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Abstract: A modified parallel model for estimating the thermal conductivity of unsaturated sand
was proposed in this study. The heat conduction in the solid phase of sand depends mainly on the
form of contacts between solid particles, while water bridges at the particle contacts increase the
contact areas and remarkably enlarge the transfer paths of heat conduction in sandy soils. However,
the thermal conductivity of the solid particle itself (λs) cannot describe the influence of the form of
contacts and water bridges on heat conduction through the solid phase. In this study, the equivalent
thermal conductivity of the solid particle (λes) was presented which reflected the influence of the
form of contacts and water bridges between particles under dry conditions or a low degree of
saturation, respectively. The relationship between λes and degree of saturation was described by
hyperbolic expression. The modified model was calibrated using measured values of the thermal
conductivity from published datasets, including those for 41 types of sand from 15 studies. Numerical
analyses of the temperature field of the energy pile were performed and validated against laboratory
measurements. The results illustrated that the modified model was more applicable than the original
model for predictions of sand thermal conductivity.

Keywords: sand thermal conductivity; modified parallel model; degree of saturation; numerical analysis

1. Introduction

In recent decades, with the development of energy engineering, soil science, and
agroclimatology, the study of the thermal conductivity of soil (λ, Wm−1◦C−1) has always
occupied a crucial place in soil thermal property research [1–3]. As the direct impact factor
in initial temperature changes of soil, the soil mechanical properties and soil ecosystem
are affected by the temperature gradient distribution, which is associated with the thermal
conductivity of soil [4].

A number of studies have been conducted on the experimental measurement of
the thermal conductivity of soil. Smits et al. [5] measured the variation of four sand
thermal conductivities λ with differences in porosity and found that λ was a function of
moisture content under both transient drainage or drying and wetting conditions. Chen [6]
published experimental results for the thermal conductivity λ of four kinds of quartz
sands with different particle gradations by the transient thermal probe method. The
thermal conductivity λ of sands tended to diminish with increasing porosity; in contrast, it
increased with increasing moisture content. A series of thermal conductivity experiments
was performed by Barry-Macaulay et al. [7], who tested six soils and three rocks from the
region around Melbourne, Australia, and measured the impacts of moisture content, dry
density, mineralogical composition, and particle size on the sample thermal conductivities.
Zhao et al. [8] used the heat-pulse method to measure the thermal conductivity λ of six
soils under wide ranges of moisture contents and bulk densities and proposed a new model
that could accurately describe the trend of thermal conductivity λ. Therefore, the majority
of the experimental research investigated the effects of physical characteristics, including
water content, bulk and particle densities, compositional factors, and gradation, on thermal
conductivity [9–14].
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There are a variety of models that can predict the soil thermal conductivity λ. Three
types of models can be distinguished in the present literature: theoretical, empirical,
and mixture models [15]. Theoretical models were frequently derived from simplistic
mathematical models and analyses based on heat transfer mechanisms [16], soil grain
geometries [17,18], and other properties, e.g., dielectric permittivity. However, the theo-
retical models generally applied homogenization assumptions to consider the effective
thermal property of a given component, and none of the theoretical models considered the
microstructure of the soil [19]. The empirical soil thermal conductivity models were devel-
oped using datasets of experimental measurements of soil. Johansen [20] proposed a kr-Sr
relationship between normalized thermal conductivity and soil physical properties, such
as soil type, porosity, degree of saturation, and mineral component. Kersten [21] proposed
an empirical model based on a series of laboratory measurements of 19 types of soils, and
the empirical model described the relationships between thermal conductivity, moisture
content, and dry density. However, empirical models are only persuasive for specific soils
and lack a clear physical foundation because of differences between the physical properties
of each natural soil [19].

The most common mixture models are based on classical mixing laws of the series
thermal conductivity (STC) model and parallel thermal conductivity (PTC) model [19].
Compared to theoretical and empirical models, the advantages of mixing models are more
obvious since they are based on the physical and heat transport properties of porous
media [22]. Two basic mixture models, STC and PTC models, determine the volume
percentage and thermal conductivity of each phase in media [14,23–26]. Nam et al. [27]
developed a numerical model that combines a heat transport model and a heat exchanger
model to predict the heat exchange rates for a ground source heat pump system. The
PTC model was used for the estimation of thermal conductivity of soil in the numerical
analysis. Bottarelli et al. [28] evaluated the application of a novel ground heat exchanger
through numerical modeling to solve transient heat transfer, and the thermal conductivity
of the mixed backfill materials was obtained by the PTC model. Chen et al. [29] proposed
a numerical model of a vertical ground heat exchanger with the finite-volume method to
evaluate the effects of thermal conductivity, volumetric heat capacity, temperature, and
soil porosity, where the thermal conductivity of backfill materials was expressed as the
PTC model. A mathematical model was developed to analyze the influence of unsaturated
soil properties and groundwater flow on the performance of ground source heat pump
systems by Li et al. [30], and the thermal conductivity of ground can be represented by
the PTC model which was expressed as the sum of the thermal conductivity of each phase
according to their volume fractions.

According to the above studies, the PTC model is still widely used in numerical
analysis because it can reasonably describe the physical and heat conduction properties
of soil. However, the prediction of the PTC model is not the most accurate. The reason
for this was that the value calculated by the PTC model is based on the assumption that
the components are superposed to form a multiphase mixture, but the form of contact
between solid particles is not taken into consideration which has a significant effect on soil
thermal conductivity [11,25,26]. Thus, the values of the calculation by the PTC model which
presented the upper bound of the thermal conductivity of the soil generally overestimated
the data [15]. It is necessary to develop a more accurate and comprehensive model of soil
thermal conductivity based on the PTC model.

The aim of this study was to develop a modified model based on the PTC model to
calculate the thermal conductivity λ of sand over a wide range of moisture contents from
dry to saturated. The calculation steps of the modified model are presented. Based on
the results, the performance of the modified model was validated by comparison with
published datasets for a wide range of sand types. Finally, the modified model was used in
the numerical analysis of the temperature field simulation, and the simulated and measured
values were in good agreement.
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2. Heat Transfer Mechanisms of Sand

As a kind of porous medium, the thermal properties of sand are determined by the
volume fraction of each constituent material, such as soil particles, water, and air. Previous
studies have revealed that conduction was generally the dominant heat transfer mechanism
of sand produced by the presence of temperature gradients, and convection heat transfer
undertook a significant role only in highly permeable soils. In this paper, the symbol λ
refers to the thermal conductivity of sand.

The thermal conductivity of the solid phase is on average approximately 6 times
and 200 times that of water and air, respectively. Specifically, for completely dry sand,
or under great matric suction, heat is mainly conducted through the solid phase and
restricted by contact points between solid particles. When the water content increases, the
initial water is in the lowest energy state, and water menisci form near the particle contact
region where they are the most stable [31,32]. In this paper, menisci are called transitory
water bridges because the characteristic of the water bridge is connecting the gap between
neighboring particles. The water bridges at the particle contacts increase the contact
areas and thus remarkably enlarge the transfer paths of heat conduction in sand. Particle–
particle conduction is altered to particle–water–particle conduction, which causes a rapidly
increasing tendency in thermal conductivity, as shown in Figure 1. As the water content
continues to increase, individual water bridges are gradually interconnected and form an
evenly distributed water membrane coating on all particles. This phenomenon is generally
referred to as the funicular regime, which is conducive to the further augmentation of the
thermal conductivity of sand [33]. The contributions of particle–water–particle conduction
in enhancing the thermal conductivity of sand achieve its maximum at this stage.
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Figure 1. General relationship between soil thermal conductivity and degree of saturation.

Unsaturated sand gradually tends to saturate with increasing moisture content. At
this point, the heat transfer mechanism of sand changes from solid phase conduction to
joint conduction by the solid and liquid phases, with continuously increasing thermal
conductivity due to increasing water content. However, the rates of increase in thermal
conductivity decrease gradually as the sand tends to full saturation. Hence, the curve of
thermal conductivity, as shown in Figure 1, approaches a plateau, which indicates that the
thermal conductivity of sand reached its maximum value λsat.

3. Model Development
3.1. Parallel Theoretical Models (Wiener Model)

Sand is considered a porous medium that is composed of air, water, and solids; the
particles of sand have point contacts with their neighbors. Each sand has a unique mineral
composition, size distribution of the solid phase, and geometry of the particle and pore
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structure, and those parameters have a significant influence on the thermal properties of
the soil [34–36]. Furthermore, the water content in the pores of sand plays an important
role. Consequently, it is difficult to assess whether a prediction accurately considers all
these factors [37]. The proposed PTC model predicts the thermal conductivity of soil based
on the volume fraction of the three phases, i.e., solid, liquid, and air, and the models are
expressed as follows:

λparallel = ∑ ϕiλi = ϕsλs + ϕwλw + ϕaλa (1)

where λparallel is the thermal conductivities of the PTC model in the unfrozen state; ϕi
is the volume fraction of component i, and ∑ϕi = 1; ϕs, ϕw, and ϕa and are the volume
fractions of solid particles, water, and air, respectively; λi is the thermal conductivity of
component i; λs is the solid thermal conductivity (2 to 8 Wm−1◦C−1); λw and λa are the
thermal conductivity of water (0.6 Wm−1◦C−1) and air (0.02 Wm−1◦C−1), respectively.

The PTC model has the advantage of using clearly defined concepts to estimate the
thermal conductivity of soil. In general, the air volume, moisture content, and particle
density are represented by selecting the two indexes, porosity n and degree of saturation
Sr [38,39]. Thus, the PTC model is also expressed by:

λparallel =

{
(1−n)λs + nλa Sr = 0

(1−n)λs + nSrλw + n(1−Sr)λa Sr ̸= 0
(2)

However, the materials are made up of columns in the PTC model, and the heat
conduction is constant at all points and the same in both phases, which depends on
the thermal conductivity of each phase. The reason for the upper bound of the thermal
conductivity of media was calculated by the PTC model based on the assumption that
the components were superposed to form a multiphase mixture, but the form of contact
between solid particles was not taken into consideration. Figure 2 indicates the comparison
between measured values and calculated values from the PTC model; four examples were
derived from the literature [6,8,40]. As shown in Figure 2, compared to the measured
values, the PTC model gave an upper bound, and the results of the calculation generally
overestimated the data. The estimated values of the PTC model showed a linear trend over
a wide range of Sr; this tendency of the sand thermal conductivity did not correspond to the
actual situation, which showed a nonlinear trend represented by the measured values. The
maximum error in the calculated value of the PTC model occurred at Sr = 0 and gradually
decreased according to the increase in Sr because the soil was treated as a continuum by
the PTC model; broken and scattered particles were not considered.
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3.2. Equivalent sand Particle Thermal Conductivity λes

When the sand is in a completely dry condition, conductive heat transfer is mainly
controlled by contact between particles, which has been discussed previously. However,
in the PTC model, the solid particle thermal conductivity λs is adopted to characterize
the property of conductive heat transfer of the solid phase, which does not consider
contacts between particles. Therefore, the influence of the contacts between particles
could not be sufficiently reflected by the solid particle thermal conductivity λs. Then,
the formation of water bridges among particles remarkably enlarges the transfer paths of
heat conduction in sand so that the thermal conductivity of sand increases sharply when
the sand is under low degrees of saturation. Similarly, the effect of water bridges cannot
be adequately represented in λs. Thus, in this study, we proposed using the equivalent
thermal conductivity of solid particles λes instead of solid particle thermal conductivity
λs in the PTC model; this changed the PTC model to a nonlinear model, which was
sufficient to present the effects of the contact features of particles and water bridges near
the particle contacts.

Detailed derivations of the equivalent thermal conductivity of solid particle λes are
included below. First, the measured value of the thermal conductivity of sand was deter-
mined by testing in the dry state, which contained the effect of contacts between particles.
Then, by substituting the measured value in the left side of Equation (2), we obtained the
formula by a simple transformation of variables:

λes = λ
dry
es = (λmeasured − nλa)/(1 − n) Sr = 0 (3)

where λ
dry
es is the equivalent thermal conductivity of solid particles in the completely dry

state, which represents the thermal conductivity of the solid phase of sand affected by
contacts between particles and is typically less than λs. Finally, the measured value of
Sr ̸= 0 was substituted in the left side of Equation (2), which was determined by testing,
and the formula was obtained as:

λes = [λmeasured − nSrλw − n(1 − Sr) λa]/(1 − n) Sr ̸= 0 (4)

For example, with Sample A, Figure 3 indicates that the equivalent thermal conduc-
tivity of solid particle λes increased with Sr and was generally larger than the measured
value of the sand thermal conductivity at the same Sr. The change in the trend of λes
with Sr was consistent with the trend of the measured value. The λes at the low range
of Sr increases rapidly on top of λ

dry
es and then goes into a stable region as Sr approaches

saturation. When Sr ̸= 0, liquid in the pores exerts an effect on heat transfer, including
increased contact area between particles, by the presence of a transitory water bridge at
low Sr and heat conduction in liquid at higher Sr. As a result, the effects of liquid were
not captured in λ

dry
es . Figure 3 shows that λes was a function of Sr when Sr ̸= 0, and the

relationship between λes and Sr was described by a hyperbolic expression. Thus, λes was
expressed by the following equations:

λes = λ
dry
es + f (Sr) (5)

f (Sr) = Sr/(A· Sr + B) (6)

where A and B are sand-dependent parameters.
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The lower and upper limit conditions of Equation (5) are as follows:
Lower limit condition: Sr = 0 → λes = λ

dry
es ;

Upper limit condition: Sr = 1 → λes = λ
dry
es + 1/(A + B).

Equations (5) and (6) were substituted into Equation (2), λs was replaced by λes, and
the modified parallel thermal conductivity (MPTC) model was obtained:

λ =

{
(1−n)λdry

es + nλa Sr = 0

(1−n)
[
λ

dry
es + Sr/(A· Sr + B)

]
+ nSrλw + n(1−Sr)λa Sr ̸= 0

(7)

3.3. A Mathematical Model of λ
dry
es

The measures of thermal conductivity of dry sand were obtained from Table A1 in
Appendix A and the correlation curve of λ

dry
es with porosity was plotted. Figure 4 shows that

the relationship between λ
dry
es and porosity was linear based on Equation (8) (0.2 < n ≤ 0.5).

As the porosity increased, λ
dry
es decreased because the thermal conductivity of the air phase

was lower than that of the mineral composition. This was in accordance with the findings
of previous research [41,42]. However, the main conductive mechanism of dry sand is
contact conductance, and the effect of quartz content fq was insignificant. Therefore, λ

dry
es

correlated with porosity as follows:

λ
dry
es = −kn + θ (8)

where k and θ are indeterminate coefficients that can be determined through experiments.
From Equation (7), it can be concluded that the modified parallel model of dry sand is:

λ = (1 − n) (−kn + θ) + nλa Sr= 0 (9)

The coefficients k and θ can be determined by fitting Equation (8) to the heat-pulse
measurements. Figure 4 plots the λ

dry
es –n values and the fitted lines, which are represented

by dashed and solid lines. For completely dry sand, λ
dry
es was affected only by the porosity

of the sand.
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First, measurements of dry sand thermal conductivity should be made for no fewer
than three groups of sand with different porosities. Next, λ

dry
es corresponding to the test

groups is calculated based on Equation (3). In this way, the coefficients k and θ can be
obtained by fitting λ

dry
es –n values according to Equation (8) and used to prepare for the

subsequent stages of determination of parameters A and B in Equation (6).

3.4. Determination of Parameters A and B

The physical characteristics of samples, such as grain size distribution, particle and
bulk density, and porosity should be defined before laboratory thermal conductivity exper-
iments. The determination of parameters A and B can be accomplished using the following
steps. First, at a constant temperature, which is controlled within the range of 20~30 ◦C,
the dry thermal conductivity λdry of the samples is measured by the transient method, and

λ
dry
es is calculated based on Equation (3). λ

dry
es is a function of sand porosity as discussed

previously. Then, the sample thermal conductivity λ is measured for different Sr values
under identical settings. The spans of Sr elected in the test should be larger than 15%, and
the magnitudes of selected Sr should cover above 80%. A series of λes values for different
Sr are calculated via Equation (4). Finally, the relationship of the proposed function f (Sr)
between λes (Sr ̸= 0) and Sr can be described by a hyperbolic expression, and the parame-
ters A and B in the hyperbolic expression can be determined through nonlinear regression
analysis based on the calculated λes.

Figure 5 shows that the parameters A and B of the four samples are determined by
nonlinear regression analysis, which is performed by a hyperbola. For each sample, the
hyperbolic expression fit of λes to Sr can better describe the increase in λes with Sr. The
growth trends of λes in the form of a hyperbolic curve are dramatic, especially when Sr
varies from 0 to 30%, and then enters a stable region as Sr is over 40%. After the series of
steps above, substituting the coefficients including λ

dry
es and parameters A and B of f (Sr)

into Equation (7), the full MPTC model can be obtained.
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3.5. Model Validation

It is therefore necessary to obtain dependable experimental data to better evaluate the
thermal conductivity model. Thus, the experimental data comply with several important
criteria: (1) the experimental results are measured on soil samples with the transient method
and shown to be accurate and reproducible; (2) cohesionless soil is a collection of objects
with a detailed description of the grain size distribution, such as the contents of clay,
silt, and sand; (3) the detailed properties of specimens are reported, including grain size
distribution, quartz mineral content, texture of sand, saturation degree Sr, porosity ratio n,
and particle density ρs; (4) the ambient temperature of the experiment is within the range
from 20~30 ◦C; (5) each selected experimental dataset should contain a wide range of Sr
from dryness to saturation. Table A1 in Appendix A shows that a total of 41 sands were
collected from 15 sources published in the literature.

For each referenced sand, at least four measurements of thermal conductivity were
made with the variation of Sr including dry and saturated. Thus, the 41 sands from the
literature were able to fulfil the condition of building an independent MPTC model for each
sand. The framework of building the MPTC model is shown in Figure 6, and the predicted
values of thermal conductivity for each referenced sand calculated by the independent
MPTC model were obtained, which corresponded to Sr in the test. From the above findings,
it was concluded that for constructing f (Sr), as least three independent sets of thermal
conductivity experiments of the sample are performed under dry conditions and two
different degrees of saturation conditions. Figure 7 shows the comparison of the calculated
thermal conductivity values of sand calculated by the MPTC model with measurements
of the 41 sands from the literature, as presented in Table A1 of Appendix A. Figure 7
shows that most of the thermal conductivities calculated using the MPTC model were in
good agreement with the experimental data. Of the errors, 86% were less than 10% of the
calculated values, which verified the accuracy and effectiveness of the proposed model.
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4. Numerical Models with the MPTC Model

The final goal of this paper was to use a numerical approach to verify the applicability
of the MPTC model. For this purpose, numerical models were used to evaluate the
temperature field of the energy pile for various degrees of sand saturation. The results of
the numerical model were compared against a series of laboratory experiments. Afterwards,
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we extended the numerical model to account for the sand temperature profile, and we used
a numerical model associated with the MPTC model to evaluate the temperature field of
sand for saturation conditions.

The indoor test employed to validate the applicability of the MPTC model was derived
from Akrouch [43]. The indoor test included a series of sand thermal conductivity tests
and temperature field tests of energy piles of unsaturated sands. First, a total of 12 groups
under different Sr (0.015, 0.111, 0.188, 0.245, 0.311, 0.421, 0.480, 0.590, 0.715, 0.840, and
two groups of 1.000) in thermal conductivity tests of the same sand with an average value
around γd = 14.5 kN/m3 and n = 0.45 were included; secondly, with respect to temperature
field tests, the energy pile was embedded inside a square wooden box with dimensions of
1.2 × 1.2 × 0.25 m filled with sand with diameters of 300 mm and 400 mm. Two PVC pipes
in the pile served as the heating source; water inside the pipes remained at a constant value
of 37 ◦C. All experimental procedures were performed in a room maintained at a constant
temperature of 21 ◦C. Different degrees of saturations of sand (0.015, 0.188, 0.311, 0.480,
0.715, and 1.000) were adopted, and each experiment was conducted for 48 h. Sheets of
foam insulation enclosed the top and bottom of the wooden box to prevent heat transfer in
the vertical direction, and the tests were regarded as 2D plane heat conduction because an
effective temperature gradient was not present along the height of the wooden box. In this
study, the simulation only addressed an energy pile with a diameter of 300 mm.

4.1. Comparison between Measured and Calculated Values of Thermal Conductivity of Sand

One of those thermal conductivity tests included a sand with Sr = 0.015, which was
regarded as the dry condition. Consequently, in accordance with the derivation condition of
the MPTC model for the sand, the parameters A and B of f (Sr) were accurately determined.
Then, the complete MPTC model for predicting the thermal conductivity of test sand was
obtained. Figure 8 plots the sand thermal conductivity values calculated using the MPTC
model against the values under different Sr values that were measured in the laboratory
experiment [43]; there was satisfactory agreement between the calculated and experimental
values over the range of Sr. The fitted curve of the hyperbolic expression for f (Sr) gave an
accurate representation as a function of Sr.
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4.2. Energy Pile Model

The finite element software PLAIXS 2D (V21.02) was employed for the numerical
analyses. This software was able to deal with the temperature profile of soil formation
and to couple and analyze the effect of temperature on the mechanics of soil. However,
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the major objective of this paper was to control the heat conduction of sandy soil by
thermal properties; mechanical effects were ignored. Figure 9 shows the 2D model and
mesh adopted for numerical analysis from the above laboratory energy pile tests. No heat
protection measures were adopted at the perimeters for the wooden box in laboratory
tests. Thus, the temperature boundary condition of the model and initial temperature
for all materials were assumed to be equal to room temperature (21 ◦C). Notably, the
influence of moisture migration on heat conduction in sand during the numerical simulation
was neglected.
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Since the thermal properties of the energy pile were lacking, in the numerical analysis,
the pile was intended to be replaced by a circular temperature boundary that provided the
heat source for the whole model. The laboratory experiments presented the temperatures
of point B, C, D, E, F, and G. The detailed locations of those points are shown in Figure 9;
among them, points B and E were located at the surface of the pile, and thus the temperature
at points B and E represented the temperatures of different positions of the pile surface.

A discrete approach was used to simulate the temperature variation from point B to
point E in the numerical analysis. First, the temperature variation from point B to point
E was assumed to be a linear change along the circular temperature boundary. Then, the
model was built with 2D axisymmetric geometry; thus, we took the temperature boundary
of one quarter section as an example. As illustrated in Figure 10, the quarter circular
temperature boundary was divided into 10 equal parts, and the temperature values at points
B and E were adopted for parts 1 and 10, respectively. Finally, the value of the temperature
difference between points B and E was divided into eight parts, which are shown in
Figure 11 and correspond to the other eight parts of the discrete temperature boundary.
This discrete approach was generalized to the entire circular temperature boundary to
efficiently simulate the temperature variation along the circular temperature boundary.
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4.3. Discussion of Volumetric Heat Capacity

The volumetric heat capacity (ρc) of soil is another of the most important parameters
in a proper simulation of the temperature field of the ground surface and subsurface
formation, which describes how well the soil stores heat. However, the volumetric heat
capacity of sand could not be obtained from the literature because not enough specific
details were given. The value of the volumetric heat capacity of sand selected for numerical
simulation is discussed in the following paragraphs.

The volumetric heat capacity of soil was calculated from the sum of the heat capacities
of the soil constituents through many trials and theoretical derivations [44–47]. Thus,

ρc = ρs cs ϕs + ρw cw ϕw + ρa ca ϕa (10)

where ρ is the density (kg m−3), c is the specific heat (kJ kg−1 ◦C−1), and ϕ is the volume
fraction of the component; the subscripts s, w, and a indicate the soil, water, and air
constituents, respectively, where ϕi = Vi

V , and Equation (10) is given by:

ρc =
Vs

V
ρs cs +

Vw

V
ρwcw +

Va

V
ρaca (11)
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since the porosity n and degree of saturation Sr are given by n = Vv
V , and Sr = Vw

Vv
, respectively.

Equation (11) can be rewritten in the form:

ρc = (1− n) ρscs + n Sr ρwcw + n (1 − Sr) ρaca (12)

The values of the specific heat of the water and air were taken as 4.18 kJ kg−1 ◦C−1 and
1.00 kJ kg−1 ◦C−1, respectively. Generally, the value of cs for clay was 1.10 kJ kg−1 ◦C−1

and 0.90 kJ kg−1 for sand particles [48,49]. For that reason, five typical values of specific
heat were selected (0.70, 0.80, 0.90, 1.00, and 1.10 kJ kg−1 ◦C−1) to discuss the influence of
volumetric heat capacity on the temperature field of sand particles. The other parameters
remained constant, including porosity n (0.45), ρs (2.65 kg/m3), and ρ (1.45 kg/m3). The
numerical analyses of thermal conductivities of sand used the results of Section 4.1 and
employed the model presented in Section 4.2. Among them, point C was taken as an
example for the following analysis, and the temperature curves of point B were employed.

Figure 12 illustrates that the value adopted for the specific heat of sand particles had
little influence on the variation in the temperature of the numerical analysis. A small
amount of the variance in the results across the studies occurred when Sr = 0, and the
differences decreased with increasing Sr. The reason was because water has a greater
specific heat than sand particles and air, and water had a dominant effect on the volumetric
heat capacity of the sand because the sand had large pores. Thus, the value of cs for sand
particles was selected to be 0.90 kJ kg−1, and it was feasible in the numerical analysis.
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4.4. Assessment of the MPTC Model

Figure 13 shows that most of the calculated values of temperature and the thermal
conductivity of sand calculated by the MPTC model agreed well with the laboratory
experimental data. However, a few slight deviations between the calculated and measured
values were observed, especially for point C, for two reasons. First, the degree of saturation
of sand remained constant for each group, but the spatial distribution of water in sand was
altered during the experiment due to temperature gradients that caused moisture migration.
However, the effect of moisture migration on heat conduction was not considered in the
numerical simulation. Second, the porosity of the sand (n = 0.45) adopted in the numerical
model was an average value, and the porosities of the samples in the experiments ranged
from 0.44 to 0.47. Even so, the results of the comparison were convincing. In addition, the
trends of temperature decreasing with increasing Sr were observed in the simulation, and
they were consistent with the trend in the experimental data. Thus, the proposed model
had sufficient precision for computing believable predictions, and the thermal conductivity
of sand with different Sr can be evaluated by the MPTC model.
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5. Conclusions

In this study, we developed a modified parallel model for estimating sand thermal
conductivity with a wide range of moisture contents. We presented the equivalent thermal
conductivity of solid particles λes and proposed a functional relationship between λes and
Sr when Sr ̸= 0. The following conclusions can be drawn:

When Sr = 0, a back-extrapolation through the PTC model based on measurements
was used to calculate λ

dry
es . Compared to the solid particle thermal conductivity λs, the

equivalent thermal conductivity of the solid particle λes sufficiently reflected the influence
of contact between particles under dry conditions.

A simple hyperbolic relationship was applied to describe f (Sr), which presented the
functional relationship between λes and Sr when Sr ̸= 0. Therefore, the complete form of
λes was illustrated as the sum of λ

dry
es and f (Sr).

Comparisons between calculated values of sand thermal conductivity by the MPTC
model and measurements of 41 sands from previous studies published in the literature
indicated that the MPTC model was in good agreement with the experimental data.

To illustrate the utility and practicality of the MPTC model, the model was used in
the numerical analysis of temperature field simulations, and the results indicated good
agreement between the numerical and measured temperature values.
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Appendix A

Table A1. Summary of physical properties of sands.

No. Sand Texture

Particle Size Distribution
(% Mass) fq

(%)
n

(%)
ρs

(g/cm3)
Literature

Source
Clay Silt Sand

1 Pozzolama Loamy sand 3 26 71 0 0.44–0.5 2.75 [13]
2 L-soil (30) Loamy sand 6 27 67 0 0.43 2.65 [34]
3 ON-04 Loamy sand 1 10 89 38 0.39 2.76 [11]
4 ON-06 Loamy sand 2 14 84 38 0.44 2.74 [11]
5 QC-01 Sand 2 5 93 35 0.43 2.72 [11]
6 BJ (20–30) Sand 1 7 92 46 0.37 2.53 [50]
7 BJ (30–40) Loamy sand 1 15 84 45 0.37 2.50 [50]
8 QC-02 Loamy sand 4 17 79 42 0.48 2.69 [11]
9 ON-03 Loamy sand 3 26 71 41 0.46 2.71 [11]

10 Limestone sand Sand 0 0 100 40 0.27–0.39 2.74 [40]
11 Granite B Sand 0 0 100 45 0.30 2.65 [51]

12 Anduo
(10–20) Loamy sand 3 16 81 45 0.46 2.65 [50]

13 Anduo
(20–30) Loamy sand 3 11 86 45 0.39 2.65 [50]

14 Anduo
(30–40) Loamy sand 8 23 69 45 0.30 2.65 [50]

15 PE-03 Loamy sand 2 14 84 54 0.41 2.66 [11]
16 MN-04 Loamy sand 4 15 81 61 0.47 2.71 [11]
17 SK-02 Loamy sand 6 27 67 61 0.45 2.70 [11]
18 SK-04 Loamy sand 3 14 83 67 0.42 2.68 [11]
19 SK-05 Loamy sand 4 28 68 63 0.45 2.68 [11]
20 Brighton sand Loamy sand 20 19 61 63 0.39–0.49 2.59 [7]
21 Toyoura Sand 0 0 100 75 0.38–0.40 2.63 [9]
22 NS-05 Loamy sand 2 13 85 72 0.40 2.66 [11]
23 Quartzite sand Sand 0 0 100 80 0.34–0.38 2.65 [40]
24 Ottawa sand Sand 0 0 100 100 0.34–0.36 2.70 [52]
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Table A1. Cont.

No. Sand Texture

Particle Size Distribution
(% Mass) fq

(%)
n

(%)
ρs

(g/cm3)
Literature

Source
Clay Silt Sand

25 Masonry sand Sand 0 0 100 80 0.27–0.40 2.65 [40]
26 Sand-Kaolin-1 Sand 5 0 95 95 0.34–0.41 2.65 [12]
27 Sand-Kaolin-2 Sand 10 0 90 90 0.35–0.40 2.64 [12]
28 PS14-H Sand 0 3 97 97 0.45 2.65 [8]
29 Silica sand Sand 0 0 100 90 0.25–0.38 2.65 [40]

30 12/20
(tight) Sand 0 0 100 99 0.31 2.65 [5]

31 12/20
(loose) Sand 0 0 100 99 0.40 2.65 [5]

32 Sand Sand 0 0 100 100 0.36–0.40 2.65 [12]
33 Sand-L Sand 0 0 100 100 0.45 2.65 [8]
34 Sand-H Sand 0 0 100 100 0.40 2.65 [8]
35 C-109 Sand 0 0 100 100 0.32–0.40 2.65 [9]
36 C-190 Sand 0 0 100 100 0.40 2.65 [9]
37 NS-04 Sand 0 0 100 100 0.36 2.66 [11]
38 Sample A Loamy sand 5 27 68 100 0.40–0.49 2.65 [6]
39 Sample B Sand 0 6 94 100 0.43–0.55 2.65 [6]
40 Sample C Sand 0 6 94 100 0.43–0.55 2.65 [6]
41 Sample D Loamy sand 13 27 60 100 0.35–0.47 2.65 [6]
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