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Featured Application: Application to the monitoring of gas–liquid two-phase flow links.

Abstract: Gas–Liquid two-phase flows are a common flow in industrial production processes. Since
these flows inherently consist of discrete phases, it is challenging to accurately measure the flow
parameters. In this context, a novel approach is proposed that combines the pyramidal Lucas-Kanade
(L–K) optical flow method with the Split Comparison (SC) model measurement method. In the
proposed approach, videos of gas–liquid two-phase flows are captured using a camera, and optical
flow data are acquired from the flow videos using the pyramid L–K optical flow detection method. To
address the issue of data clutter in optical flow extraction, a dynamic median value screening method
is introduced to optimize the corner point for optical flow calculations. Machine learning algorithms
are employed for the prediction model, yielding high flow prediction accuracy in experimental tests.
Results demonstrate that the gradient boosted regression (GBR) model is the most effective among
the five preset models, and the optimized SC model significantly improves measurement accuracy
compared to the GBR model, achieving an R2 value of 0.97, RMSE of 0.74 m3/h, MAE of 0.52 m3/h,
and MAPE of 8.0%. This method offers a new approach for monitoring flows in industrial production
processes such as oil and gas.

Keywords: gas–liquid two-phase flow; Lucas–Kanade optical flow detection; machine learning

1. Introduction

Gas–liquid two-phase flow is a common flow across various industries, including
petroleum, chemical, natural gas, thermal power generation, aerospace, and nuclear energy.
Accurately measuring parameters in such flows is crucial for the efficient and stable op-
eration of industrial systems and production activities. However, due to the complexity
of affecting factors like flow structure, physical characteristics, flow rate, pressure, heat
treatment, pipeline, and geometry, it is an enormous challenge to perform accurate measure-
ments using traditional methods [1]. Currently, the measurement of gas–liquid two-phase
flow rates in gas, oil, and chemical processes often involves the use of separation methods,
which require a large space and expensive equipment [2]. While this challenge can be
effectively resolved using non-separation measurement methods, they have limitations
in terms of measurement range and medium. For instance, the performance of Doppler
technology-based methods is affected by flow patterns, which may adversely affect the
measurement accuracy. Additionally, there are significant differences in physical properties
such as density and sound speed between gases and liquids, which may affect ultrasound
propagation and measurement accuracy [3]. Therefore, it is of significant importance to
develop a low-cost, accurate, and convenient method for measuring gas–liquid two-phase
flow rates. Studies show that intelligent learning algorithms have significant advantages in
addressing nonlinear and multivariate problems and can effectively improve the applica-
bility of non-separation measurement methods. Consequently, exploring the application of
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intelligent learning algorithms in measuring gas–liquid two-phase flow rates has become a
hot research topic in recent years. In this context, Zhiyue Zhao et al. [4] utilized acoustic
emission (AE) and near-infrared (NIR) sensors to capture resonance peak edge factors, and
subsequently employed the least absolute shrinkage selection operator (LASSO) machine
learning technique to predict gas–liquid two-phase void fraction and flow rate. This ap-
proach achieved an 89.47% accuracy within a 20% relative error margin for emulsion flow
data. Shanshan Li et al. [5] proposed a physics-guided deep learning model by integrating
a physical constraint term of the rates of change of pressure caused by the slip term to main-
tain consistency in the gas and liquid phases into the loss function of a deep neural network.
This physics-guided neural network (PGNN) successfully measured gas and liquid flow
rates simultaneously with a high accuracy, even under a wide range of test conditions (gas
volume fraction (GVF) > 95%). Furthermore, Shanshan Li et al. [6] predicted gas and liquid
flow rates in intermittent flows using information from a cone gauge and a conductivity
loop sensor. The predicted liquid mass flow rate had a relative error of less than ±5.0% at a
99% confidence level, while for the gas phase, the relative error was within ±15.0% at a
98% confidence level. Delin Hu et al. [7] applied convolutional neural networks (CNNs) to
multiphase flow rate prediction, introducing the flow adversarial network (FAN). Experi-
mental results demonstrated a mean absolute percentage error (MAPE) of up to 8.36% and
9.09%. Zhongke Gao et al. [8,9] developed a multi-task-based time-channel convolutional
neural network (MTCCNN) to predict porosity, achieving a superior performance in gas
phase gas content prediction. Additionally, they designed a segmented dense connectivity
network (SDCN), capable of simultaneously measuring the total rate and void ratio using
signals from a four-sector conductivity sensor. The framework exhibited a high accuracy in
the total flow measurement of gas–liquid two-phase flow within a range of 0.18–1.23 m3/h.

Integrating sensors with intelligent learning models is a complex process with high
measurement requirements and associated costs. Sensor-based approaches can be cum-
bersome, requiring intricate installation and maintenance, especially as the flow condition
becomes more chaotic, leading to noticeable signal interference. Alternatively, employing
image processing techniques can greatly improve the convenience of measurement meth-
ods. However, current applications primarily focus on two-phase flow pattern classification
in research on gas–liquid two-phase flow pattern classifications in research on gas–liquid
two-phase flow patterns within an S-shaped watertight pipe, achieving detection and vali-
dation accuracies of 98.13% and 98.06%, respectively. Jinsong Zhang et al. [10] utilized the
GoogLeNet+5 algorithmic model for flow pattern recognition on image datasets of various
liquid–liquid two-phase flows such as Nalgioil and GaInSn-Water, achieving training and
testing accuracies of 95.09% and 98.12%, respectively. Feng Nie et al. [11] utilized CNN
algorithms to classify flow patterns in images of methane and tetrafluoromethane within
horizontal circular pipes, achieving a testing dataset accuracy exceeding 90.63% and an
average accuracy surpassing 97.56% for all data points in the database. Zhongke Gao
et al. [12] designed a branch-aggregation network (BAN) for classifying flow patterns in
gas–liquid two-phase flow images, achieving a fast convergence speed and a recognition
accuracy of 99.60%, highlighting its advantage in noise resistance. Zhong-Ke Gao et al. [13]
proposed a deep learning method based on complex networks that combined the original
signals of limited penetrable visibility graphs (LPVG) with images for flow pattern classifi-
cation and gas void fraction measurement. Their results showed a classification accuracy of
95.3% and an average root mean square error (RMSE) of 0.0038, with an average absolute
percentage error of 6.3% for gas void fraction measurement. Shai Kadish et al. [14] utilized
computer vision techniques and deep learning to train CNNs and long short-term memory
(LSTM) networks for classifying fluid flow states using video frames as features. They also
measured steam mass flow rates within the range of (0.005 to 0.023) kg/s, with an average
RMSE of 5% of full scale, achieving a classification accuracy of 92%.

There are also notable research outcomes in gas–liquid two-phase flow pattern classifi-
cations utilizing non-image processing methods combined with intelligent learning models.
Boyu Kuang et al. [15] employed ultrasonic sensors and a convolutional recurrent neural
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network (CRNN) to identify gas–liquid two-phase flow patterns within an S-shaped water-
tight pipe, achieving detection and validation accuracies of 98.13% and 98.06%, respectively.
Lei OuYang et al. [16] proposed a deep neural network framework to utilize acquired
signals. By employing two slicing operations combined with a bidirectional long-short
memory network (BiLSTM) and a CNN, they attained an average recognition accuracy of
99.32%. Zhiee Jhia Ooi et al. [17] utilized conductivity probe signals as input data to identify
the flow state of boiling flow in vertical annular channels and proposed a two-step method
using unsupervised self-organizing map (SOM) to recognize local and global flow states,
achieving a classification accuracy of over 90%. Somtochukwu Godfrey Nnabuife et al. [18]
introduced a method for classifying flow states using deep neural networks (DNNs), which
operate on features extracted from Doppler ultrasound signals using fast Fourier transform
(FFT). Experimental results demonstrated that DNNs achieved a classification accuracy of
99.01%. Additionally, Somtochukwu Godfrey Nnabuife et al. [19] proposed a new method
for feature extraction from preprocessed data, named belt-shaped features (BSFs), which
were applied to ConvNet classifiers, achieving accuracy rates of 97.40%, 94.57%, and 94.94%
for the training set, test set, and validation set, respectively. Harold Brayan Arteaga-Arteaga
et al. [20] selected 12 databases to train and test machine learning models, with experi-
mental results showing that the extra trees model classified flow patterns with the highest
fidelity, achieving an accuracy of 98.8%. Radosław Wajman et al. [21] utilized 3D electrical
capacitance tomography (ECT) measurement data to establish and train artificial neural
network models, with experimental results indicating that the fuzzy pattern recognition ac-
curacy of the horizontal case ranged from 85% to 99%, and in the vertical case, the accuracy
fluctuated from 65% to above, with the average correct recognition rate for fuzzy reasoning
based on raw ECT data without images being approximately 90%. Lifeng Zhang et al. [22]
proposed a method for identifying flow patterns based on Gramian angular field (GAF)
and densely connected network (DenseNet), with experimental results demonstrating that
GAF images effectively reflected the characteristics of different flow patterns, achieving an
average flow pattern recognition accuracy of 98.3%. Haobin Chen et al. [23] introduced an
intrusive robust CNN flow pattern recognition method, based on flow-induced vibration
(FIV) analysis, with the accuracy rate being above 90% when using different axis data to
predict flow patterns. Noor Hafsa et al. [24] compared and analyzed machine learning (ML)
and deep learning (DL), concluding that extreme gradient boosting is the optimal model
for predicting the two-phase flow states of inclined or horizontal pipelines.

In conclusion, the application of intelligent learning algorithms in classifying flow pat-
terns of gas–liquid two-phase flow has reached a notable level of accuracy, and promising
advancements have also been made in flow measurement. However, current methods for
combining sensors with intelligent learning models for measurement pose challenges in in-
stallation and susceptibility to signal disturbances. Similarly, the integration of images with
intelligent learning models faces hurdles in achieving precise measurements solely based
on a single image due to the intricate nature of the gas–liquid two-phase flow. Therefore,
it is crucial to explore the feasibility of combining video with intelligent learning models
for flow measurements, aiming to achieve convenient flow rate measurements through
camera-based approaches.

This article delves into a novel approach for flow measurements using gas–liquid two-
phase flow videos, focusing on extracting pertinent information from the video via optical
flow methods. It investigates the integration of this extracted data with machine learning
models, aiming to enhance measurement accuracy. Through an exploration of diverse
machine learning models, this study identifies and optimizes the most effective model,
thereby improving measurement outcomes. This method facilitates more convenient and
real-time measurements of two-phase flows, offering a fresh avenue for daily monitoring of
two-phase flow rates in the oil and natural gas industry through camera-based acquisition.
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2. Materials and Methods
2.1. Gas–liquid Two-Phase Flow Experimental Setup and Data Acquisition

The gas–liquid two-phase flow video is captured using the device shown in Figure 1.
The device primarily consists of a water pump, air pump, pressure stabilizer tube, flow
stabilizer tank, valve, liquid flow meter, gas flow meter, and water tank.
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Figure 1. Schematic diagram of the experimental setup.

During the experiment, a cell phone was positioned parallel to the vertical transparent
tube section at a distance ranging from 10 to 20 cm for video capture. The diameter of
the tube section was 25 mm, and the height of the observation point from the entrance
of the vertical tube was 1 m, ensuring that the gas–liquid two-phase flow reached a fully
developed state. The video recording equipment settings were 1920 × 1080 pixels resolution
at 60 frames per second (fps). The experimental flow range was between 1 and 16 m3/h.
Based on G.F. Hewitt’s classification [25] of gas–liquid two-phase flow patterns in vertically
ascending adiabatic tubes, the flow patterns were classified as annular, churn, bubbly, and
slug flow shown in Figure 2.
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The dataset comprised 33 video clips depicting annular flow, 26 clips showing churn
flow, 79 clips displaying bubbly flow, and 48 clips illustrating slug flow.

The experimental data were extracted from videos of adequate length, reflecting
the flow characteristics. The videos were segmented into 1 s clips with a resolution of
1920*1080 pixels and a frequency of 60 fps. A dataset comprising 186 video clips was
utilized for feature extraction, model training, and testing of the two-phase flow. Of these,
80% of the data were randomly selected for the training set, while the remaining 20% were
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allocated to the test set to evaluate the regression model. The total flow distribution is
illustrated in Figure 3.
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2.2. Optical Flow Detection and Regression Modeling

This section outlines the process of optical flow extraction for gas–liquid two-phase
flow videos, detailing optical flow data fusion, feature engineering, and model selec-
tion [26].

2.2.1. Pyramid L–K Optical Flow Feature Extraction

The optical flow method enables the observation of pixel point motion within spatial
objects depicted in an image, offering insights into the movement of bubbles within gas–
liquid two-phase flow videos. Predicated on the assumption of constant brightness, the
method interprets motion as “small motion” along the time continuum. This realization
is based on the fundamental constraint equations affirming constant light intensity at
characteristic pixel points before and after motion, as expressed in Equation (1) [27].

I(x, y, t) = I(x + dx, y + dy, t + dt) (1)

where I is the grayscale value of a pixel point in the image, x represents the horizontal
coordinate of the pixel point in the image, y represents the vertical coordinate of the pixel
point in the image, and t represents time, s.

With u = dx
dt , v = dy

dt , Ix = ∂I
∂x , Iy = ∂I

∂y , and It =
∂I
∂t , the Taylor expansion of Equation (1)

can be expressed in the form below:

Ixu + Iyv + It = 0 (2)

where u and v are the optical flow vectors used to calculate the motion of bubbles in
the image.

In this study, the pyramid Lucas–Kanade (L–K) optical flow method is selected to
capture the sparse optical flow. This method has been commonly applied for analysis
and recording without computing every pixel in the video, focusing solely on the bubble
features within the pipeline. The pyramid optical flow method addresses the challenge of
high-speed motion in video frames when the flow rate is large, while the L–K optical flow
method is more suitable for fitting the optical flow at lower speeds [28,29].

The corner function, which is used to identify the feature points or corners within an
image, is crucial for computing the sparse optical flow. These feature points are typically
chosen at corner locations because they exhibit significant changes in pixel brightness when
a small window is shifted by a distance (dx, dy). This characteristic aligns well with the
requirements of Lucas–Kanade optical flow calculation, particularly in scenarios involving
bubble edges. Optical flow calculations entail measuring the displacement of these corner
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points between the two consecutive frames. The corner function can be mathematically
defined as follows:

E(dx, dy) = ∑x,y w(x, y)[I(x + dx, y + dy)− I(x, y)]2 (3)

where E(dx, dy) represents the grayscale change in the window after movement, w(x, y) is a
window weight function, and I(x + dx, y + dy) – I(x, y) calculates the grayscale change in
the window after movement.

In the experiment, the Harris feature detection algorithm was employed to identify
the corner points within the video frames of the two-phase flow. Subsequently, through
robust feature tracking, the displacement of these corner points between adjacent frames
was calculated using the pyramid Lucas–Kanade (L–K) optical flow method [30].

Harris corner detection incorporates the concept of Harris response R, which avoids
the need to solve for eigenvectors, making the computation process more efficient [31]:

R = AC − B2 − k(A + C)2 (4)

where R is Harris response value, k is a parameter ranging from 0.04 to 0, A = w(x, y)I′2(x),
B = w(x, y)I′2(y), and C = w(x, y)I′xI′(y).

The pyramid optical flow computation involves adjusting the size of the detected
image by creating an image “pyramid,” with the original image serving as layer 0. The
image is then reduced by a factor of 2 L to create multiple layers, where L represents
the number of pyramid levels. The top layer corresponds to the image with the lowest
resolution, while the bottom layer retains the original image size. In the gas–liquid flow
data acquisition setup, a 3-layer pyramid structure was employed, with the top layer
(L = 3) having an image size of 240 × 135 pixels, derived from the original image size of
1920 × 1080 p. Optical flow calculations were conducted using the top-layer image, and
the results were then enlarged by a factor of two to use as initial optical flow estimates for
calculations in the lower layers.

gL−1 = 2(gL + dL) (5)

where L is the pyramid layer number, g is the initial optical flow estimate, and d is the
calculated optical flow.

The optical flow d0 of the original image is obtained through iteration, during which
the sum of pixel-matching errors within the window used is calculated and minimized to
compute the optical flow. This process can be mathematically expressed as follows:

ε(v) = ε(dx, dy) = ∑ux+wx
ux−wx ∑uy+wy

uy−wy
[I(x, y)− I(x + dx, y + dy)] (6)

where ε is the grayscale change within the window, ux and uy represent the coordinates of
the tracked point, wx and wy are the neighborhood window, and v is the optical flow.

The derivation of the above equation involves setting the derivative at the optimal
solution to zero. This can be achieved by performing a first-order Taylor expansion and
neglecting the high-order terms.

1
2

∂ε(d)
∂d

=
ux+wx

∑
x=ux−wx

uy+wy

∑
y=uy−wy

[
fx

2, fx fy
fx fy, fy

2

]
v −

ux+wx

∑
x=ux−wx

uy+wy

∑
y=uy−wy

[
δI fx
δI fy

]
= 0 (7)

where δ I = I(x, y) − J(x + dx, y + dy), G = ∑ux+wx
x=ux−wx ∑

uy+wy
y=uy−wy

[
fx

2 , fx fy
fx fy , fy

2

]
, b =

∑ux+wx
x=ux−wx ∑

uy+wy
y=uy−wy

[
δ I fx
δ I fy

]
, and get:
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v = G−1b (8)

where v is the optical flow.
In this process, the image J is shifted by the previously calculated optical flow v

distance to form a new window. The optical flow is then iteratively computed. A threshold
of 0.01 is set for iteration, and the maximum number of iterations is set to 150. The optical
flow obtained after k iterations is denoted as ηk.

vk = vk−1 + ηk (9)

where vk is the optical flow obtained from the kth iteration, vk−1 is the optical flow obtained
from the (k − 1)th iteration, ηk is the optical flow obtained from the current calculation.

The data obtained from the optical flow acquisition of 187 gas–liquid two-phase flow
videos using the pyramid L–K optical flow method were considerable. To simplify the
calculations, one gas–liquid two-phase flow video was randomly selected for analysis in
this section. The first 30 frames of this video were utilized for optical flow computation,
and corner points exhibiting minimal movement were extracted with a threshold set to 100.
Subsequently, a significant number of displacements of corner points from the optical flow
were obtained from the experiment. For each corner point, the initial position obtained
from the optical flow algorithm in this video was recorded, along with the position of
optical flow computation, the displacement di, and the displacement components dix and
diy in the x and y directions, respectively, were computed using the following equations:

dix = xi2 − xi1 (10)

diy = yi2 − yi1 (11)

di =
√

dix
2 − diy

2 (12)

where xi1 represents the position of the current i-th corner point in the previous frame; xi2
represents the position of the current i-th corner point in the next frame; dix represents
the displacement of the current i-th corner point in the x-direction, measured in pixels; diy
represents the displacement of the current i-th corner point in the y-direction, measured
in pixels; di represents the magnitude of the optical flow for the current i-th corner point,
measured in pixels.

To provide a more intuitive representation of the data obtained from the optical flow
acquisition method, the root-mean-square (RMS) value, median value, and average optical
flow parameter of the corner point displacements are utilized as the reference parameters.

Figure 4 indicates that the average displacements of the corner points under vari-
ous window sizes significantly exceed the median displacements in each direction. This
observation demonstrates that a considerable portion of the corner point displacements
are small in the optical flow calculations, resulting in low median values. Consequently,
the corner point acquisition process incorporates more interfering corner points with
smaller displacements, which may not correspond to the actual flow measurements. Given
that the threshold value of 100 may not be universally applicable to all flow states, the
implementation of a dynamic threshold corner screening method becomes necessary.

The flow state is annular and contains chaotic gas–liquid flow and bubbles. A larger
window size is not conducive to the optical flow collection of small bubbles. Additionally,
it may decrease the precision of the optical flow, resulting in larger errors in the calculations.
Figure 5 depicts the current frame picture and the corner point collection.
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Figure 5 illustrates the distribution of corner points for a frame in both annular and
elastic flow videos, both of which were captured using a 55*55 px window. A constant-
value corner sieving method was employed, resulting in fewer corners being captured for
smaller flows. It is worth noting that capturing small bubbles in the elastic and annular
flows is crucial in the gas–liquid optical flow acquisition process. The size of these small
bubbles is approximately 1/24 of the height of the acquisition area, corresponding to a
height of 45 pixels in an overall pixel height of 1080. Considering the relative height of the
top image after pyramid transformation, which is approximately 6 px, a 5*5 px window
was chosen for optical flow calculation in this study.

2.2.2. Dynamic Screening of Median Value

To accommodate optical flow acquisition for each flow state, a dynamic threshold
corner screening method is necessary. By examining the collected optical flow reference
parameters and utilizing the median value of the dynamic screening method, corner
screening can automatically adjust to the optical flow acquisition of videos with varying
flow rates and regimes. The following comparative experiments demonstrate that the
collected optical flow data can furnish dependable gas–liquid two-phase flow information
for the learning model. The flow of the median screening method is depicted in Figure 6.
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Experiments were conducted using a 5 × 5 window to assess the utilization of the
median value sifting method for optical flow acquisition on the aforementioned 30 frames
of video. Additionally, the results are illustrated in Figure 7.
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In Figure 7, the values in the legend with ‘represent the values obtained by using
the median screening method, while those without’ denote the values obtained without
employing the median screening method. The median value obtained using the median
screening method closely aligns with its average angular displacement, and its RMS remains
consistently stable. This is particularly pronounced with regard to the vertical RMS value.
Moreover, there is a strong correlation between the RMS value and the median value.
Conversely, the difference between the median value and the root mean square obtained
without the median screening method is more pronounced, indicating that a majority of
the optical flow acquisition values are smaller, resulting in a more dispersed distribution
and an increased presence of interfering angular points. Comparing the values obtained
under different window sizes without median screening reveals that, after employing
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median screening, the median and RMS values exhibit greater similarity, especially in
smaller windows, demonstrating that the optical flow calculation is more reasonable. The
median value screening effectively filters out interfering corners, thereby enhancing the
stability of the optical flow extraction and flow correlation. As a result, this approach
contributes to enhanced stability in subsequent feature extraction and the accuracy of
machine learning calculations.

The results of corner point distribution after using and not using dynamic screening
via the median method are shown in Figure 8.
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Figure 8 illustrates the corner points obtained with and without the dynamic screen-
ing of the median method. Figure 8a shows corner points obtained without dynamic
screening of the median method, while Figure 8b displays the corner points obtained with
this method applied. The images reveal that, due to the density disparity between the
gas and liquid phases, the light source experiences reflection at the interface, generating
regions with notable grayscale changes. These corner points predominantly manifest at
the interface between the gas and liquid phases, with their grayscale variations directly
indicating the flow state of the two phases. Furthermore, there exists a specific correlation
between the distribution of corner points and the reflection pattern of the light source.
Through comparative analysis, it was observed that the corner point screening algorithm
demonstrates a robust anti-interference capability. It effectively eliminates most corner
points in the interference areas while also filtering out some random erroneous corner
points in the flow region, thereby ensuring data accuracy and reliability.

2.2.3. Optical Flow Coupling

The proposed method for acquiring motion information in the video provides the
positional information of corner points before and after two frames, denoted as (x1, y1) and
(x2, y2), respectively. However, due to the varying number of corner points and optical flow
across different flow patterns, these data cannot be directly utilized as the input for the
optical flow machine learning model. Instead, it is necessary to couple the optical flow to
generate useful feature information.
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The proposed coupling methods are as follows:

Dqx =
∑t

i=1 dix
2

n
(13)

Dqtx =
∑t

i=1 dix
2

nt
(14)

Dqrx =

√
∑t

i=1 dix
2

n
(15)
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√
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i=1 dix
2

nt
(16)
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∑t

i=1 dix

nt
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Dx =
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i=1 dix
2

t
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where Dqx represents the average sum of squares of displacements per frame, Dqtx is the
average sum of squares of corner displacements per frame, Dqrx denotes the open root of
the sum of squares of the average displacements per frame, Dqrtx is the open root of the
sum of squares of the average corner displacements per frame, Dx is the average corner
displacement, and Dtx is the average corner displacement per frame. Moreover, n represents
the number of frames of the video, and t is the total number of corners in the video captured
by the pyramid L–K optical flow method. After data organization, 18 features in the x,
y, and z directions are obtained, where z represents the vector direction. Along with the
median value in the z direction, the median value in the y direction, the number of angular
points per frame t/n, and the gas–liquid ratio, there are a total of 22-dimensional features,
which are used as input features for the fitting of the machine learning regression model.

2.2.4. Feature Engineering

This research employs variance selection for feature filtering. A smaller variance of a
particular feature indicates that the feature is consistent across samples and contains fewer
distinguishing characteristics. To avoid interference from some irrelevant features during
model training, a variance threshold was set to filter out features with variances below this
threshold. This process helps in achieving more satisfactory results [32].

σ2 =
1
n∑n

i=1 (xi − x)
2

(19)

where σ2 represents the variance, n denotes the number of video clips, xi denotes the value
of the ith video clip on the feature, and x is the mean value of the feature.

With the normalization method, the features are mapped to a distribution within the
interval [0, 1] using Equation (20), removing variations in the degree of variability among
the variables [33].

xi
′ =

xi − xmin

xmax − xmin
(20)

where xi
′ represents the value of xi after max min normalization; xi denotes the value of

the i-th video clip across the features; xmin and xmax denote the minimum and maximum
values of the value of the ith video clip across all features, respectively.

2.2.5. Model Selection

The selected regression models for fitting the two-phase flow are random forest (RF) [34],
support vector regression (SVR) [35,36], nearest neighbor regression (KNN) [37,38], multi-
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layer perceptron (MLP) [39], and gradient boosted regression (GBR) [40]. Parameter tuning
for each model is performed using the grid search method.

In the training process, 5-fold cross-validation was used to evaluate the performance
of the model [41]. The evaluation of the models is conducted using four metrics: RMSE,
mean absolute error (MAE), MAPE, and the coefficient of determination (R2), which are
calculated using the following equations:

RMSE =

√
1
n∑n

i=1 (yi − ŷi)
2 (21)

MAE =
1
n∑n

i=1|yi − ŷi| (22)

MAPE =
1
n∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (23)

R2 = 1 − SSR
SST

(24)

where n denotes the number of video clips, yi represents the true value of traffic for the ith
video clip, ŷi is the traffic measurements derived by the model through the ith video clip,
SSR is the regression sum of squares, and SST is the total sum of squares.

3. Results

In this section, the RMSE, MAE, MAPE, and R2 provided in the figure and table
illustrate the measurement accuracy and the stability of the model. Additionally, the
proposed split comparison model measurement effectively reduces measurement errors.

3.1. Model Evaluation and Measurement Accuracy

Table 1 demonstrates the measurement accuracy and the validity of the machine
learning model.

Table 1. Regression model evaluation table.

Evaluation Indicators RF SVR KNN MLP GBR

RMSE (m3/h) 1.58 1.83 1.70 1.75 1.32
MAE (m3/h) 1.23 1.24 1.37 1.17 0.92

R2 0.85 0.80 0.83 0.82 0.90
MAPE (%) 24.6 35.1 26.6 32.7 17.2

Table 1 indicates that the coefficients of determination (R2) for RF, SVR, KNN, and
MLP all exceed 0.8, demonstrating the strong explanatory power of the prediction model
for the features extracted from the two-phase flow video using pyramid L–K optical flow.
This observation indicates the capability of the model to predict the two-phase flow rate,
based on optical flow features. The RMSE reaches 1.83 m3/h, while the MAE reaches up
to 1.37 m3/h. Notably, the GBR model emerges as the optimal choice with an R2 of up to
0.90, demonstrating a high level of goodness of fit and the ability to explain 90% of the data
in the test set. Furthermore, the GBR model exhibits lower RMSE (1.32 m3/h) and MAE
(0.92 m3/h) than the other models.

The predicted values from the best performing model are contrasted with the experi-
mental true values, as depicted in Figure 9.
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In Figure 9a, the horizontal coordinates represent the true values, while the vertical
coordinates represent the predicted values. The proximity of the points to the diagonal line
indicates a closer alignment between predicted and true values. The scatter represents the
flow rate fitted to the test set. This figure illustrates the model prediction results for the test
set, where 78.9% of the training set predictions fall within the 20% error line, with some
individual values exhibiting larger fitting errors.

In Figure 9b, the results of the test set fitting generally align with the real values. It is
worth noting that certain values are predicted to be high for low flow rates, while for large-
flow values, predictions are lower. This discrepancy may be attributed to the significant
variance in flow states within the gas–liquid two-phase flow. The substantial variability
between small and large-flow rates results in considerable inconsistency within the dataset.
It should be noted that machine learning models require a consistent distribution of training
data, and such significant differences may lead to large errors.

3.2. Split_Comparison (SC) Model

The complexity of gas–liquid two-phase flow results in significant errors in individual
flow predictions. To address this issue, this research introduces a Split Comparison (SC)
model. This model comprises the optimal model GBR, designated as the preset measure-
ment model GBR_A. Flow values of the test set are predicted using the optimal model as
the benchmark. The test data are subsequently divided into two categories: large-flow
data exceeding a predefined threshold and small-flow data below the threshold. In this
study, to ensure a balanced representation of large and small-flow data, and considering
the data distribution variances observed in Figure 9, a threshold of 5 m3/h is employed.
The original dataset is then split into 93 large-flow and 93 small-flow data points. The
large-flow data exceeding the threshold are utilized as training data for the large-flow
model (GBR_B), while the small-flow data are used to train the small-flow model (GBR_C).
GBR_B and GBR_C are utilized to predict the respective data segments in the test set, and
the final result is derived by integrating the predictions from GBR_A, GBR_B, and GBR_C.
The block diagram of this process is presented in Figure 10.

The measured data are generated by combining the results of GBR_A, GBR_B, and
GBR_C. The SC model output represents the result with the minimum absolute error among
the current datasets.

GBR_A models are trained and tested using the training dataset and the test dataset,
respectively. The predictions of GBR_A on the test dataset are divided into test_H and
test_S based on the threshold output. Subsequently, re-predictions are conducted using
GBR_B and GBR_C. The test results of the three models are summarized in Table 2.
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Table 2. The performance measures of different models.

Model Name RMSE (m3/h) MAE (m3/h) R2 MAPE%

GBR_A 1.23 0.86 0.91 16.7%
GBR_B 0.94 0.77 0.87 8.2%
GBR_C 0.55 0.44 0.74 16.4%

The model evaluation results indicate that the GBR_B model achieves superior predic-
tion accuracy for larger flow rates, whereas the GBR_C model exhibits less accuracy for
smaller flow rates. This is possibly due to the fact that the GBR_B model is better suited for
predicting larger flows, whereas changes in flow state resulting from minor flow variations
are less evident. Despite this, the GBR_C model still outperforms the overall predictions of
GBR_A, and its results are relatively more consistent.

By comparing and computing the prediction outcomes of the three models, the selected
prediction values based on absolute error are utilized to generate the final output of the SC
model after assessment in Figure 11.
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Table 3 presents a comparison of the precision between the GBR model and the SC
model implementation.

Table 3. The prediction results obtained from the SC model.

Model Name RMSE (m3/h) MAE (m3/h) R2 MAPE (%)

GBR 1.32 0.92 0.90 17.2
SC 0.74 0.52 0.97 8.0
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As depicted in Figure 10 and Table 3, the SC model demonstrates enhanced corrective
capabilities over the GBR model through its partitioning approach. The MAPE decreased
from 17.2% to 8.0%, R2 increased by 0.07, RMSE decreased by 0.58 m3/h, and MAE
decreased by 0.4 m3/h. These results demonstrate that the SC model notably enhances the
prediction accuracy of the GBR model.

4. Discussion

In this study, due to limitations in sample size and validation attitude, only a limited
amount of data was passed to verify the validity. In future research, enhancing the length
of the observation line, increasing the number of collected pixels, and raising the frequency
of collection can aid in feature extraction using the pyramid L–K photofluidic method. This
approach can mitigate data errors caused by noisy corner points, expand the sample size,
and enhance the measurement accuracy of the model.

5. Conclusions

This paper introduces an intelligent measurement system that integrates the pyramid
L–K optical flow method and the Split Comparison (SC) model for gas–liquid two-phase
flow rate measurement. Utilizing a camera positioned outside a vertical pipeline to capture
flow videos, the pyramid L–K optical flow method gathers information about the gas–
liquid two-phase flow. A median value screening method effectively eliminates noise from
corner points, stabilizing the optical flow results. By coupling optical flow calculations,
the obtained results serve as feature variables inputted into a machine learning model,
enabling the combination of the pyramid L–K optical flow method and the machine learning
model for gas–liquid two-phase flow rate measurement. To resolve the challenge of model
generalization difficulty arising from significant flow rate distribution differences in the
dataset, the model undergoes optimization via a Split Comparison (SC) approach. Results
indicate that the SC model demonstrates notable improvements, with R2 increasing from
0.90 to 0.97, RMSE decreasing from 1.32 m3/h to 0.74 m3/h (representing 4.63% of the full
range), MAE decreasing from 0.92 m3/h to 0.52 m3/h, and MAPE decreasing from 17.2%
to 8.0%. This approach enables the convenient and reliable measurement of gas–liquid two-
phase flow rates. It can handle complex flow conditions, obviates the need for cumbersome
sensor installation and maintenance, enhances measurement robustness and convenience,
reduces measurement costs, and offers a novel perspective for gas–liquid two-phase flow
rate measurements.
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Abbreviation

Nomenclature
A Substitute Function, 5 × 5 Dimensions
B Substitute Function, 5 × 5 Dimensions
C Substitute Function, 5 × 5 Dimensions
D Optical flow Coupling Function
d Optical Flow Estimate, px
E Grayscale Change Function
g Initial Optical Flow
I Grayscale Size
K Response Coefficient
L Pyramid Levels
R Harris Response Value
t Time, s
u Optical Flow Vector, px
v Optical Flow Vector, px
w Window Weight Function, 5 × 5 Dimensions
x Coordinates
y Coordinates
z Coordinates
ε Grayscale Change Function, 5 × 5 Dimensions
Subscripts
i Unitnumber
k Unitnumber
n Unitnumber
min Minimum
max Maximum
qx Represents the average sum of squares of displacements per frame, px
qtx Average sum of squares of corner displacements per frame, px
qrx Open root of the sum of squares of the average displacements per frame, px
qrtx Open root of the sum of squares of the average corner displacements per frame, px
tx Average corner displacement per frame, px
Acronyms
RMSE Root Mean Square Error
MAE Mean Absolute Error
R2 Coefficient of Determination
RF Random Forest
SVR Support Vector Regression
KNN Nearest Neighbor Regression
MLP Multi-Layer Perceptron
GBR Gradient Boosted Regression
SC Split Comparison
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21. Wajman, R.; Nowakowski, J.; Łukiański, M.; Banasiak, R. Machine learning for two-phase gas-liquid flow regime evaluation
based on raw 3D ECT measurement data. Bull. Pol. Acad. Sci. 2024, 72, 148842. [CrossRef]

22. Zhang, L.; Zhang, S. Gas/Liquid Two-Phase Flow Pattern Identification Method Using Gramian Angular Field and Densely
Connected Network. IEEE Sens. J. 2023, 23, 4022–4032. [CrossRef]

23. Chen, H.; Dang, Z.; Park, S.S.; Hugo, R. Robust CNN-based flow pattern identification for horizontal gas-liquid pipe flow using
flow-induced vibration. Exp. Therm. Fluid Sci. 2023, 148, 11097. [CrossRef]

24. Hafsa, N.; Rushd, S.; Yousuf, H. Comparative Performance of Machine-Learning and Deep-Learning Algorithms in Predicting
Gas–Liquid Flow Regimes. Processes 2023, 11, 177. [CrossRef]

25. Dukler, A.E.; Taitel, Y. Flow Pattern Transitions in Gas-Liquid Systems: Measurement and Modeling. In Multiphase Science and
Technology; Hewitt, G.F., Delhaye, J.M., Zuber, N., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 1–94. [CrossRef]

26. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. Proc. DARPA Image
Understand. Workshop 1981, 81, 121–130.

27. Zhong, L.; Meng, L.; Hou, W.; Huang, L. An Improved Visual Odometer Based on Lucas-Kanade Optical Flow and ORB Feature.
IEEE Access 2023, 11, 47179–47186. [CrossRef]

28. Niu, Y.; Xu, Z.; Che, X. Dynamically Removing False Features in Pyramidal Lucas-Kanade Registration. IEEE Trans. Image Process.
2014, 23, 3535–3544. [CrossRef] [PubMed]

29. Al-Qudah, S.; Yang, M. Large Displacement Detection Using Improved Lucas–Kanade Optical Flow. Sensors 2023, 23, 3152.
[CrossRef]

30. Morevec, H.P. Towards automatic visual obstacle avoidance. In Proceedings of the International Joint Conference on Artificial
Intelligence, Cambridge, MA, USA, 22–25 August 1977; p. 584.

31. Harris, C.G.; Stephens, M.J. A combined corner and edge detector. Proc. Alvey Vis. Conf. 1988, 1988, 147–151.
32. Batur, D.; Choobineh, F.F. Mean-variance based ranking and selection. Proc. 2010 Winter Simul. Conf. 2010, 10, 1160–1166.
33. Rana, P.; St-Onge, B.; Prieur, J.-F.; Budei, B.C.; Tolvanen, A.; Tokola, T. Effect of feature standardization on reducing the

requirements of field samples for individual tree species classification using ALS data. ISPRS J. Photo-Grammetry Remote Sens.
2022, 184, 189–202. [CrossRef]

34. Dong, L.-J.; Li, X.-B.; Peng, K. Prediction of rockburst classification using Random Forest. Trans. Nonferr. Met. Soc. China 2013, 23,
472–477.

35. Zhang, Z.; Ding, S.; Sun, Y. MBSVR: Multiple birth support vector regression. Inf. Sci. 2021, 552, 65–79. [CrossRef]
36. Ni, N.; Chan, C. Identification and measurement of gas mixture by using the support vector regression technique. Meas. Sci.

Technol. 2009, 20, 115601. [CrossRef]

https://doi.org/10.1109/TII.2020.2978944
https://doi.org/10.1109/JSEN.2021.3085995
https://doi.org/10.3390/mi14020462
https://doi.org/10.1016/j.ijmultiphaseflow.2022.104067
https://doi.org/10.1109/TIM.2020.3022188
https://doi.org/10.1007/s12182-020-00493-3
https://doi.org/10.3390/s22030996
https://doi.org/10.1016/j.dche.2022.100012
https://doi.org/10.1016/j.eswa.2022.117704
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122439
https://doi.org/10.1016/j.cej.2020.126401
https://doi.org/10.1109/TCYB.2021.3084860
https://doi.org/10.7717/peerj-cs.798
https://doi.org/10.24425/bpasts.2024.148842
https://doi.org/10.1109/JSEN.2023.3235954
https://doi.org/10.1016/j.expthermflusci.2023.110979
https://doi.org/10.3390/pr11010177
https://doi.org/10.1007/978-3-662-01657-2_1
https://doi.org/10.1109/ACCESS.2023.3274784
https://doi.org/10.1109/TIP.2014.2331140
https://www.ncbi.nlm.nih.gov/pubmed/24956365
https://doi.org/10.3390/s23063152
https://doi.org/10.1016/j.isprsjprs.2022.01.003
https://doi.org/10.1016/j.ins.2020.11.033
https://doi.org/10.1088/0957-0233/20/11/115601


Appl. Sci. 2024, 14, 3717 18 of 18

37. Atanasovski, M.; Kostov, M.; Arapinoski; Spirovski, M. K-Nearest Neighbor Re-gression for Forecasting Electricity Demand.
International Scientific Conference on Information. In Proceedings of the 2020 55th International Scientific Conference on
Information, Communication and Energy Systems and Technologies (ICEST), Niš, Serbia, 10–12 September 2020; pp. 110–113.
[CrossRef]

38. Assi, K.C.; Labelle, H.; Cheriet, F. Modified Large Margin Nearest Neighbor Metric Learning for Regression. IEEE Signal Process.
Lett. 2014, 21, 292–296. [CrossRef]

39. Makalic, E.; Allison, L. MMLD Inference of Multilayer Perceptrons. In Algorithmic Probability and Friends. Bayesian Prediction and
Artificial Intelligence; Dowe, D.L., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume
7070, pp. 261–272. [CrossRef]

40. Yamagishi, J.; Kawai, H.; Kobayashi, T. Phone duration modeling using gradient tree boosting. Speech Commun. 2008, 50, 405–415.
[CrossRef]

41. Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137–146. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICEST49890.2020.9232768
https://doi.org/10.1109/LSP.2014.2301037
https://doi.org/10.1007/978-3-642-44958-1_20
https://doi.org/10.1016/j.specom.2007.12.003
https://doi.org/10.1007/s11222-009-9153-8

	Introduction 
	Materials and Methods 
	Gas–liquid Two-Phase Flow Experimental Setup and Data Acquisition 
	Optical Flow Detection and Regression Modeling 
	Pyramid L–K Optical Flow Feature Extraction 
	Dynamic Screening of Median Value 
	Optical Flow Coupling 
	Feature Engineering 
	Model Selection 


	Results 
	Model Evaluation and Measurement Accuracy 
	Split_Comparison (SC) Model 

	Discussion 
	Conclusions 
	References

