the average percentage of triplets ranked 1 in the test samples (Hits@1),
the average percentage of triplets ranked below 10 in the test samples (Hits@10), and the
mean reciprocal rank (MRR).

The experimental parameters, including regularization parameters and network model
parameters, were adjusted within given ranges to maximize classification accuracy. To
achieve this, a 10-fold cross-validation was performed on the training set to determine
parameter combinations for different methods. Additionally, feature dimensionality was
identified as a key parameter affecting the quality of the final learned feature represen-
tations. Therefore, the optimal feature dimensionality was determined by testing values
ranging from 100 to 500 at intervals of 5, based on the best classification performance on
the training set.

3.3. Experimental Analysis

The proposed method was compared with common entity alignment methods such as
MTransE [16], JAPE [18], EVA [29], and DNCN [1], using 30% of the EA labels for training.
The experimental results are presented below along with the corresponding analyses.

3.3.1. Experimental Results Analysis

Table 2 reports the results regarding EA. The results indicate that the proposed method
outperforms the other models, achieving the best performance. Specifically, the proposed
method improved Hits@1 by over 20% compared to the baseline methods. When incorpo-
rating visual information, the proposed method achieved a 4–15% improvement in Hits@1
over the other methods. This suggests that combining visual representations can effectively
enhance cross-lingual entity representations to infer their correspondences.

Table 2. Cross-language EA results on DBP15K.

Methods DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 30.83 61.41 0.364 27.86 57.45 0.349 24.41 55.55 0.335
JAPE 41.18 74.46 0.490 36.25 68.50 0.476 32.39 66.68 0.430
EVA 59.44 83.44 0.680 63.12 85.85 0.712 66.52 88.40 0.747

DNCN 72.10 87.90 0.775 72.13 88.58 0.781 74.84 88.53 0.790
MDSEA 76.81 90.35 0.814 76.92 94.63 0.832 76.51 94.67 0.834
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Compared to the multimodal methods, the proposed method, by introducing multi-
modal data supervision, enables the model to learn more generalized and robust represen-
tations, aiding in addressing noise and variations, thus achieving good entity alignment
performance even in complex data scenarios.

3.3.2. Experimental Efficiency Analysis

To further understand the model, this study investigated the efficiency behavior of
several algorithms on a dataset with the same 500 epochs and an early stopping strat-
egy. As shown in Table 3, the proposed method consistently outperforms the other algo-
rithms throughout the entire training process and excels in balancing convergence time
and performance.

Table 3. Comparison of efficiency results of different methods on the DBP15KZH−EN .

Methods MTransE JAPE EVA DNCN MDSEA

MRR
50 epoch 0.173 0.191 0.232 0.345 0.612
150 epoch 0.241 0.276 0.347 0.574 0.784
250 epoch 0.335 0.424 0.669 0.716 0.803
500 epoch 0.364 0.490 0.680 0.775 0.814

From Figure 2, it can be observed that the proposed method achieves optimal per-
formance the fastest among the compared baselines and surpasses the other algorithms
throughout the entire process.

0 50 100 150 200 250 300 350 400 450 500

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
R

R

MTransE

JAPE

EVA

DNCN

MDSEA

Figure 2. Comparison of efficiency results of different methods on the DBP15KZH−EN .

3.3.3. Ablation Study

To demonstrate the effectiveness of each module in the proposed method, two variants
of the knowledge graph entity alignment method based on multimodal data, MDSEA-
A and MDSEA-B, were proposed. The final classification performance under different
modules was compared. The specific module selections are shown in Table 4, and the
alignment results are presented in Table 5.

Table 4. Selection of different modules in MDSEA.

Module MDSEA-A MDSEA-B MDSEA

MDS ✓ ✓
MWF ✓
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Where MDS represents the multimodal data supervision module, and MWF represents
the multimodal weighted fusion module. The ablation comparisons are shown in Table 5
and Figure 3.

Table 5. The alignment effect of different modules in the DBP15KZH−EN .

Module MDSEA-A MDSEA-B MDSEA

Hits@1 73.25 75.07 76.81
Hits@10 87.92 88.94 90.35

MRR 0.784 0.792 0.814

73.25
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76.81

MDSEA-A MDSEA-B MDSEA

71

72
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Figure 3. The alignment effect of different modules in the DBP15KZH−EN . (a) Hits@1; (b) Hits@10;
(c) MRR.

Compared to MDSEA-A, MDSEA-B improves the Hit@1 on DBP15KZH−EN by 1.82%,
indicating that the multimodal supervision strategy enriches the vector representations of
entities with rich multimodal semantic information, enhancing the generalization ability of
the learned entity representations. Compared to MDSEA-B, MDSEA improves the Hit@1 on
DBP15KZH−EN by 1.74%, attributed to the multimodal weighted fusion strategy reducing
noise from different modal information.

4. Conclusions

This article proposes a knowledge graph entity alignment method based on multi-
modal supervised learning. Firstly, it utilizes Transformer to obtain the encoded represen-
tations of knowledge graph entities. Then, it employs a multimodal supervised learning
approach for knowledge graph entity representation learning. This ensures that the vector
representations of the entities contain rich multimodal semantic information, thereby en-
hancing the generalization capability of the learned entity representations. Finally, it maps
information from different modalities into a shared low-dimensional subspace, making
similar entities closer in the subspace, thus optimizing the entity alignment effect. The
proposed method is compared with common entity alignment methods, and the results
demonstrate its superiority over the state-of-the-art baseline methods. In addition, due to
the lack of some visual modalities in the dataset, the multimodal supervised learning of the
model is limited to some extent. Therefore, we will conduct in-depth research on this issue
in subsequent work.
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