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Abstract: Hybrid beamforming (HBF) has been regarded as one of the most promising technologies
in millimeter Wave (mmWave) communication systems. In order to guarantee the communication
quality in non-line-of-sight (NLOS) scenarios, joint HBF design for the mmWave amplify-and-forward
(AF) relay communication system is studied in this paper. The ideal case is first considered where
the mmWave half-duplex (HD) AF relay system operates with channel state information (CSI)
accurately known. In order to tackle the non-convex problem, a manifold optimization (MO)-based
alternating optimization algorithm is proposed, where an optimization problem containing only
constant modulus constraints in Euclidean space can be converted to an unconstrained optimization
problem in a Riemann manifold. Furthermore, considering more practical cases with estimation
errors of CSI, we investigate the robust joint HBF design with the system operating in full-duplex (FD)
mode to obtain higher spectral efficiency (SE). A null-space projection (NP) based self-interference
cancellation (SIC) algorithm is developed to attenuate the self-interference (SI). Different from the
traditional SI suppression algorithm, there’s no limit on the number of RF chains. Numerical results
reveal that our proposed algorithms has a good convergence and can effectively deal with the
influence of different CSI estimation errors. A significant performance improvement can be achieved
in contrast with other approaches.

Keywords: mmWave communication system; AF relay; hybrid beamforming; manifold optimization;
channel state information

1. Introduction

Compared with microwave communication systems, millimeter wave (mmWave)
communication systems have larger bandwidth and higher data rate [1], receiving great
attention from both academic and industry. However, high propagation loss is a major
characteristic of mmWave signals [2], which should be compensated for by deploying large
antenna arrays to guarantee the communication quality. Fortunately, due to the shorter
wavelength of mmWave, more antennas can be integrated into the same space, enabling
Massive MIMO technology in mmWave communication systems [3]. Nevertheless, the dras-
tic increase in the number of antennas leads to a high cost, based on which researchers
proposed the hybrid beamforming (HBF) technology.

mmWave communication is mostly used in line-of-sight (LOS) dominant scenarios
owing to their high vulnerability to blockages. However, the source-destination link is
probably non-line-of-sight (NLOS). Practically, relay nodes are commonly deployed to
solve the problem [3,4]. Combined with the relay technology, hybrid transceivers can
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combat severe attenuation of mmWave signals and extend network convergence. In ad-
dition, an mmWave relay system operating in full-duplex (FD) mode can achieve higher
spectral efficiency (SE) than the one based on half-duplex (HD) by enabling simultaneous
reception and transmission of relay nodes [5]. However, the self-interference (SI) imposed
by simultaneous transmission should be mitigated to ensure the communication quality [6].
With effective suppression of SI, the FD technology can reduce end-to-end communication
delay and improve spectral efficiency significantly.

Unfortunately, the HBF design problem in mmWave relay communication systems
has not been extensively investigated. In [7], the authors exploited a transceiver HBF
design on the basis of orthogonal matching pursuit (OMP), whose complexity is relatively
low while the performance significantly relates to the orthogonality of the pre-defined
analog beamforming (ABF) matrices. In [8], a wideband HBF algorithm was adopted
in the multiple-relays scenario. The HBF design techniques of a relay node has been
explored in [9,10]. In particular, the alternating direction method of multipliers (ADMM)
algorithm was proposed to reduce the minimum square error (MSE) between received
signals and transmit signals in [9]. To overcome high complexity, the optimization problem
was decomposed into three sub-problems in [10], which is solved by an iterative successive
approximation (ISA) algorithm. However, the above two algorithms only optimize the
relay node. The authors in [11] developed an HBF algorithm to jointly design all nodes in
the mmWave amplify-and-forward (AF) relay system, including the source node, the relay
node and the destination node. In [12], the HBF design in mmWave multi-user MIMO relay
system was investigated. The ABF of the base station, relay and users could be iteratively
designed by solving the weighted minimum MSE (WMMSE) problem.

It is noteworthy that all of these works were under accurate channel state information
(CSI). Due to channel estimation errors and user mobility, CSI is not available perfectly
in practice. The works of [13,14] studied the robust HBF design for the mmWave FD
relay system with the premise of imperfect CSI. To be specific, the work in [13] introduced
a robust OMP HBF scheme for mmWave channels with Gaussian-distributed errors to
maximize the average receive signal-to-noise ratio (SNR). To reduce complexity, the authors
in [14] designed the radio frequency (RF) and baseband separately and showed a robust
WMMSE-based algorithm with respect to the sum of rate for the fully connected AF relay
networks. On the other hand, the robust design for mmWave HD relay systems were
investigated in [15,16]. Given the impact of SI, a minimum MSE (MMSE) optimization
problem for the relay node was deduced in [15]. In [16], the SI power constraint was taken
into account in the worst-case sum rate maximization problem. To make it tractable [16],
reformulated the problem by using the penalty dual decomposition technique. Currently,
there are still few researchers focusing on HBF design for mmWave relay communication
systems on the basis of channel estimation errors.

Against this background, the above problem of HBF design for the mmWave relay
communication system is addressed in this paper. Instead of considering only relay nodes,
all nodes are jointly optimized in this paper. Additionally, we take both perfect and
imperfect CSI into account. It is worth noting that our proposed algorithms can be applied
to both HD and FD mode. For clarity, the main contributions of our work are summarized
as follows:

• We first consider the HD relay system under the assumption of perfect CSI. Different
from conventional MSE minimization problems, where the power constraints intro-
duce additional complexity, we model the improved MSE (IMSE) as the optimization
objective by designing a power scaling factor.

• To deal with the complicated non-convex problem, a manifold optimization (MO)
based alternating optimization algorithm is proposed, which decomposes the problem
into three sub-problems. Simulation results demonstrate that our proposed method is
superior to its counterparts by approaching the full digital solution.

• In terms of the FD relay communication system in the practical scenario, we develop a
robust HBF algorithm. To mitigate SI introduced by the FD model, we further develop
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a null-space-projection (NP)-based SI cancellation (SIC) method, which has no limit on
the number of RF chains in contrast with traditional methods. Simulation shows that
the proposed approach can achieve sufficient suppression of SI, providing significant
beamforming gain.

The remaining sections are organized as follows. Section 2 presents the system model
and the mmWave channel model. Section 3 introduces the HBF design for the HD AF relay
communication system. The SIC-NP and HBF-MO-FD-R algorithms for the FD AF relay
communication system are proposed in Section 4. Section 5 provides our simulation results.
Finally, Section 6 draws conclusions.

Notations: In this paper, vectors and matrixes are denoted by bold lowercase letters
and uppercase letters, respectively. || · || and || · ||F stand for the Euclidean norm of a
vector and the Frobenius norm of a matrix. tr(·) and (·)H represent the trace and conjugate
transposition operations, respectively. | · | represents the magnitude of a complex number.
E{·} denotes the expectation operator. d(·) and ∇(·) denote the differential and the
gradient of a function. R and Cm×n denote the set of all real matrixes and all complex
m× n matrixes. Im denotes the m×m identity matrix. Some important symbols and their
meanings are listed in Table 1.

Table 1. Notations.

Symbol Meaning

NT The number of antennas of the source node
NR The number of antennas of the relay node
ND The number of antennas of the destination node
NRF The number of antennas of RF chains at each node
NS The number of data streams
s The original signal of the source node
F The HBF matrix of the source node

FB The DBF matrix of the source node
FRF The ABF matrix of the source node
PB The power threshold of the source node
H1 The mmWave channel matrix of the source-to-relay link
G The HBF matrix of the HD relay node

GRF1 The receive ABF matrix of the HD relay node
GRF2 The transmit ABF matrix of the HD relay node
GB The DBF matrix of the HD relay node
σ2

R The nosie variance of the relay node
PR The power threshold of the realy node
H2 The mmWave channel matrix of the relay-to-destination link
W The HBF matrix of the destination node

WRF The ABF matrix of the destination node
WB The DBF matrix of the destination node
σ2

D The noise variance of the destination node
γ, γ1, γ2 The scaling factors

FU The unnormalized DBF matrix of the source node
GU The unnormalized DBF matrix of the realy node
F The unnormalized HBF matrix of the source node
G The unnormalized HBF matrix of the realy node

GB1 The receive DBF matrix of the FD relay node
GB2 The transmit DBF matrix of the FD relay node
G1 The receive HBF matrix of the FD relay node
G2 The transmit HBF matrix of the FD relay node
HSI The SI channel matrix of the FD relay node

H1,H2,HSI The estimated channel matrixes
Θ The covariance matrix of estimation error at the receiver side
Φ The covariance matrix of estimation error at the transmit side
∆ The unknown part of CSI
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2. System Model

As shown in Figure 1, an AF mmWave relay communication system is adopted in
this paper, including a source node with NT antennas, an HD AF relay node with NR
antennas and a destination node with ND antennas. And all nodes are equipped with NRF
RF chains. In our scenario, the blockage between the source–destination link prevents
direct communication. Consequently, it is necessary for the two nodes to communicate
through the AF relay node.

Figure 1. HD AF relay communication system.

We assume that s ∈ CNS×1 denotes the original signal of the source node characterized
by E

{
ssH} = INs , with NS representing the number of data streams. The signal is processed

by the digital beamformer FB ∈ CNRF×NS and then the analog beamformer FRF ∈ CNT×NRF ,

which subjects to the constant-modulus constraint, i.e.,
∣∣∣[FRF]a,b

∣∣∣2 = 1. Therefore, the source
transmit signal can be given by xB = Fs, where F = FRFFB is the HBF matrix of the source
node. The source transmit power is stated as E

{
∥xB∥2

F

}
= PB.

Through the mmWave channel H1 ∈ CNR×NT , the signal is received by the AF re-
lay node, the transmit signal of which can be given by xR = G(H1xB + nR), where
G = GRF2 GBGH

RF1
is the relay node HBF matrix, with GRF1 ∈ CNR×NRF , GRF2 ∈ CNR×NRF

and GB ∈ CNRF×NRF being the receive ABF matrix, transmit ABF matrix and digital beam-
forming (DBF) matrix, respectively. nR ∈ CNR×1 denotes the addictive complex Gaussian
noise with zero mean and covariance matrix E

{
nRnH

R
}
= σ2

RINR at the relay node. Similarly,
the analog beamformers should subject to the constant-modulus constraints, while the
transmit signal xR should satisfy the power constraint E

{
∥xR∥2

F

}
= PR.

With an analog beamformer WRF ∈ CND×NRF followed by a digital beamformer
WB ∈ CNRF×NS , the received signal at the destination node takes the form of

yD = WHH2GH1Fs + WHH2GnR + WHnD, (1)

where H2 ∈ CND×NR denotes the mmWave channel of the relay-to-destination link, nD ∈
CND×1 is the zero-mean addictive complex Gaussian noise vector with covariance matrix
E
{

nDnH
D
}
= σ2

DIND at the destination node. For simplicity, we define W = WRFWB as the
HBF matrix of the destination node.

Channel Model

The mmWave channel model in [17–20] is considered in this paper, which takes the
following form:
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H =

√
NTNR

L

L

∑
l=1

αlar(φr
l )a

H
t
(

φt
l
)
, (2)

where L denotes the number of propagation paths, αl denotes the complex channel gain of
the lth path. at

(
φt

l
)

and ar
(

φr
l
)

are the transmitting and receiving array response vectors.
φt

l and φr
l stand for the elevation angles of departure (AOD) and azimuth angles of arrival

(AOA) for the lth path, respectively. It is worth noting that our proposed algorithms can be
applied to any antenna array. For simplicity, the commonly applied uniform linear array
(ULA) with N elements are considered. The array response vector can be given by

a(φ) =
1√
N
[1, ej 2π

λ d sin(φ), ..., ej(N−1) 2π
λ d sin(φ)]T , (3)

where λ represents the wavelength and d stand for the distance between antenna elements,
which is assumed to satisfy d = λ/2. In this section, both H1 and H2 are modelled as (2).

3. Hybrid Beamforming Design for HD AF Relay Systems
3.1. Problem Formulation

A mathematical model of the joint HBF design problem is formulated in this subsection.
According to [21,22], the IMSE is introduced as the metric to optimize the HBF matrix,
which can be defined as

IMSE ∆
= E

{∥∥∥γ−1yD − s
∥∥∥2
}

, (4)

where γ = γ1γ2, with γ1 and γ2 being the scaling factors, which are jointly optimized with
the HBF matrixes at the source and relay nodes, contributing to simplify and solve the
problem. By substituting (1) into (4), we have

IMSE =tr(γ2
−2γ1

−2WHH2GH1FFHHH
1 GHHH

2 W− γ−1
2 γ−1

1 WHH2GH1F

−γ−1
2 γ−1

1 FHHH
1 GHHH

2 W + γ2
−2γ1

−2σ2
RWHH2GGHHH

2 W

+γ2
−2γ1

−2σ2
DWHW + INS).

(5)

Similar to that in [22–24], the source and relay DBF matrixes can be decomposed as
FB = γ1FU and GB = γ2GU, with FU and GU being the unnormalized DBF matrix of the
source and relay nodes, respectively. So we can rewrite the modified MSE as

IMSE =tr(WHH2GH1FFHHH
1 GHHH

2 W−WHH2GH1F− FHHH
1 GHHH

2 W

+γ−2
1 σ2

RWHH2GGHHH
2 W + γ−2

1 γ−2
2 σ2

DWHW + INS)
(6)

where we define F=FRFFU and G=GRF2 GUGH
RF1

for convenience. Hence, we have F=γ1F
and G=γ2G. As a further step, the optimization problem can be formulated as

max
γ1,γ2,FRF,FU,GRF1

,GU,GRF2 ,WRF,WB
IMSE (7a)

s.t.
∣∣∣[FRF]a,b

∣∣∣2 = 1, ∀a, b, (7b)∣∣∣[GRF1

]
c,d

∣∣∣2 = 1, ∀c, d, (7c)∣∣∣[GRF2

]
e, f

∣∣∣2 = 1, ∀e, f , (7d)∣∣∣[WRF]g,h

∣∣∣2 = 1, ∀g, h, (7e)

E
{
∥xB∥2

F

}
= PB, (7f)

E
{
∥xR∥2

F

}
= PR, (7g)
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where (7b)–(7e) are the constant-modulus constraints of ABF matrixes, (7f) and (7g) are the
source and relay transmit power constraints.

3.2. MO-Based HBF Design

It can be observed from the optimization problem (7) that there exist nine variables
and four nonconvex constraints, which is tough to get the global optimal solution. In this
subsection, an alternating optimization algorithm on the basis of the MO method is pro-
posed. To overcome the difficulty of solving the original problem, it is decomposed into
three HBF design sub-problems [25,26].

(1) The Source Node Design: When G and W are fixed, the sub-problem can be further
expressed as

min
γ1,FRF,FU

IMSE (8a)

s.t.
∣∣∣[FRF]a,b

∣∣∣2 = 1, ∀a, b, (8b)

E
{
∥xB∥2

F

}
= PB. (8c)

According to F = γ1FRFFU, (8c) can be rewritten as γ2
1 tr
(

FFH
)
= PB, and we can obtain

γ1 =

[
tr
(
FRFFUFH

U FH
RF
)

PB

]− 1
2

. (9)

To this end, the Lagrange function L1(λ1, FU, γ1) of problem (8) can be constructed.
The minimum of L1(λ1, FU, γ1) is achieved when its partial derivatives equal to zero,
which gives the optimal FU as

FU =
(

FH
RFHH

1 GHHH
2 WWHH2GH1FRF + B11

)−1
FH

RFHH
1 GHHH

2 W, (10)

with B11=b11
(
FH

RFFRF
)

and b11 =
σ2

R
PB

tr
(

WHH2GGH HH
2 W

)
+

σ2
D

PB
γ−2

2 tr
(
WHW

)
.

One more step, substituting (8a) with (10), the optimization sub-problem can be
concisely re-formulated as

min
FRF

T1(FRF) (11a)

s.t. s.t.
∣∣∣[FRF]a,b

∣∣∣2 = 1, ∀a, b, (11b)

where we denote

T1(FRF) = tr
{[

INS +
(

WHH2GH1FRF

)
B−1

11

(
WHH2GH1FRF

)H
]−1

(12)

We can see that (11) is an optimization problem with only a constant-modulus constraint.
Om the grounds of [21,27], we can tackle it by applying the MO method. However, it is difficult
to use MO in the Euclidean space directly. Fortunately, if the gradient of objective function
in Euclidean space is derived, the above problem can be easily solved [27]. The gradient of
T1(FRF) with respect to FRF is defined as∇T1(FRF)=

∂T1(FRF)
∂F∗RF

[28], which is given by

∇T1(FRF) =
(

b11FRFB−1
11 FH

RF − INT

)(
WHH2GH1

)H
B−2

12 WHH2GH1FRFB−1
11 , (13)

where B12
∆
= INS +

(
WHH2GH1FRF

)
B−1

11
(
WHH2GH1FRF

)H for brevity. The detailed
derivation is provided in Appendix A.
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(2) The Relay Node Design: In a similar manner, it is assumed that F and W are fixed.
The optimization sub-problem of the relay node can be formulated as

min
GRF1

,GB,GRF2

IMSE (14a)

s.t.
∣∣∣[GRF1

]
c,d

∣∣∣2 = 1, ∀c, d, (14b)∣∣∣[GRF2

]
e, f

∣∣∣2 = 1, ∀e, f , (14c)

E
{
∥xR∥2

F

}
= PR. (14d)

For any given GRF1 and GRF2 , we can obtain

γ2 =

 tr
(

γ2
1GH1FFHHH

1 GH
+ σ2

RGGH
)

PR

−
1
2

. (15)

This leads to the optimization problem with only power constraint. Based on the Lagrange
function, we have

GU =

(
GH

RF2
HH

2 WWHH2GRF2+
σ2

D
PR

tr
(

WHW
)

GH
RF2

GRF2

)−1

×
(

GH
RF2

HH
2 WFHHH

1 GRF1 GH
RF1

H1FFHHH
1 GRF1 + γ−2

1 σ2
RGH

RF1
GRF1

)−1
.

(16)

By substituting (15) into (14a), the objective function is reduced to

T2
(
GRF1 , GRF2

)
= tr

(
INRF − BH

22B−1
21 B22B−1

23

)
, (17)

where B21 = GH
RF2

HH
2 WWHH2GRF2 +

σ2
D

PR
tr
(
WHW

)
GH

RF2
GRF2, B22 = GH

RF2
HH

2 WFHHH
1 GRF1 and

B23 = GH
RF1

H1FFHHH
1 GRF1 + γ−2

1 σ2
RGH

RF1
GRF1 . The partial derivative of T2

(
GRF1 , GRF2

)
for

G∗RF1
and G∗RF2

can be obtained as

∇GRF1
T2
(
GRF1 , GRF2

)
=
(

H1FFHHH
1 GRF1 B−1

23 BH
22

+ γ−2
1 σ2

RGRF1 B−1
23 BH

22−H1FWHH2GRF2

)
B−1

21 B22B−1
23 ,

(18)

∇GRF2
T2
(
GRF1 , GRF2

)
=
(

HH
2 WWHH2GRF2 B−1

21 B22

+
σ2

D
PR

tr
(

WHW
)

GRF2 B−1
21 B22−HH

2 WFHHH
1 GRF1

)
B−1

23 BH
22B−1

21 .
(19)

(3) The Destination Node Design: With F and G fixed, the optimization sub-problem of
the destination node can be expressed as

min
WRF,WB

IMSE (20a)

s.t.
∣∣∣[WRF]g,h

∣∣∣2 = 1, ∀g, h. (20b)

Compared with the source and relay nodes, the destination node only transmits signals
without receiving signals. Hence, there is no power constraint. When WRF is constant, (20) can
be converted to an unconstrained optimization problem. By taking the derivative, the optimal
WB is given by
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WB=
(

WH
RFH2GH1FFHHH

1 GHHH
2 WRF + γ−2

1 σ2
RWH

RFH2GGHHH
2 WRF

+γ−2
1 γ−2

2 σ2
DWH

RFWRF

)−1
WH

RFH2GH1F.
(21)

Substituting (21) into (20a), let B31=γ−2
1 σ2

RWH
RFH2GGH HH

2 WRF+γ−2
1 γ−2

2 σ2
DWH

RFWRF, we
can recast the objective function as

T3(WRF) = tr
[(

INS +FHHH
1 GHHH

2 WRFB−1
31 WH

RFH2GH1F
)−1

]
. (22)

Likewise, the gradient is given by

∇T3(WRF) =
(

γ−2
1 σ2

RH2GGHHH
2 WRFB−1

31 WH
RF

+γ−2
1 γ−2

2 σ2
DWRFB−1

31 WH
RF − IND

)
B33B−2

32 BH
33WRFB−1

31 ,
(23)

where we define B32 = INS + FHHH
1 GHHH

2 WRFB−1
31 WH

RFH2GH1F and B33=H2GH1F.
(4) Overall Algorithm: On the basis of the above description, the proposed HBF-MO

algorithm for the HD relay system is summarized in Algorithm 1. The original joint IMSE
problem can be decomposed into three sub-problems, which are optimized alternately until
the stopping criterion is met, as shown in Step 3 to Step 12. Moreover, the MO-based approach
generates a local optimal solution instead of a global one. As a consequence, the performance
of our proposed algorithm depends on the initialization of system parameters. In practice,
the HBF matrix keeps approaching to the full DBF matrix with the number of iterations
increasing. In this paper, we start with the full DBF matrix calculated by the singular value
decomposition (SVD).

Algorithm 1 HBF-MO Algorithm.

Input: H1, H2, σ2
R, σ2

D.
Output: γ1, γ2, FRF, FU, GRF1 , GU, GRF2 , WRF, WB.

1: Initialize FRF, WRF, GRF1 and GRF2 randomly.
2: Initialize FU, GU and WB with full DBF matrixes, and set γ1 = γ2 = 1, k = 1.
3: while IMSEk − IMSEk−1 > ε do
4: Calculate∇T1(FRF,k) according to (13) and compute FRF,k+1 by using the MO method.

5: Update γ1,k+1, FU,k+1 and Fk+1 according to (9) and (10).
6: Calculate ∇GRF1

T2
(
GRF1,k, GRF2,k

)
according to (18) and compute GRF1,k+1 by using

the MO method.
7: Calculate ∇GRF2

T2
(
GRF1,k+1, GRF2,k

)
according to (19) and compute GRF2,k+1 by us-

ing the MO method.
8: Update γ2,k+1, GU,k+1 and Gk+1 according to (15) and (16).
9: Calculate ∇T3(WRF,k) according to (23) and compute WRF,k+1 by using the MO

method.
10: Update WB,k+1 and Wk+1 according to (21).
11: k← k + 1.
12: end while

3.3. Algorithm Evaluation

(1) Convergence Analysis: The HBF-MO algorithm mainly includes two loops, which
are the outer loop of Step 3 to Step 12 and the inner loop of Step 4, 6, 7, and 9 in
Algorithm 1, respectively. With respect to the inner loop, by the definition of Theorem 4.3.1
in [29], the MO-based algorithm guarantees to converge to a point at which the first-order
optimality condition is met [21,27]. As a result, the objective function is ensured to decrease
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in each iteration of the alternating algorithm. For the outer loop, the DBF matrixes are
obtained by taking the derivative, guaranteeing the convergence.

(2) Complexity Analysis: The complexity consists of three parts: (a) calculating the
gradient, with the complexity of O

(
N2

RNMAX2
)
, (b) orthogonal projection and retraction,

whose complexity isO(NMAX1NRF), and (c) line search, whose complexity isO
(

N2
RNMAX2

)
,

where NMAX1 = max(NT, NR, ND), NMAX2 = max(NT, ND) and min(NT, NR, ND) > NRF.
Therefore, the total complexity is NoutNinO

(
N2

RNMAX2
)
, with Nin and Nout denoting the

number of iterations of the inner and outer loops.

4. Hybrid Beamforming Design for FD AF Relay Systems

In this section, a more common case in practical applications is further considered,
where the FD AF relay communication system operates with CSI unavailable.

4.1. System Model

(1) System Model: It is inevitable that the AF relay system will lead to severe SI in FD
mode. As shown in Figure 2, in order to mitigate the SI, we decompose the DBF matrix GB
of the relay node into GB1 ∈ CNRF×NS and GB2 ∈ CNRF×NS to design individually, which
are the relay digital receive and transmit beamforming matrixes, respectively.

Figure 2. FD AF relay communication system.

The FD relay node can receive its own transmit signal and that of the source node
simultaneously. Hence, the received signal of the relay node takes the form of [30,31]

yR = GH
1 H1FsB + GH

1 HSIG2sR + GH
1 nR, (24)

where G1 = GRF1 GB1 ∈ CNR×NS and G2 = GRF2 GB2 ∈ CNR×NS are the relay hybrid receive
and transmit beamforming matrixes. sB and sR denote the transmit signals of the source
and relay nodes, which are subject to E

{
sBsH

B
}
= INs and E

{
sRsH

R
}
= PthINs , with Pth

denoting the power of interference signals. And HSI ∈ CNR×NR stands for the SI channel
matrix. The received signal at the destination node can be expressed as

yD = WHH2G2GH
1 H1FsB︸ ︷︷ ︸

desired signal

+WHH2G2GH
1 HSIG2sR︸ ︷︷ ︸

SI

+ WHH2G2GH
1 nR︸ ︷︷ ︸

noise at the relay node

+ WHnD︸ ︷︷ ︸
noise at the destination node

.
(25)
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With the SI constraint GH
1 HSIG2 = 0 set in the HBF design, yD can be further expressed as

yD = WHH2G2GH
1 H1FsB+WHH2G2GH

1 nR + WHnD. (26)

(2) Imperfect CSI Model: In practice, the CSI is usually not available accurately at every
node because of user mobility and algorithm processing delay. The channel model with
estimation errors is modelled as

H = H + ∆H, (27)

where H and H are the true and estimated channel matrixes, respectively. ∆H denotes the
channel estimation error, which is given by [14,15]

∆H = Φ
1
2 ∆Θ

1
2 , (28)

where Θ and Φ are the covariance matrixes of estimation error at the receiver and transmit-
ter sides. ∆ denotes the unknown part of CSI, which is a complex Gaussian matrix with
identically distributed zero mean and unit variance entries. Therefore, the true channel
matrix satisfies H ∼ CN

(
H, Θ⊗Φ

)
.

In this correspondence, the exponential model is adopted to design the covariance
matrixes of CSI error [14,15,32,33], i.e., Φ(i, j) = σ2

e β|i−j|, Θ(i, j) = α|i−j|, with α, β ∈ R
being correlation coefficients and σ2

e ∈ R being estimation error variance. (i, j) represents
the element at the intersection of row i and column j.

(3) SI Channel Model: In mmWave FD relay communication systems, SI consists of the
LOS part and the NLOS part, where the former is much bigger than the latter on account
of the path loss of mmWave signals. On one hand, NLOS SI is caused by the reflection of
transmit signals on adjacent obstacles. Typically, the reflection channel HNLOS ∈ CNR×NR

can be modelled as (2), i.e., the mmWave channel [15]. On the other hand, the direct path SI
is caused by transmit signals of the FD relay node through the LOS channel HLOS ∈ CNR×NR

between the transmitter–receiver link. According to [34], it can be formulated as the near-
field model, whose (m, n)th element can be expressed as

H(m,n)
LOS = µmne−j 2π

λ dmn , (29)

where µmn is the normalization factor, dmn denotes the distance between the mth receive
antenna and the nth transmit antenna. Consequently, the SI channel can be modelled as

HSI =

√
κ

1 + κ
HLOS +

√
1

1 + κ
HNLOS, (30)

with the scalar κ being the Rician factor.
In practice, the transmit and receive arrays of the FD AF relay node are close and fixed.

In this paper, it is assumed that there is an accurate estimation for HLOS while uncertainty
for HNLOS [35]. As a result, the estimated SI channel is given by [30]

HSI =

√
κ

1 + κ
HLOS +

√
1

1 + κ
HNLOS, (31)

where HNLOS denotes the estimated reflection channel.
Due to the channel estimation errors, the SI constraint should be transformed into

GH
1 HSIG2 = 0, which means the LOS part can be completely eliminated, while the NOLS

part cannot. Considering the NLOS SI is much weaker than the LOS SI, we ignore the
influence of residual SI in the subsequent problem formulation and algorithm design [30,35],
but its impact on spectral efficiency will be shown in the simulation results.

4.2. Proposed HBF-MO-FD-R Algorithm

In this subsection, the IMSE criterion is still adopted in the HBF design for each node in
the FD AF relay communication system, where the optimization objective can be written as
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IMSE = E∆H1 ,∆H2

{
tr
(

WHH2GH1FFHHH
1 GHHH

2 W −WHH2GH1F

− FHHH
1 GHHH

2 W + γ−2
1 σ2

RWHH2GGHHH
2 W +γ−2

1 γ−2
2 σ2

DWHW + INS

)}
.

(32)

When a matrix X satisfies X ∼ CN
(
X, Σ⊗Ψ

)
, we have [36]

E
{

XCXH
}
= XCXH

+ tr
(

CΣT
)

Ψ, (33)

E
{

XHCX
}
= XHCX + tr(ΨC)ΣT . (34)

Since the error matrixes ∆H1 and ∆H2 are independent from each other, we can rewrite
IMSE as

IMSE = tr
[
WHH2GH1FFHHH

1 GHHH
2 W + tr

(
GH1FFHHH

1 GH
Θ2

)
WHΦ2W

+tr
(

FFH
Θ1

)
WHH2GΦ1GHHH

2 W + tr
(

FFH
Θ1

)
tr
(

GΦ1GH
Θ2

)
WHΦ2W

−WHH2GH1F− FHHH
1 GHHH

2 W + γ−2
1 σ2

RWHH2GGHHH
2 W

+ γ−2
1 σ2

Rtr
(

GGH
Θ2

)
WHΦ2W+γ−2

1 γ−2
2 σ2

DWHW + INS

]
(35)

in view of (33) and (34). Therefore, the IMSE problem can be formulated as

min
γ1,γ2,FRF,FU,GRF1

,GB1
,GRF2 ,GU2 ,WRF,WB

IMSE (36a)

s.t.
∣∣∣[FRF]a,b

∣∣∣2 = 1, ∀a, b, (36b)∣∣∣[GRF1

]
c,d

∣∣∣2 = 1, ∀c, d, (36c)∣∣∣[GRF2

]
e, f

∣∣∣2 = 1, ∀e, f , (36d)∣∣∣[WRF]g,h

∣∣∣2 = 1, ∀g, h, (36e)

E
{
∥xB∥2

F

}
= PB, (36f)

E∆H1

{
∥xR∥2

F

}
= PR, (36g)

GH
1 HSIG2 = 0, (36h)

where (36f) and (36g) denote the source and AF relay power constraints. Specifically,
the former has the same form as that in Section III, while the latter can be given by

E∆H1

{
∥xR∥2

F

}
= γ2

2tr
[
γ2

1GH1FFHHH
1 GH

+γ2
1tr
(

FFH
Θ1

)
GΦ1GH

+ σ2
RGGH

]
.

(1) The Source Node Design: While fixing G and W, the HBF design sub-problem of the
source node can be formulated as

min
γ1,FRF,FU

IMSE (37a)

s.t.
∣∣∣[FRF]a,b

∣∣∣2 = 1, ∀a, b, (37b)

E
{
∥xB∥2

F

}
= PB. (37c)

with F = γ1FRFFU, we have the power constraint as γ2
1tr
(

FFH
)
= PB. Therefore, γ1 can be

expressed as

γ1 =

[
tr
(
FRFFUFH

U FH
RF
)

PB

]− 1
2

. (38)
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Upon having fixed FRF, we can obtain FU by setting the partial derivatives of the Lagrange
function L1(λ1, FU, γ1) to zero:

FU =
(

FH
RFHH

1 GHHH
2 WWHH2GH1FRF+C11

)−1
FH

RFHH
1 GHHH

2 W, (39)

where C11=c11FH
RFHH

1 GH
Θ2GH1FRF + c12FH

RFΘ1FRF + c13FH
RFFRF, c11 = tr

(
WHΦ2W

)
,

c12 = tr
(

WHH2GΦ1GHHH
2 W

)
+ tr

(
WHΦ2W

)
tr
(

GΦ1GH
Θ2

)
and c13 = γ−2

2
σ2

D
PB

tr
(
WHW

)
+

σ2
R

PB
tr
(

WHH2GGHHH
2 W

)
+

σ2
D

PB
tr
(

GGH
Θ2

)
tr
(
WHΦ2W

)
. Substituting (38) and (39)

into (37a), the optimization objective can be further expressed as

J1(FRF) = tr

{[
INS +

(
WHH2GH1FRF

)
C−1

11

(
WHH2GH1FRF

)H
]−1

}
. (40)

The sub-problem with only constant-modulus constraint can be re-formulated as

min
FRF

J1(FRF) (41a)

s.t.
∣∣∣[FRF]a,b

∣∣∣2 = 1, ∀a, b. (41b)

By mathematical derivation, we can obtain the gradient of J1(FRF) with respect to FRF:

∇J1(FRF) =
(

c11HH
1 GH

Θ2GH1FRFC−1
11 FH

RF

+c12Θ1FRFC−1
11 FH

RF − INT + c13FRFC−1
11 FH

RF

)
×HH

1 GHHH
2 WC−2

12 WHH2GH1FRFC−1
11 .

(42)

(2) The Relay Node Design: First, we consider the HBF design for the receiver of the relay
node. It is assumed that F, G2 and W are fixed. Taking SI constraint out of consideration,
the optimization problem can be formulated as

min
GRF1

,GB1

IMSE (43a)

s.t.
∣∣∣[GRF1

]
c,d

∣∣∣2 = 1, ∀c, d. (43b)

with GRF1 fixed, the optimization problem (43) can be recast as an unconstrained optimiza-
tion problem. By taking derivative, we have the closed-form solution of GB1 as

GB1 =
[
GH

RF1
H1FFHHH

1 GRF1 + tr
(

FFH
Θ1

)
GH

RF1
Φ1GRF1 +γ−2

1 σ2
RGH

RF1
GRF1

]−1

×
(

GH
RF1

H1FWHH2G2

)[
GH

2 HH
2 WWHH2G2 +tr

(
WHΦ2W

)
GH

2 Θ2G2

]−1
.

(44)

Substituting the optimization problem (43) with Equation (44), we have

min
GRF1

Q1
(
GRF1

)
(45a)

s.t.
∣∣∣[GRF1

]
c,d

∣∣∣2 = 1, ∀c, d, (45b)

Q1
(
GRF1

)
= tr

(
INRF −D−1

11 D12D−1
13 DH

12

)
, (46)
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with D11=GH
RF1

H1FFHHH
1 GRF1 + tr

(
FFH

Θ1

)
GH

RF1
Φ1 GRF1 + γ−2

1 σ2
RGH

RF1
GRF1 , D12=GH

RF1

H1FWHH2G2 and D13=GH
2 HH

2 WWHH2G2 + tr
(
WHΦ2W

)
GH

2 Θ2G2. The Euclidean gra-
dient of Q1

(
GRF1

)
is given as

∇Q1
(
GRF1

)
=
[
H1FFHHH

1 GRF1 D−1
11 D12

+ tr
(

FFH
Θ1

)
Φ1GRF1 D−1

11 D12

+γ−2
1 σ2

RGRF1 D−1
11 D12

−H1FWHH2G2

]
D−1

13 DH
12D−1

11 .

(47)

After finishing the design of the receiver, we turn to the transmitter. For any given F,
G1 and W, we have the optimization sub-problem as follows by ignoring the SI constraint:

min
γ2,GRF2 ,GU2

IMSE (48a)

s.t.
∣∣∣[GRF2

]
c,d

∣∣∣2 = 1, ∀c, d, (48b)

E∆H1

{
∥xR∥2

F

}
= PR. (48c)

Likewise, we can obtain γ2 by taking transposition of (48b), which is given as

γ2 =
[
tr
(

γ2
1GH1FFHHH

1 GH

+γ2
1tr
(

FFH
Θ1

)
GΦ1GH

+ σ2
RGGH

)/
PR

]− 1
2

(49)

To this end, the optimization problem (48) can be equivalently recast as an optimization
problem (50) with only power constraint by fixing GRF2 . Based on the Lagrange function,
the closed form of GU2 is expressed as (51).

min
γ2,GU2

IMSE (50a)

s.t. s.t.E∆H1

{
∥xR∥2

F

}
= PR, (50b)

GU2 =
[
GH

RF2
HH

2 WWHH2GRF2 + tr
(

WHΦ2W
)

GH
RF2

Θ2GRF2

+
σ2

D
PR

tr
(

WHW
)

GH
RF2

GRF2

]−1(
GH

RF2
HH

2 WFHHH
1 G1

)
×
[
GH

1 H1FFHHH
1 G1+tr

(
FFH

Θ1

)
GH

1 Φ1G1 + γ−2
1 σ2

RGH
1 G1

]−1
,

(51)

where we define D23 = GH
1 H1FFHHH

1 G1 + tr
(

FFH
Θ1

)
GH

1 Φ1G1 + γ−2
1 σ2

RGH
1 G1, D21 =

GH
RF2

HH
2 WWHH2GRF2 + tr

(
WHΦ2W

)
GH

RF2
Θ2GRF2 +

σ2
D

PR
tr
(
WHW

)
GH

RF2
GRF2 and D22 =

GH
RF2

HH
2 WFHHH

1 G1. One further step, we can get the simplified optimization objective
(52), the optimization problem (53) and its gradient (54) in a similar way.

Q2
(
GRF2

)
= tr

(
INRF −D−1

21 D22D−1
23 DH

22

)
, (52)

min
GRF2

Q2
(
GRF2

)
(53a)

s.t.
∣∣∣[GRF2

]
e, f

∣∣∣2 = 1, ∀e, f , (53b)
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∇Q2
(
GRF2

)
=
[[

HH
2 WWHH2 GRF2 D−1

21 D22 + tr
(

WHΦ2W
)

Θ2GRF2 D−1
21 D22

+
σ2

D
PR

tr
(

WHW
)

GRF2 D−1
21 D22−HH

2 WFHHH
1 G1

]
D−1

23 DH
22D−1

21 .
(54)

It’s worth noting that we temporarily neglect the SI constraint in the HBF design
of the relay node. Consequently, we need to design the SI suppression matrix to satisfy
GH

1 HSIG2 = 0. Severe SI acts as a key factor to affect the performance of FD communi-
cation systems. There are strict restrictions on the number of RF chains in traditional SI
suppression algorithm based on NP. In [31], it is required to meet NRF,T ≥ NS + NRF,R,
with NRF,T and NRF,R being the number of the transmit and receive RF chains at the AF
relay node, while [35] needs to satisfy NRF,R ≥ 2NS. The authors of [30] proposed an SI
suppression algorithm suitable for the system with NRF,T = NRF,R = NS. Nevertheless,
its performance remains to be improved. On the basis of the above literature, we further
develop the SIC-NP algorithm.

We first construct an equivalent SI channel matrix HSI−EQ ∈ CNS×NR , which can be
written as

HSI−EQ = GH
1 HSI. (55)

It is obvious that the rank of HSI−EQ is NS(NR ≫ NS), so its null-space definitely exists.
There are a number of ways to obtain the null-space of a matrix. We adopt the singular
value decomposition (SVD) method in this paper, which yields

HSI−EQ = USI−EQΣSI−EQVH
SI−EQ, (56)

where USI−EQ ∈ CNS×NS and VSI−EQ ∈ CNR×NR are unitary matrixes, ΣSI−EQ ∈ CNS×NR

is a diagonal matrix. VSI−EQ can be further decomposed as VSI−EQ =
[
V1

SI−EQV0
SI−EQ

]
,

where V1
SI−EQ ∈ CNR×NS and V0

SI−EQ ∈ CNR×(NR−NS) are the right singular matrix for
non-zero singular value and zero singular value. And the latter satisfies

HSI−EQV0
SI−EQ = 0. (57)

In this correspondence, we can construct the null-space matrix P ∈ CNR×NR of HSI−EQ

using the column vectors of V0
SI−EQ. Subsequently, G2 is projected to P to mitigate the SI.

The projection matrix P1 and SI suppression matrix GSIC
2 can be written as

P1 = P
(

PHP
)−1

PH , (58)

GSIC
2 = P1G2. (59)

Hence, the HBF matrix of FD AF relay node takes the form of

G = GSIC
2 GH

1 . (60)

For clarity, the above SI suppression procedure is summarized in Algorithm 2.

Algorithm 2 SIC-NP Algorithm.

Input: G1, G2, HSI.
Output: GSIC

2 .
1: Calculate the equivalent SI channel matrix HSI−EQ according to (55).

2: Calculate V0
SI−EQ by taking SVD of HSI−EQ.

3: Construct the null-space matrix P.
4: Calculate P1 according to (58).
5: Compute GSIC

2 according to (59).
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(3) The Destination Node Design: Similar to that of Section II, the optimization sub-
problem of the destination node has only constant-modulus constraint. For any given
source and relay HBF matrixes, the destination sub-problem can be formulated as

min
WRF,WB

IMSE (61a)

s.t.
∣∣∣[WRF]g,h

∣∣∣2 = 1, ∀g, h. (61b)

with WRF fixed, the problem (61) can be transformed into an unconstrained optimization
problem. By setting the gradient of the objective function to zero, we can obtain

WB =
(

WH
RFH2GH1FFHHH

1 GHHH
2 WRF+C31

)−1
WH

RFH2GH1F, (62)

where c31 = tr
(

FFH
Θ1

)
, c32 = γ−2

1 σ2
R, c33 = tr

(
GH1FFHHH

1 GH
Θ2

)
+ tr

(
FFH

Θ1

)
tr(

GΦ1GH
Θ2

)
+ γ−2

1 σ2
Rtr
(

GGH
Θ2

)
, c34 = γ−2

1 γ−2
2 σ2

D, and we define

C31 = c31WH
RFH2GΦ1GHHH

2 WRF + c32WH
RFH2GGHHH

2 WRF

+ c33WH
RFΦ2WRF + c34WH

RFWRF.
(63)

Substituting (62) into the equation of IMSE, the objective function is equivalent to

J3(WRF) = tr
[(

INS +FHHH
1 GHHH

2 WRFC−1
31 WH

RFH2GH1F
)−1

]
. (64)

In the meantime, the optimization sub-problem is reduced to

min
WRF

J3(WRF) (65a)

s.t.
∣∣∣[WRF]g,h

∣∣∣2 = 1, ∀g, h. (65b)

Finally, the gradient ∇J3(WRF) can be written as

∇J3(WRF) =
[(

c33Φ2 + c31H2GΦ1GHHH
2 +c32H2GGHHH

2 + c34IND

)
×WRFC−1

31 WH
RF−IND

]
H2GH1FC−2

32 FHHH
1 GHHH

2 WRFC−1
31 ,

(66)

with C32=INS + FHHH
1 GHHH

2 WRFC−1
31 WH

RFH2GH1F.
The proposed MO based HBF algorithm for the FD relay system is summarized in

Algorithm 3.
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Algorithm 3 HBF-MO-FD-R Algorithm.

Input: H1, H2, HSI, σ2
R, σ2

D, Φ1, Φ2, Θ1, Θ2.
Output: γ1, γ2, FRF, FU, G1, GSIC

2 , WRF, WB.
1: Initialize FRF, FU, GRF1 , GRF2 , GB1 , GU2 , WRF and WB randomly, and set γ1 = γ2 = 1,

k = 1.
2: while IMSEk − IMSEk−1 > ε do
3: Calculate∇J1(FRF,k) according to (42) and compute FRF,k+1 by using the MO method.

4: Update γ1,k+1, FU,k+1 and Fk+1 according to (38) and (39).
5: Calculate ∇Q1

(
GRF1,k

)
according to (47) and compute GRF1,k+1 by using the MO

method.
6: Update GB1,k+1 and G1,k+1 according to (44).
7: Calculate ∇Q2

(
GRF2,k

)
according to (54) and compute GRF2,k+1 by using the MO

method.
8: Update γ2,k+1, GU2,k+1 and G2,k+1 according to (49) and (51).
9: Calculate ∇J3(WRF,k) according to (66) and compute WRF,k+1 by using the MO

method.
10: Update WB,k+1 and Wk+1 according to (62).
11: k← k + 1.
12: end while
13: Compute GSIC

2 by using the SIC-NP algorithm and update G according to (60).
14: Power normalization.

5. Simulation Results

To evaluate the performance of the proposed HBF algorithms, simulation results
are presented in this section. In the simulations, it is assumed that the SNRs between
the relay–destination link and the source-relay link are identical. Unless otherwise men-
tioned, the number of antennas at the source, relay and destination nodes are NT = 64,
NR = 48 and ND = 32, respectively. The number of RF chains and data streams are set as
NRF = NS = 2. Due to the limited scattering characteristics of mmWave channels, we
assume L = 10. The Rician factor is chosen as 20 dB. All the AoDs and AoAs are indepen-
dently and uniformly distributed in [0, 2π]. Moreover, we define the same source and relay
transmit power, i.e., PB = PR = 2. In this paper, all simulation results are averaged over
1000 mmWave channels, which are generated randomly.

5.1. HBF-MO

Firstly, we present the performance of the HBF-MO algorithm (denoted as HBF-MO)
for the HD relay system. In this subsection, we will consider a benchmark approach
and two other different algorithms, which are the optimal digital processing based on
SVD (denoted as DBF), the HBF algorithm in [14] (denoted as HBF) and the OMP based
algorithm in [7] (denoted as OMP). Unless otherwise specified, the convergence parameter
of the outer loop is set to 10−4, and that of the inner loop is set to 10−6.

Figure 3 validates the convergence of SE and MSE with SNR set to 6dB. To be specific,
the number of outer iterations is fixed to 15. As can be observed, our proposed algorithm
converges to an optimal solution within about four iterations. SE increases with the growth
of iteration number and convergences to almost 5.485 bit/s/Hz, while MSE decreases and
maintain at 0.0449 after 15 iterations.

Next, the SE performance versus SNR of our proposed HBF-MO algorithm and three
other approaches is investigated in Figure 4. As shown in the figure, the SE of all algorithms
increases with growing SNR. Taking the SE of DBF method as a benchmark, the proposed
algorithm prevails over two other methods by approaching the DBF algorithm, which is
more obvious as SNR becomes higher. When SNR = 10 dB, our HBF-MO algorithm can
provide a gain of 7.99% over HBF [14] and 11% over OMP [7].
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Figure 3. Convergence of SE and MSE for the HBF-MO algorithm.

Figure 4. SE versus SNR for different beamforming algorithms.

By varying the number of relay and destiantion antennas, the SE performance of all
algorithms are evaluated when SNR = 6dB in Figures 5 and 6. Likewise, the DBF method is
adopted as a benchmark. Due to the additional antenna gain, the spectral efficiency of all
algorithms improves with the number of antennas increasing. Still, our proposed algorithm
yields the best performance over the others.
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Figure 5. SE comparison with different relay antennas with NT = 64 and ND = 32.

Figure 6. SE comparison with different destination antennas with NT = 64 and NR = 48.

5.2. HBF-MO-FD-R

In this subsection, simulation results for the proposed robust HBF scheme for the
FD relay system is presented. For notation convenience, “HBF-MO-FD-R” represents
our proposed method, “HBF-FD-SIC” denotes the HBF-MO-FD-R algorithm with SIC-NP
replaced by the SIC method in [30], “HBF-FD-NSIC” stands for the proposed method
without SIC-NP, while “HBF-MO-HD” denotes the proposed HD algorithm with imperfect
CSI. Additionally, it is assumed that a0 = b0 = ψ = 0 [15]. Unless otherwise stated,
the parameters related to channel estimation errors are set as α = 0.6, β = 0.4 and σ2

e = 0.5.
Meanwhile, the Interference to Noise Ratio (INR) is defined as INR =10 lg

(
Pth/σ2

R
)

[30,35].
In Figure 7, we show the convergence performance of HBF-MO-FD-R with respect

to iterations at SNR = 6dB and INR = 10dB, where the maximum number of iterations is
set to 15. It can be observed that SE converges to a maximum of above 2.5 bits/s/Hz in
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about seven iterations. On the other hand, MSE decreases to a minimum of almost 0.18
after about five iterations.

Figure 7. Convergence of SE and MSE for the HBF-MO-FD-R algorithm.

Figure 8 compares the SE performance of four different algorithms. As expected,
SE of all approaches improves monotonically with increasing SNR. It can be obviously
seen that both the HBF-MO-FD-R algorithm and the HBF-FD-SIC algorithm obtain higher
SE by suppressing the LOS SI in contrast with the method without SIC. Additionally,
the performance of the two methods is still affected by the residual SI because the NLOS
channel cannot be accurately estimated. As is shown in the figure, with the increase in
INR, the SE of HBF-MO-FD-R and HBF-FD-SIC decreases, but that is still higher than the
non-SIC method. Meanwhile, we find that our proposed algorithm outperforms the HBF-
FD-SIC approach. The average gap between two approaches is about 0.913 bit/s/Hz when
INR = 10 dB and 0.791 bit/s/Hz for INR = 20 dB. Moreover, the non-robust algorithm can
obtain more SE than the non-SIC algorithm when SI is severe (INR = 20 dB). It is noteworthy
that the value of INR has no impact on the performance of HBF-MO-HD because there is
no SI channel in HD mode.

Figure 8. SE versus SNR for four HBF algorithms with different INR settings.
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Figure 9 depicts the SE performance with various CSI errors. We analysis how the SE
performance is affected by estimation error variance with α = 0.6, β = 0.4 and INR = 10 dB.
As we can see, imperfect CSI will lead to performance degradation in all approaches,
whereas our algorithm still has the best performance, which illustrates the effectiveness of
the robust design and SIC.

Figure 9. SE versus SNR with different σ2
e .

6. Conclusions

We have investigated the joint HBF design for mmWave AF relay communication
systems in this paper. Specifically, the optimization-based HBF design for HD relay systems
with perfect CSI has been addressed. We have designed an alternating optimization
algorithm based on MO, where the modified MSE was adopted as the optimization objective.
Simulation results have shown that the performance prevailed other HBF algorithms in
the literature. Moreover, we have further extended the scenario to more general cases with
channel estimation errors, where the relay system was operated in FD mode. A robust
HBF design has been proposed, with SI mitigated by the NP based algorithm. It has been
demonstrated via numerical results that the proposed scheme had an improved robustness
against SI.
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Appendix A. Derivation of (13)

In accordance with [28], the differential of T1(FRF) is given by

d[T1(FRF)] = tr
[
∇T1(FRF)d

(
FH

RF

)]
. (A1)

By defining B12 = INS +
(
WHH2GH1FRF

)
B−1

11
(
WHH2GH1FRF

)H , (A1) can be rewritten as

d[T1(FRF)] = d
[
tr
(

B−1
12

)]
=− tr

(
B−2

12 dB12

)
. (A2)

The differential of B12 can be expressed as

dB12 = WHH2GH1FRF

[
dB−1

11

(
WHH2GH1FRF

)H
+B−1

11 dFH
RF

(
WHH2GH1

)H
]

. (A3)

Due to the fact that dX−1 = −X−1(dX)X−1, we have the differential of B−1
11 as dB−1

11 =

−B−1
11 (dB11)B−1

11 . In addition, dB11 can be expressed as

dB11 = b11dFH
RFFRF. (A4)

Substituting (A3) and (A4) into (A2) yields

d[T1(FRF)] = tr
[(

b11FRFB−1
11 FH

RF − INT

)
HH

1 GHHH
2 WB−2

12 WHH2GH1FRFB−1
11 dFH

RF

]
.
(A5)

Finally, comparing (A5) with (A1), we can obtain the Euclidean gradient of T1(FRF) with
respect to FRF as

∇T1(FRF) =
(

b11FRFB−1
11 FH

RF − INT

)
HH

1 GHHH
2 WB−2

12 WHH2GH1FRFB−1
11 . (A6)
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