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Abstract: People use natural language to express their thoughts and wishes. As robots reside in
various human environments, such as homes, offices, and hospitals, the need for human–robot
communication is increasing. One of the best ways to achieve this communication is the use of
natural languages. Natural language processing (NLP) is the most important approach enabling
robots to understand natural languages and improve human–robot interaction. Also, due to this
need, the amount of research on NLP has increased considerably in recent years. In this study,
commands were given to a multiple-mobile-robot system using the Turkish natural language, and
the robots were required to fulfill these orders. Turkish is classified as an agglutinative language.
In agglutinative languages, words combine different morphemes, each carrying a specific meaning,
to create complex words. Turkish exhibits this characteristic by adding various suffixes to a root or
base form to convey grammatical relationships, tense, aspect, mood, and other semantic nuances.
Since the Turkish language has an agglutinative structure, it is very difficult to decode its sentence
structure in a way that robots can understand. Parsing of a given command, path planning, path
tracking, and formation control were carried out. In the path-planning phase, the A* algorithm
was used to find the optimal path, and a PID controller was used to follow the generated path
with minimum error. A leader–follower approach was used to control multiple robots. A platoon
formation was chosen as the multi-robot formation. The proposed method was validated on a known
map containing obstacles, demonstrating the system’s ability to navigate the robots to the desired
locations while maintaining the specified formation. This study used Turtlebot3 robots within the
Gazebo simulation environment, providing a controlled and replicable setting for comprehensive
experimentation. The results affirm the feasibility and effectiveness of employing NLP techniques for
the formation control of multiple mobile robots, offering a robust and effective method for further
research and development on human–robot interaction.

Keywords: Turkish; natural language processing; robot path planning; platoon; path tracking; robot
formation; leader–follower

1. Introduction

Robots continue to be used in every aspect of life, including housework, rehabilitation,
medicine, educational technologies, office work, the military, various service areas, and
production lines, according to technological development. The proliferation of these areas
enables robots and humans to exist intertwined [1]. As areas of robot usage grow, the
need for their communication with humans increases. As this need increases, commu-
nication becomes more complex. For this reason, the number of studies in the field of
human–robot interaction has increased. Methods are being developed to provide inter-
action between humans and robots. Examples of these methods include human hand
and arm behaviors [2] and interaction with natural languages [3]. The increasing use of
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natural language expressions has led to increased research on natural language processing
(NLP). The primary function of natural language processing is to design and implement
computer systems for analyzing, interpreting, and understanding a natural language [4].
With studies on NLP, various libraries that can be used with many languages have been
developed, such as NLTK [5], CoreNLP [6], TextBlob [7], Gensim [8], and SpaCy [9]. These
libraries provide a programming interface, especially for researchers. Studies on natural
language processing in Turkish are constantly increasing. One of the first studies was
Zemberek [10]. Zemberek is an open-source application that contains many units [10].
Zemberek is a natural language processing (NLP) tool developed specifically for Turk-
ish [10]. It provides various functionalities such as morphological analysis, disambiguation,
stemming, and spell-checking [10,11]. Zemberek is an open-source project that aims to
assist developers and researchers in processing Turkish text effectively [10,11] via services
such as normalization, morphological analysis, entity name recognition, sentence break
detection, correction, disambiguation, and language recognition [10,11]. The ITU Natural
Language Processing software chain provides many features, such as a normalization
module, sentence separator, vowel restoration, morphological analysis, syllable corrector,
entity name identification, and dependency analysis by providing a web interface and a
programming interface [12]. Another important function of Zemberek is stemming, which
involves reducing words to their base or root form. This is particularly useful in tasks such
as information retrieval and text mining in which variations of words need to be treated as
the same entity. Furthermore, Zemberek includes a spell-checking module that can identify
and suggest corrections for misspelled words in Turkish text. This feature enhances the
overall quality of text processing and improves the accuracy of NLP applications.

NLP provides control of communication between a user and a system. An example
of this use is the control of an autonomous mobile robot [13]. For robots to execute
given commands, the commands must undergo some processing. In the literature, many
studies on the realization of commands exist, especially in English. The main aim is to
understand commands with different structures. For this purpose, approaches such as the
reward-defined method [14], using image and depth information with natural language
processing [15], understanding abstract expressions [16], responding to changes in an
environment [17], and asking questions if the command is not understood [18] have been
presented. Another example is the Controlled Robot Language (CRL) design, which was
presented for efficient human–robot collaboration and team communication [19]. In [19],
the CRL framework maps linguistic commands to logical semantic expressions designed
explicitly for automated robot planning using the IEEE CORA ontology for grammar, and
a CRL checker detects linguistic patterns for sentences outside the grammar coverage.

The main problems in mobile robotic studies are mapping, location estimation, ex-
ploration, and navigation. Path planning is one of the most important problems in robot
systems. Robots need to choose the optimal path in an environment containing obstacles.
Algorithms such as A*, D*, and RRT are used for global path planning [20]. Another
important issue in this field is the path-following problem, which concerns the ability
to drive a mobile robot as autonomously as possible on a predefined reference path [21].
The path-following problem can be solved by different control methods, such as a PID
controller [22,23], model predictive control [24–26], and the fuzzy logic approach [27]. In
multi-robot systems, these processes become even more complex. It is naturally necessary
for each robot in a multi-robot system to navigate independently while cooperating with
other robots for efficient performance, which depends on each robot’s conditions, such as its
structure, location, and speed [28]. One frequently preferred trajectory-tracking approach
in multi-robot systems is the leader–follower approach [29]. In this approach, a leader
robot follows a specified path, and a follower robot follows the leader robot at a specified
distance and angle [29].

In this study, the formation control of autonomous mobile robots is achieved utilizing
the Turkish natural language. Turkish commands received are subjected to parsing em-
ploying Turkish natural language processing techniques. Subsequently, the mobile robots
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execute the assigned tasks based on these parsed commands. Various scenarios associated
with these tasks are formulated for both obstacle-laden and obstacle-free environments. It
is very difficult to parse Turkish because of its agglutinative structure, not only for robots
but also for people learning the language. To give an example, in Turkish, the single
word “Görüşmeyeceklermiş” translates into English as “I heard that they are not going
to be able to see each other”. This example shows how difficult it is to analyze language.
The Turkish language has an agglutinative structure, and it is very difficult to decode its
sentence structure in a way that robots can understand. Parsing of the given command,
path planning, path tracking, and formation control were carried out. According to our
review of the literature, this study is the first study in the literature to use Turkish NLP
for multi-robot formation control. The Zemberek library used in this study is used for the
first time in robot control. This study is a pioneering study in the application of Turkish
natural language processing within the domain of multiple-mobile-robot systems. This
study tested natural commands from a user using Turkish NLP on a multi-mobile-robot
system. After parsing the commands received from the user, the robots were enabled to
move from a starting point to a target point while maintaining their formation. The A*
algorithm was used for path planning, and a PID controller was used for path tracking.
The leader–follower approach and platoon-type formations were used. In this study, ROS
(Robotic Operating System), Noetic version, and Gazebo were used to create a simulation
environment, and the Turtlebot3 Burger model was chosen as the mobile robot.

2. Natural Language Processing (NLP)

Natural language is an important tool for people to communicate with each other. Nat-
ural language is used in many methods that people use in daily life during communication.
Although at first glance, it seems simple to communicate using natural languages in daily
life, it is necessary to go through certain stages to learn these languages. Approaching the
problem from this point of view, the comprehension of natural languages in a computer en-
vironment involves many problems. Natural language processing studies that use natural
languages for different functions in the computer environment have emerged.

There are different definitions of NLP. For example, NLP is a subfield of computer
science that uses computational techniques to learn, understand, and produce human
language content [30]. NLP involves designing and implementing models, systems, and
algorithms to solve practical problems in understanding human languages [31]. NLP is
an interdisciplinary phenomenon using concepts and techniques from many fields. It has
found its place in many different fields. In particular, it is necessary to conduct research
and collaborate, centering this focus on NPL research on the following topics: phonetics,
morphology, syntax, and semantics [32]. Some of the applications of NLP are given [32,33].
They can be classified as correcting spelling errors, translating text and speech, summarizing
text, answering questions, executing commands, and grading exams [33]. NLP stages are
considered under five main sections. These are normalization, morphological analysis,
syntactical parsing-dependency parsing, semantics, and discourse [32,33].

Turkish exhibits distinctive characteristics compared to languages like English,
German, and Spanish, which have been extensively examined in the scholarly litera-
ture. Particularly notable is its agglutinative nature, which enables the formation of
numerous word forms through suffixation. Consequently, spell-checking in Turkish
poses significant challenges [34,35]. Despite relatively lagging progress in active Natural
Language Processing (NLP) endeavors focused on Turkish, substantial advancements
have been made in recent years. Mukayese stands out as a noteworthy effort, providing
a comprehensive benchmarking study for various NLP tasks pertaining to the Turk-
ish language [36]. In [37], an elaborate finite automaton model encompassing Turkish
grammar rules alongside developing tools for stemming, morphological labeling, and
verb negation was devised in Turkish. TurkishDelightNLP represents a neural NLP
framework tailored specifically for Turkish, offering a wide array of functionalities,
including morphological tagging, dependency parsing, semantic tagging, named entity
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recognition, and part-of-speech tagging [38]. In a separate investigation, a machine
learning-driven hybrid sentiment analysis model was introduced to enhance sentiment
analysis performance within Turkish question–answer systems [39].

3. Autonomous Mobile Robots

Autonomous ground robots are robots that can move autonomously from one place
to another. These robots have the ability to move freely within a predefined workspace to
fulfill given tasks and achieve desired goals [40]. Navigation is a challenging problem for
autonomous mobile robots. The robot goes through different phases to achieve successful
navigation, such as sensing, localization, cognition, and motion control. The robot interprets
information from its sensors in the sensing phase and extracts meaningful data [41,42]. In
the localization phase, the robot estimates its position in its environment using information
from external sensors. In the cognition phase, the robot plans the steps needed to reach
the goal. The motion control phase enables the robot to achieve the desired trajectory by
changing its motor outputs [41].

3.1. Path Planning

Path planning can be defined as the determination of the path that mobile robots will
follow to reach a target point from a starting point. This process involves the calculation
of alternative paths to reach the target and determining which points to pass through
one by one. The distance taken must be short, the time to reach the target point must be
optimized, and no factors must make the path difficult [43]. Different approaches based
on different distance definitions are used to calculate the path between the robot and the
target [40,41]. A hybrid system for cooperative driving systems, combining discrete events
and continuous vehicle dynamics, was presented [44]. A control algorithm combined the
artificial potential field (APF) approach with model predictive control (MPC) to achieve
synchronous path planning and motion control [44].

In this study, the A* algorithm is used for path planning. The A* algorithm is a heuristic
method that computes the path between projected starting and destination positions at the
lowest cost [45]. It has been widely used in the field of mobile robots due to its least-cost
trajectory design [45]. A* is an algorithm designed on a weighted graph. It is considered a
search algorithm. It is a search algorithm that aims to find a path from a given initial node
of a graph to the goal node at the lowest cost (taking the shortest path and the shortest
amount of time). To find the path with the lowest cost, it builds a path tree starting from
the initial node. These paths are advanced by extending one edge of the graph at a time
until the algorithm’s performance criteria are met [45]. The algorithm uses heuristics to
optimize its search. A function can be defined as one that can estimate, to some extent, the
cost from one node to another node. A disadvantage is that all nodes created are kept in
memory, which increases the computational load. The cost calculation of each node visited
to reach the destination is expressed as shown in Equation (1) [45].

f (n) = g(n) + h(n) (1)

where n is the current node, g(n) is the cost from the current node to the initial node-
equation, h(n) is a heuristic function, and f (n) is the cost from the current node to the
destination node. The heuristic function specifies the heuristic cost from a node to a
given destination.

3.2. Autonomous Mobile Robot Control

Various control methods are used to make autonomous mobile robots (AMRs) reach
a specified target or to move in a desired direction. These methods vary according to the
type of robot used and the environment. The robot’s path planning process (navigation) is
challenging and requires many stages. For successful navigation, the robot must complete
sensing, localization, cognition, and motion control stages. In the sensing phase, the
robot interprets the data received from its sensors and extracts meaningful data. In the
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localization phase, it estimates its position in the environment used. In the cognition phase,
the steps necessary for the robot to reach the target point are planned. In the motion control
phase, the robot is moved in the desired trajectory by changing its motor outputs [40–42].
The geometric approach for the AMR’s kinematics and the target point information are
shown in Figure 1 [46,47].
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A point on the robot’s chassis is determined as a reference point to specify the position
of the robot. This point is denoted by P. (XR, YR) is the robot coordinate system placed on
the robot at the point P; (xı, yı) is the base/universal/reference coordinate system. θr is
the angle between the xr-axis and the xı coordinate axes due to rotation around the z-axis.
The position of the robot in the (XI, YI) base coordinate system can be represented as a
three-element vector as follows:

ξ I =

x
y
θ

 (2)

where ξ I is the position vector, x is the x component of the position, y is the y compo-
nent of the position, and θ is the angular position. The speed of the wheel is given in
Equation (3) [47]:

.
xR =

r
( .

φ1 +
.
φ2

)
2

(3)

where r is the radius of the wheel, l is the distance of each wheel from point P, φ is the
rotation of the wheel, and

.
rφi i = (1, 2) is the speed of each wheel. The angular velocity of

each wheel with respect to P (
.
θi) and the total angular velocity (

.
θ) are calculated as follows

in Equations (4) and (5) [47].
.
θi =

r
.
φi
2l

(4)

.
θ =

r
2l
( .

φ1 −
.
φ2

)
(5)

The motion of the robot can be described as shown in Equation (6):

.
ξ I =


.
x
.
y
.
θ

 = f (l, r,
.
φ1,

.
φ2) (6)
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The robot’s motion is obtained by rotating the robot coordinate system around the
z-axis with respect to the base coordinate system. In this case, the rotation matrix around
the z-axis is given in Equation (7) [47].

R(θ) =

 cos θ sin θ 0
− sinθ cos θ 0

0 0 1

 (7)

By utilizing the transformation matrix between the coordinate systems of the robot,
the motion of the robot can be written as follows [47] in Equations (8)–(11).

ξR = R(θ)ξ I (8)

ξ I = R(θ)−1ξR (9)

R(θ)−1 = R(θ)T =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

 (10)

ξ I =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

 r
2


.
φ1 +

.
φ2

0
.
φ1 +

.
φ2

l

 =


.
x
.
y
.
θ

 (11)

Figure 1 shows the current position of the robot and the position of the target point.
The values for the target position are calculated using the units shown in Figure 1 [47]. AH
is the angle between the robot’s orientation and the target, and PH is the distance between
the robot and the target. These values can be obtained using Equations (12)–(16).

PH =
√

D2
x + D2

y (12)

AH = θr − θ (13)

Dx = xh − xr (14)

Dy = yh − yr (15)

θ = arctan
(

Dy, Dx
)

(16)

3.3. Multiple Mobile Robots

Multi-robot systems are used for some tasks that a single robot cannot perform or
which may be more costly. Instead of one powerful robot with a complex structure, multiple
robots with more superficial structures can be used. Examples of multi-robot applications
include exploration, search and rescue, and transportation [48–50]. There are two main
ways in which multi-robot systems make decisions. These are centralized systems and
distributed systems. In centralized systems, the movements of the entire robot group are
managed by a single center. All information is collected in a central system or robot; the
most appropriate decision is made there. In distributed systems, each robot makes its own
decision. It can act independently of the other robots. Apart from these, market-based
approaches have also been developed. In this approach, robots can perform a task on their
own, or they can perform a given task as a robot community [51].

Multiple robots need to be coordinated while performing a task. While forming
the robot system, different classifications can be made according to the control strategy.
Examples are behavioral, leader–follower, and virtual structure approaches [52]. Since the
behavior-based control strategy integrates several goal-oriented behaviors simultaneously,
multiple robots can simultaneously navigate to waypoints, avoid hazards, and maintain
formation [53]. This control strategy allows robotic vehicles to concentrate and act on the
inputs received by their sensors. Thus, all robots in the formation respond to the information
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they receive from their environment and ensure the formation is fully realized [54]. The
virtual structure approach is used for the formation of structures that have the appearance
of a fixed geometric shape. A general control strategy is developed to force a collection
of robots to behave like particles embedded in a solid structure. In this approach, there is
no need to select a specific leader for the formation [55]. Multi-robot systems using the
leader–follower control method have at least one leader, with the rest of the agents acting
as followers. The control design is such that the followers monitor the leader’s position
and follow the leader’s prescribed trajectory. Two types of supervision are required here.
One maintains the specified distance between the leader and the followers, and the other
keeps the relative angle between them [56].

The platoon formation is one of the most frequently used formation types in the
literature [57]. In the platoon driving approach, the mobile robot system consists of more
than one robot moving in a line like a single object. In this structure, each robot usually
only receives information from the previous one [58]. The leader follows a set trajectory,
and the followers must maintain a desired relative distance and orientation between
them. Longitudinal controllers focus on keeping the relative distance between vehicles
at a predetermined value [59]. Ref. [60] introduces a distributed guiding-vector-field
(DGVF) algorithm for robots to form spontaneous-ordering platoons along a predefined
path in an n-dimensional Euclidean space. In [60], the algorithm eliminates singular
points and guides robots toward a self-intersecting path. Ref. [61] proposes a four-
layer framework for cooperative mechanisms within and across strings and designs
longitudinal and lateral controllers based on vehicle roles. Many approaches to this type
of control have been proposed [57,62,63]. Another study used a platooning approach
involving air and ground vehicles [64].

This study preferred a distributed system according to the decision-making approach.
The leader–follower approach was used as the control method. Detachment was used as
the formation type.

4. Materials and Methods
4.1. Proposed NLP-Based Command-Creation Model

This study covers two main areas. These are the field of robotics and the field of NLP.
Therefore, the study is conducted on two levels. The NLP system detects what the user
says or writes, translates it into an appropriate format, and transfers it to the robot system.
The robotic part is the structure that implements these commands on a robot and realizes
them in the simulation. The stages required to realize these processes are divided into four
parts. A block diagram of these stages is shown in Figure 2.
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Figure 2. A block diagram of the proposed approach.

First, a morphological analysis is performed on the commands, which are received as
text from the user or as audio and converted into text. Here, the morphology module in
the Zemberek application is used [10]. The types of words in the given sentence, such as
adjectives, nouns, and verbs, are obtained via the morphological analysis. For example, if
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we analyze the sentence “Yeşil bardağı kutuya koy (English: “Put the green glass in the
box”),” the following information will be obtained (hereafter, English translations of the
Turkish command sentences will be given in parentheses after the statement for a better
understanding of the commands):

yeşil (“green”) → adjective
bardak (“glass”) → noun
kutu (“box”) → noun
koy (“put”) → verb
As can be seen from the result, we start with a morphological analysis, but the output

we obtain at this stage is not enough. In sentence structure, the component that performs
the action and is affected by the action must be obtained. To understand the task in a task
sentence, it is necessary to infer the purpose for which the words are used in the sentence
rather than their types. For this reason, a syntactic inference must be made. The elements
of the task must be identified by correctly separating the sentence into its components.

4.1.1. Sentence Analysis

Natural language commands to be sent to the robot are analyzed by the parser. After
analyzing the command sentence, the complement and predicate of the sentence are
obtained. With these data, the function of the robot is determined. Since Turkish is an
agglutinative language, each word has a complex structure in terms of its form; therefore,
the words we derive from a word can have very different meanings.

For example, let us consider the word “kitap” in this context:
Kitap (“Book”) → noun: A collection of printed or written sheets of paper.
Kitapçı (“Bookseller”) → noun: A person who sells books.
Kitaplık (“Bookcase”) → noun: A compartment where books are placed.
Kitaplı (“Bookish”) → adjective: A person who has books.
Kitapsız (“Bookless”) → adjective: A person without books.
As can be seen, the root of the word is a noun, but it can be used to create many

different meanings in a sentence.
In this study, the “Turkish Sentence Analyzer (TSA)” was used for sentence depen-

dency analysis [11,12]. The TSA is an open-source Java application that performs sentence
parsing for Turkish sentences. The book “Turkish Syntax” was used to create Turkish syntax
rules [65]. Context-free Grammar (CFG), which is a method for describing the structure
and syntax of natural languages, was used to test the suitability of the text structure given
in the application [66].

Turkish sentences may be created in various forms, for example, “sentence → verb”,
“sentence → object + verb”, “sentence → subject + complement + verb”, “sentence → subject
+ object + verb”, etc. As can be seen from these examples, a syntactic inference must be
made, and it is critical to break down sentences into their elements correctly. Figure 3 shows
the parse tree of the sentence structure of “robot ileriye git (“robot go forward”)” generated
from the defined grammar.
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CFG is mainly a grammar used to describe a language. The description of natural
language cannot cover all language because semantic expressions cannot be defined in this
grammar. As can be seen in the example shown in Figure 3, this grammar is created from
Turkish syntactic structures. If a sentence given with this grammar is recognized as input,
the sentence is accepted as valid.

TSA uses Zemberek in the morphological analysis phase while analyzing the given
sentence [10]. When performing the morphological analysis, more than one result can be
obtained. We can examine this using an example of the Turkish word “boyun”, which has
several meanings. Possible solutions are presented in Table 1. The analyzer basically works
as follows: the given sentence is separated on a word-by-word basis, and these words are
separated into nouns, adjectives, verbs, etc., with the help of Zemberek.

Table 1. Morphological analysis of the Turkish word “boyun”.

Solution Turkish Root Turkish
Equivalent

English
Translation

Word
Type Meaning

1 Boyun Boyun Neck Noun an area on the body
2 Boy Uzunluk Length Noun the size of an object
3 Boy Kabile Tribe/Clan Noun a group of persons

Detailed examples of the identification of word types in different sentences using
Zemberek are shown in detail in [67].

Finding a Suitable Solution

First, only sentences with verbs were used in this study to find a suitable solution.
Part-of-speech tagging (via a POS tagger), which uses statistical data, was added to the
system to find the appropriate solution. Here, the frequencies of the generated solutions
were determined. Each similar solution was identified as an element of a class. The number
of classes was unrestricted due to the many solutions found. Then, the frequencies of the
specified class elements were calculated. This calculation is shown in Equation (17).

pi =
fi
n

, i = 1, 2 . . . . k ; ∑k
i=1 pi = 1 (17)

In the equation, pi is the frequency rate of each class, fi is the frequency of each class,
n is the total number of data points, and k is the number of classes. The class element with
the highest ratio among the obtained solutions is considered the solution.

Creating a Flow Sequence

After the essential analysis and parsing, a step was carried out to extract the flow order
of sentences that contain more than one task and are parsed with specific words. What is
meant by flow order here is which task should be carried out first. For example, if we take
the sentence “Kapıyı geçtikten sonra yerdeki kutuyu al. (“After passing the door, pick up
the box on the floor.”)”, the first task is to “kapıyı geçme (“pass the door”)”, and the second
task is to pick up the “yerdeki kutuyu (“box on the floor”)”. Here, rules are created based
on time-indicating words such as “önce (“before”)” and “sonra (“after”)” in the sentence.
A sample demonstration in which all these operations are performed is as follows.

Below is the analysis made by the application for the expression “Robot ileriye git
(“Robot go forward”)”:

“robot/noun”; “ileriye/noun”; “git/verb”;
“subject/robot”; “complement/ileri (“forward”)”; “predicate/git (“go”)”.
With the predicate obtained as a result of the analysis, the operation to be performed

and the direction information are obtained with the complement of the sentence. In this
process, the conjunctions that can determine the orders of operation of the given sentences
were identified, and the operations in the given expression were ordered according to these
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conjunctions. As an initial study, the order of the operations was determined by checking
the conjunction “sonra (“then”)” in the command statement entered into the system.

Another example of the expression “Robot ileriye git sonra sola dön (“Robot go
forward then turn left”)” is analyzed as follows:

First action:
“subject/robot”; “complement/ileri (“forward”)”; “predicate/git (“go”)”.
Second action:
“complement/sol (“left”)”; “predicate/dön (“turn”)”.
The word “sonra (“after”)” in the expression shown in the example above indicates

time and sequence. When the application sees the word after, it understands that the
actions should be performed sequentially and sends the statements to the robot control
system in this order.

The third improvement in sentence analysis is the addition of numerical units of
measurement. The following example illustrates the new additions to the program. “Robot,
iki metre ileriye git sonra kırk beş derece sola dön. (“Robot, move forward two meters and
then turn forty-five degrees to the left.”)”. Here, the numbers are decomposed through a
dependency analysis. Our parsing methodology for creating commands for such sentences
with multiple actions is described in more detail in the next section.

4.1.2. Creating Commands

The solutions obtained after parsing must be adapted to the robot system. For
this reason, a new data structure was created which is illustrated in Figure 4. In this
data structure, the parsed commands are kept in a form suitable for the functions of the
robot system.
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Figure 4. Scheme of new data structure.

It contains the mobile robot that will act, the action to be performed, direction informa-
tion, trajectory information, obstacle information, and the front and back positions of the
obstacle. These commands are converted into a data format and sent to the robot system.
For example, the data structure created after parsing for the command “Robot ileriye git
sonra 45 derece sağa dön (“Robot go forward and then turn 45 degrees to the right”)” is
shown in Figure 5.

In Figure 5, the command consists of two actions. Here, the robot will perform the
given task. In single-robot environments, the command is applied directly to the robot in
the system. In multi-robot environments, the identity of the robot must also be specified.
This command keeps the direction information separate because it also takes a number
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value. First, “Task 1” commands are sent, and then “Task 2” commands are sent to the
robot system.
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Figure 5. The created data structure scheme after parsing for the command containing two actions.

Figure 6 shows the data structure format for the command “Lider beyaz engelin
arkasına git sonra yeşil engelin önüne git (“Leader go behind the white obstacle and then
go in front of the green obstacle”)”. Here, the leader robot in the multi-robot system is the
one that will perform the task. In the command, an obstacle is given as an obstacle, and the
location is behind and in front of the obstacle. The data structure keeps these parts as the
object type and position. In this study, since the robots are tested in a known and mapped
environment, the features of the objects, such as their color, are available on the map in the
simulation environment.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 22 
 

 
Figure 6. The data structure scheme created after parsing for the command “Lider beyaz engelin 
arkasına git sonra yeşil engelin önüne git (“Leader go behind the white obstacle and then go in front 
of the green obstacle”)”. 

4.2. Simulation Environment 
In this study, Gazebo was used due to its ability to connect directly to ROS through 

special packages; it is a 3D interface that provides the robots, sensors, plugins, and 
environment models required for robotic simulations. It exhibits high performance and 
has various plugins. The Gazebo simulator can be connected directly to ROS through 
specialized packages. These packages provide the necessary interfaces to simulate a 
Gazebo robot using ROS messages, services, and dynamic reconfiguration [68]. For ROS 
to work correctly with a robot, it needs a description of the robot’s kinematics. In this way, 
trajectories, navigation, and more can be planned and executed. To describe a robot, the 
robot’s properties are specified in URDF (Universal Robot Description Format) files 
[68,69]. In this work, all experiments were carried out in the Gazebo environment on the 
map shown in Figure 7. 

 
Figure 7. The simulation environment was created in Gazebo. 

The map in the simulation shows four circular obstacles colored green, red, blue and 
white, which were also described in the commands in the previous sections. 

4.3. Mobile Robot Platform 
In this study, the Turtlebot3 Burger mobile robot was used [70]. TurtleBot3 is a small, 

programmable, ROS-based mobile robot for use in education, research, hobby robotics, 
and product prototyping [70]. Most of the work implementing ROS features such as 
simulations, drivers, SLAM, and navigation is performed using Turtlebot3 packages. 
Detailed technical specifications of the Turtlebot3 Burger model can be found in [70]. The 
primary sensor used for navigation is a 360-degree LIDAR sensor. Using this sensor, 

Figure 6. The data structure scheme created after parsing for the command “Lider beyaz engelin
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4.2. Simulation Environment

In this study, Gazebo was used due to its ability to connect directly to ROS through
special packages; it is a 3D interface that provides the robots, sensors, plugins, and
environment models required for robotic simulations. It exhibits high performance and
has various plugins. The Gazebo simulator can be connected directly to ROS through
specialized packages. These packages provide the necessary interfaces to simulate a
Gazebo robot using ROS messages, services, and dynamic reconfiguration [68]. For
ROS to work correctly with a robot, it needs a description of the robot’s kinematics. In
this way, trajectories, navigation, and more can be planned and executed. To describe a
robot, the robot’s properties are specified in URDF (Universal Robot Description Format)
files [68,69]. In this work, all experiments were carried out in the Gazebo environment
on the map shown in Figure 7.

The map in the simulation shows four circular obstacles colored green, red, blue and
white, which were also described in the commands in the previous sections.
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4.3. Mobile Robot Platform

In this study, the Turtlebot3 Burger mobile robot was used [70]. TurtleBot3 is a small,
programmable, ROS-based mobile robot for use in education, research, hobby robotics, and
product prototyping [70]. Most of the work implementing ROS features such as simulations,
drivers, SLAM, and navigation is performed using Turtlebot3 packages. Detailed technical
specifications of the Turtlebot3 Burger model can be found in [70]. The primary sensor
used for navigation is a 360-degree LIDAR sensor. Using this sensor, obstacles in the
environment were detected. Secondly, the camera was used to detect the features of the
obstacles, such as their color.

4.4. Robot Control

In this study, a controller was used for more than one process. The processes are as
follows: path planning, establishing the leader–follower system, and formation generation.
The structure of the controller used in the system is shown in Figure 8.
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Figure 8. Block diagram of mobile robot control.

The system takes the desired position and orientation as inputs. The error is obtained
by taking the difference between these inputs as a reference and the actual position and
orientation of the robot. The error is processed in the controller, and a linear velocity and
angular velocity are generated for the robot. This process continues until the error is zero
or reaches the reference range. A PID controller is used as the controller in the system.
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4.5. Trajectory Planning

In this study, the A* algorithm was used to find the shortest path between the start
point and the end point. The algorithm takes the instantaneous actual position of the
robot and the coordinates of the calculated target point as parameters. It determines the
optimal path using these parameters. The function returns information about the node
that the robot should visit. The Euclidean distance was used as the heuristic function’s
cost in the algorithm.

4.6. Determining Target Point

Verbal expressions are received from the user, and the robot performs these commands
after an NLP analysis. However, these verbal expressions must be transformed so the robot
system can understand them. For example, when the command “Robot kırmızı engelin
arkasına git (“Robot goes behind the red obstacle”)” is given, the position of the desired
target must be calculated. For this, the numerical value of the back target position of the
verbally given obstacle is calculated, as shown in Figure 9.
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In Figure 9, θ is the angle between the robot and the origin of the obstacle, d is the
distance between the robot and the origin of the obstacle, r is the radius of the obstacle, ∆g
is the desired distance between the target point and the obstacle, ∆ is: the distance between
the target point and the origin of the obstacle, xr, yr is the current position of the robot,
xm, ym is the position of the origin of the obstacle, Xha, Yha is the back target position of the
obstacle, and Xho, Yho is the front position of the obstacle. Also, Ro is the distance between
the robot and the front target points, and Ra is the distance between the robot and the back
target point. The equations for these parameters are shown in Equations (18)–(26).

θ = arctan
(

ym − yr

xm − xr

)
(18)

d =

√
( xm − xr)

2 +
(

ym − yr)
2 (19)

∆r = r + ∆g (20)

Ra = d + ∆r (21)

Xha = Racos θ (22)

Yha = Rasin θ (23)

Ro = d − ∆r (24)
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Xho = Rocos θ (25)

Yho = Rosin θ (26)

4.7. Path Tracking

The optimal path between the robot’s origin and its destination point is found by the
A* algorithm. The algorithm calculates the path according to the size of the area used the
distance to the target point, and node values are returned. These node coordinates are sent
to the controller system as reference values, and the robot reaches the target. Figure 10
shows a block diagram of the process.
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As shown in Figure 10, the system first reads the coordinates of the next target node.
The distance between the robot and the target is calculated according to Equation (27), and
the angle is calculated according to Equation (28). If these calculated values are within
the reference range, the robot stops and waits. If the error values are outside the reference
range, the controller uses these values to determine the angular velocity and linear velocity
of the robot. The robot is driven at these determined velocities. This process continues until
the error values enter the reference range.

d =

√
( xd − xr)

2 + (yd − yr)
2 (27)

θ = arctan
(

yd − yr

xd − xr

)
(28)

where xd, yd are the coordinates of the node, xr, yr are the coordinates of the robot, d is
the distance between the robot and the node, and θ is the angle between the robot and
the node.

4.8. Leader Following

The aim is to maintain a certain distance and angle between the leader and follower
robots. The followers need to keep the desired alignment. Figure 11 shows the structure of
following the leader. As can be seen in the figure, the distance between the leader and the
follower is denoted by l. The formation aims to keep this distance in the reference distance
range and the orientation between the two robots in the reference orientation range.

The formation works as follows: The leader and follower robots communicate using
the publish–subscribe method. The leader robot broadcasts its position and orientation, and
the follower robot receives this information. The controller receives the current position and
orientation of the leader as inputs. This information is used as the target coordinates of the
follower robot. The desired distance between the target coordinates and the desired distance
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are taken as references to determine the amount of error, and the controller determines
the linear and angular velocity of the follower robot according to this error. If the follower
robot enters the specified reference range, the speed information is reset to zero, and the
robot stops.
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5. Experimental Studies

This section presents experimental studies on the formation control of multiple mobile
robots using NLP and different scenarios envisioned for formation control. The Turkish
NLP approach asks a group of mobile robots to follow a prescribed or desired trajectory
under other conditions. In the simulation environment, obstacles were assumed to exist,
and the mobile robots were asked to move. Considering these obstacles, the robots were
given commands in Turkish and asked to do what was necessary. The general view of
the environment with obstacles in which the robots move is shown in Figure 7. After
calculating the coordinates of the target point, the A* algorithm is used to calculate the
optimal/economic path.

The terms “In front of the target” and “behind the target” in the Turkish commands
given to the robot are shown in Figure 9, and the formulation is generated. Some prelimi-
nary assumptions were made, and experimental studies were carried out on the formation
control of the mobile robot system using Turkish NLP. Instead of very complex Turkish
sentences, sentence structures containing one or more commands were used. The functional
status of the leader and follower robots in formation control was initially determined as
leader, follower 1, follower 2, . . . follower n. Multi-robot systems using the leader–follower
control method have at least one leader, with the rest of the agents as followers. The control
design is such that the followers monitor the leader’s position and follow the leader’s pre-
dicted trajectory. The leader and followers do not fail, and the followers follow the leader
by communicating. There is no dynamic obstacle to the leader and followers. Two types
of supervision are required here. One maintains the specified distance between the leader
and the follower, and the other keeps the relative angle between them. A PID controller
was used as the control method. PID coefficients were obtained via the trial-and-error
method as follows: Kp = 1; Ki = 0.5; Kd = 0.5. These coefficients were used for both leaders
and followers.

The leader–follower approach was used for formation control, and the platoon ap-
proach was used as the formation type. In our study, a platoon formation was adopted
as the formation type that expresses the positioning of the robots. In the platoon driving
approach, each robot receives information only from the previous one, and all mobile
robots move in a line as if they were a single object. According to the decision-making
approach, a distributed system is preferred.

The leader follows a set trajectory. The followers have to maintain a desired relative
distance and orientation between them. In the environment used, the positions of the
obstacles are fixed. The radius of the obstacle is taken as r = 1 m, and the distance to
approach the obstacle is taken as ∆g = 1 m at target positions, such as in front of and behind
the obstacle. In this case, the robot can approach the center of the target up to 2 m. This is
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valid for the target location. The robot can be closer to other obstacles as it moves forward.
The distance between the leader robot and the follower is variable. The robot’s maximum
speed was set to 0.22 m/s, and its maximum rotation speed was 2.8 rad/s. Due to page
limitations, only two test results are presented. These are in the form of a Turkish sentence
containing one direct command and two interlinked statements in a sentence.

5.1. Case 1: “Lider Kırmızı Engelin Arkasına Git (“Go behind the Red Obstacle”)” Command

“Lider kırmızı engelin arkasına git (“Go behind the red obstacle”)” was given in
Turkish to the leader of a traveling robot group of three robots. The command was first
decomposed into its elements using a NLP:

“subject/lider (“leader”)”;
“complement/kırmızı engelin arkası (“behind the red obstacle”)”;
“predicate/git (“go”)”.
After parsing, the command structures obtained were applied to the robot system, and

the necessary actions were requested. While the leader follows the prescribed trajectory, the
other follower robots follow the leader in a platoon formation. This application was carried
out considering two different initial conditions to examine whether the initial conditions
affected the robots’ behavior. The initial positions of the robots are given in Table 2.

Table 2. Initial coordinates of robots for Case 1.

Robot Name X Y

Leader 2 0
Follower 1 3 0
Follower 2 4 0

According to the first initial conditions of the robots, the leader and followers depend on
the command given to the leader. The robots realized the predicted trajectory, as shown in
Figure 12. As seen in Figure 12, the leader robot planned its path according to the command
given to it and went to the target location. When the position and orientation errors of the
leader robot are analyzed, it can be observed that the error increases at node transitions. Still,
when the target node is reached, the errors approach zero. Initially, there is a distance of
one meter between the robots. While the leader robot makes sharper turns at some points
according to the given trajectory, since the followers follow their leader, they cannot keep up
with these turns properly and follow the leader with more deviations than in other places.
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5.2. Case 2: “Lider Beyaz Engelin Arkasına Git Sonra Yeşil Engelin Önüne Git (“Leader Go behind
the White Obstacle and then go in Front of the Green Obstacle”)” Command

There is a two-step process here. The robots have to pass behind the white obstacle
and move from there to the front of the green obstacle. The target point is in front of the
green obstacle.

“Lider beyaz engelin arkasına git sonra yeşil engelin önüne git (“Leader go behind
the white obstacle and then go in front of the green obstacle”)” was given in Turkish to the
leader of the traveling robot group of three robots. The command was first decomposed
into its elements using NLP:

First action:
“subject/lider (“leader”)”;
“complement/beyaz engelin arkası (“behind the white obstacle”)”;
“predicate/git (“go”)”.
Second action:
“subject/lider (“leader”)”;
“complement/yeşil engelin arkası (“in front of the green obstacle”)”;
“predicate/git (“go”)”.
The subject of the command is the leader robot. Here, a conjunction is used to indicate

sequence and time. The location information is behind the white obstacle and in front of
the green obstacle. The predicate of the sentence is the action of going. The data structure
used for this process is given in Figure 4. This decomposition was then applied to the robot
system, and they were required to carry out the task accordingly. In this experiment, the
starting positions of the robots were taken, as shown in Table 2. While the leader followed
the prescribed trajectory, the other follower robots followed the leader in a platoon logic.
Figure 13 shows the position–path graph of this experiment.
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Due to differences in the initial conditions, followers 1 and 2 tried to follow the leader
using a shorter route without passing through the leader’s initial position. A similar
situation occurs when the leader made a sharp turn. The position and orientation of the
paths taken by the leader and the followers concerning the predicted initial positions can
be clearly seen in the position–path graph.
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6. Discussion

This study focuses on using Turkish Natural Language Processing for the formation
control of mobile robot systems, particularly focusing on the leader–follower approach.
Through experiments conducted in the Gazebo simulation environment with Turtlebot
3 Burger robots, this study demonstrates the effectiveness of interpreting and executing
Turkish commands for navigation and formation control. In this study, by preprocessing
natural Turkish commands and employing path-planning algorithms, the robots success-
fully navigate to desired locations and maintain their formation in multi-robot scenarios.
The agglutinative structure of the Turkish language presents challenges in the context
of NLP for mobile robot control. The grammar structure of Turkish may be defined by
its extensive use of suffixes, which are appended to root words, especially to verbs, to
convey complex meanings and grammatical functions. This agglutinative structure has
highly variable and context-dependent command structures, making it challenging to
parse and interpret commands for robot control accurately. Moreover, Turkish exhibits
rich morphological features, such as case markings and verb conjugations, which further
complicate language-understanding processes. As a result, developing robust and reliable
approaches for preprocessing Turkish commands and extracting meaningful information
for NLP applications poses significant difficulties. Addressing these challenges necessi-
tates a comprehensive understanding of Turkish grammar and morphology to increase
robot–human interaction and develop innovative NLP approaches tailored to agglutinative
languages’ intricacies. By integrating language-processing capabilities into multiple-robot
formation control, we propose an approach for more intuitive human–robot interaction,
potentially expanding the accessibility and usability of robotic technology in Turkish lan-
guage applications. Furthermore, this study establishes a foundation for future research
in Turkish NLP applications and robot control aimed at enhancing the robustness and
versatility of natural language-based control systems for mobile robots.

7. Conclusions

In this study, formation control of a mobile robot system was achieved using Turkish
Natural Language Processing. The emphasis was on leader–follower formation control
based on natural language. A Gazebo simulation was used as the experimental environ-
ment, and a Turtlebot 3 Burger was used as the mobile robot. Our main motivation in
this paper was not to develop a new Turkish morphological analyzer or a new swarm
formation algorithm. As mentioned before, our primary motivation was to perform robot
formation control using a language like Turkish, which was challenging to analyze in this
study. Another key point of our work is that it can be embedded in multi-robot systems.
In this study, Turkish commands could be received both verbally and in writing. These
commands could be in front of an obstacle, behind an obstacle, or as a combination of
two different expressions due to the test environment. However, various combinations
can be used in the proposed method. Creating an intermediate data structure situated
between natural language commands and robot system control makes these commands
meaningful for the robot. The commands were first separated into their components and
then transformed into the necessary structures according to their components. The target
location was extracted from the location information obtained, and the coordinates of the
target location were determined by making the necessary calculations. A suitable path
for the robots to follow to the target coordinate was planned using the A* algorithm. This
path was then tracked using a designed PID controller. Experiments were first conducted
with a single robot. After a single robot successfully navigated to the desired location,
experimental studies with multiple robots were performed and are presented in this paper.
The leader–follower approach was used in multiple robots. A platoon formation was
used as the robot formation. It was observed that the robots reached the target point by
maintaining the desired distance between each other. In this study, it was ensured that the
mobile robot system was controlled using the Turkish natural language. According to our
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literature review, this study is at the forefront of controlling mobile robot systems using the
Turkish natural language.
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36. Safaya, A.; Kurtuluş, E.; Göktoğan, A.; Yuret, D. MUKAYESE: Turkish NLP Strikes Back. In Proceedings of the Annual Meeting of

the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022.
37. Yucebas, S.; Tintin, R. Govdeturk: A Novel Turkish Natural Language Processing Tool for Stemming, Morphological Labelling

and Verb Negation. Int. Arab. J. Inf. Technol. 2021, 18, 148–157. [CrossRef]
38. Aleçakır, H.; Bölücü, N.; Can, B. TurkishDelightNLP: A Neural Turkish NLP Toolkit. In Proceedings of the NAACL 2022—2022

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Proceedings of the Demonstrations Session, Online, 10–15 July 2022.

39. Tohma, K.; Okur, H.I.; Kutlu, Y.; Sertbas, A. Sentiment Analysis in Turkish Question Answering Systems: An Application of
Human-Robot Interaction. IEEE Access 2023, 11, 66522–66534. [CrossRef]

40. Tzafestas, S.G. Mobile Robot Control and Navigation: A Global Overview. J. Intell. Robot. Syst. Theory Appl. 2018, 91, 35–58.
[CrossRef]

41. Panigrahi, P.K.; Bisoy, S.K. Localization Strategies for Autonomous Mobile Robots: A Review. J. King Saud Univ. Comput. Inf. Sci.
2022, 34, 6019–6039. [CrossRef]

42. Filliat, D.; Meyer, J.A. Map-Based Navigation in Mobile Robots: I. A Review of Localization Strategies. Cogn. Syst. Res. 2003, 4,
243–282. [CrossRef]

43. Laumond, J.P.; Jacobs, P.E.; Taïx, M.; Murray, R.M. A Motion Planner for Nonholonomic Mobile Robots. IEEE Trans. Robot. Autom.
1994, 10, 577–593. [CrossRef]

44. Huang, Z.; Chu, D.; Wu, C.; He, Y. Path Planning and Cooperative Control for Automated Vehicle Platoon Using Hybrid
Automata. IEEE Trans. Intell. Transp. Syst. 2019, 20, 959–974. [CrossRef]

45. Duchon, F.; Babinec, A.; Kajan, M.; Beno, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified A Star Algorithm for a
Mobile Robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]

46. Sanchez-Sanchez, A.G.; Hernandez-Martinez, E.G.; González-Sierra, J.; Ramírez-Neria, M.; Flores-Godoy, J.J.; Ferreira-Vazquez,
E.D.; Fernandez-Anaya, G. Leader-Follower Power-Based Formation Control Applied to Differential-Drive Mobile Robots. J.
Intell. Robot. Syst. Theory Appl. 2023, 107, 6. [CrossRef]

47. Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots, 2nd ed.; MIT Press: Cambridge, MA,
USA, 2011; Volume 23.

48. Burgard, W.; Moors, M.; Fox, D.; Simmons, R.; Thrun, S. Collaborative Multi-Robot Exploration. In Proceedings of the
Proceedings—IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; Volume 1.

https://doi.org/10.1016/j.artint.2015.02.004
https://doi.org/10.1016/S0967-0661(01)00066-1
https://doi.org/10.1007/s40998-019-00286-4
https://doi.org/10.3390/electronics8101077
https://doi.org/10.1109/TFUZZ.2006.879998
https://doi.org/10.3390/app9153057
https://doi.org/10.1080/01969722.2020.1770502
https://doi.org/10.1126/science.aaa8685
https://www.ncbi.nlm.nih.gov/pubmed/26185244
https://doi.org/10.1016/j.neucom.2021.05.103
https://doi.org/10.1080/23270012.2020.1756939
https://doi.org/10.1007/s10579-014-9267-2
https://doi.org/10.34028/IAJIT/18/2/3
https://doi.org/10.1109/ACCESS.2023.3291592
https://doi.org/10.1007/s10846-018-0805-9
https://doi.org/10.1016/j.jksuci.2021.02.015
https://doi.org/10.1016/S1389-0417(03)00008-1
https://doi.org/10.1109/70.326564
https://doi.org/10.1109/TITS.2018.2841967
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.1007/s10846-022-01796-w


Appl. Sci. 2024, 14, 3722 21 of 21

49. Sugar, T.; Kumar, V. Control and Coordination of Multiple Mobile Robots in Manipulation and Material Handling Tasks. In
Experimental Robotics VI; Springer: London, UK, 2008.

50. Fierro, R.; Das, A.; Spletzer, J.; Esposito, J.; Kumar, V.; Ostrowski, J.P.; Pappas, G.; Taylor, C.J.; Hur, Y.; Alur, R.; et al. A Framework
and Architecture for Multi-Robot Coordination. Int. J. Robot. Res. 2002, 21, 977–995. [CrossRef]

51. Chen, X.; Zhang, P.; Du, G.; Li, F. A Distributed Method for Dynamic Multi-Robot Task Allocation Problems with Critical Time
Constraints. Rob. Auton. Syst. 2019, 118, 31–46. [CrossRef]

52. Litimein, H.; Huang, Z.Y.; Hamza, A. A Survey on Techniques in the Circular Formation of Multi-Agent Systems. Electronics 2021,
10, 2959. [CrossRef]

53. Balch, T.; Arkin, R.C. Behavior-Based Formation Control for Multirobot Teams. IEEE Trans. Robot. Autom. 1998, 14, 926–939.
[CrossRef]

54. Li, D.; Ge, S.S.; He, W.; Ma, G.; Xie, L. Multilayer Formation Control of Multi-Agent Systems. Automatica 2019, 109, 108558.
[CrossRef]

55. Lewis, M.A.; Tan, K.H. High Precision Formation Control of Mobile Robots Using Virtual Structures. Auton. Robot. 1997, 4,
387–403. [CrossRef]

56. Chen, Y.Q.; Wang, Z. Formation Control: A Review and a New Consideration. In Proceedings of the 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, Edmonton, AB, Canada, 2–6 August 2005.

57. Swaroop, D.; Karl Hedrick, J.; Choi, S.B. Direct Adaptive Longitudinal Control of Vehicle Platoons. IEEE Trans. Veh. Technol. 2001,
50, 150–161. [CrossRef]

58. Velasco-Villa, M.; Cruz-Morales, R.D.; Rodriguez-Angeles, A.; Domínguez-Ortega, C.A. Observer-Based Time-Variant Spacing
Policy for a Platoon of Non-Holonomic Mobile Robots. Sensors 2021, 21, 3824. [CrossRef] [PubMed]

59. Delimpaltadakis, I.M.; Bechlioulis, C.P.; Kyriakopoulos, K.J. Decentralized Platooning with Obstacle Avoidance for Car-like
Vehicles with Limited Sensing. IEEE Robot. Autom. Lett. 2018, 3, 835–840. [CrossRef]

60. Hu, B.B.; Zhang, H.T.; Yao, W.; Ding, J.; Cao, M. Spontaneous-Ordering Platoon Control for Multirobot Path Navigation Using
Guiding Vector Fields. IEEE Trans. Robot. 2023, 39, 2654–2668. [CrossRef]

61. Li, Y.; Tang, C.; Li, K.; He, X.; Peeta, S.; Wang, Y. Consensus-Based Cooperative Control for Multi-Platoon under the Connected
Vehicles Environment. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2220–2229. [CrossRef]

62. Caruntu, C.F.; Copot, C.; Lazar, C.; Keyser, R.D. Decentralized Predictive Formation Control for Mobile Robots without
Communication. In Proceedings of the IEEE International Conference on Control and Automation, ICCA, Edinburgh, UK,
16–19 July 2019.

63. Yan, M.; Ma, W.; Zuo, L.; Yang, P. Distributed Model Predictive Control for Platooning of Heterogeneous Vehicles with Multiple
Constraints and Communication Delays. J. Adv. Transp. 2020, 2020, 4657584. [CrossRef]

64. Venzano, E.; Pousseur, H.; Victorino, A.C.; Garcia, P.C. Motion Control for Aerial and Ground Vehicle Autonomous Platooning. In
Proceedings of the IEEE 17th International Conference on Advanced Motion Control (AMC), Padova, Italy, 18–20 February 2022.

65. Karahan, L. Türkçede Söz Dizimi; Akçağ Yayınları: Ankara, Turkey, 2000.
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