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Abstract: The thin-walled rings of the RV reducer main bearings are prone to structural elastic
deformation, which can significantly change the bearing mechanical characteristics. According to the
actual assembly state of the RV reducer, the simulation model of the planetary frame–main bearings–
pin gear housing is established considering the ring deformation. The model was used to calculate
and comparatively analyze the ring deformation and contact characteristics of thin-walled bearings
under rigid and flexible conditions, on the basis of which the mechanism of ring deformation was
described, and the effects of load conditions, ring thickness and radial clearance on ring deformation,
flexible contact characteristics, and ultimate carrying capacity were analyzed. The results show
that the distribution of contact loads is the main factor affecting the ring deformation. The ring
deformation can optimize the bearing contact characteristics, and the greater the deformation, the
more pronounced the optimization effect. However, excessive ring deformation makes the contact
ellipse more susceptible to truncation, which, in turn, reduces the ultimate carrying capacity. This
study indicates a 38.2% decrease in the carrying capacity of the flexible ring model compared to
that of the rigid ring model. In this paper, the effect of ring deformation on bearing mechanical
characteristics is deeply discussed. The research results have important guiding significance for the
structural optimization design of thin-walled bearings.

Keywords: RV reducer; thin-walled angular contact ball bearing; ring deformation; contact
characteristics; ultimate carrying capacity

1. Introduction

The RV reducer finds extensive applications within industrial robotics [1]. A pair
of thin-walled angular contact ball bearings are installed on the pin gear housing and
planetary frame to bear the full external load of the reducer. The main bearing and pin
gear housing are usually thin-walled structures, which are prone to elastic deformation,
resulting in changes in bearing contact characteristics. Consequently, it is critical to develop
a bearing model incorporating structural elastic deformation considerations and analyze
the effect of various factors on the ring deformation and flexible contact characteristics.

The traditional bearing analysis theory is based on the rigid ring hypothesis, which
holds that elastic deformation primarily takes place within the ball–raceway contact area,
while the overall shape of the ring does not change [2]. This hypothesis provides an
excellent approximate method for bearing analysis with large ring thicknesses. For instance,
Zhang et al. [3] proposed a critical criterion for the ball–raceway separation. They indicated
that the ball separates from the inner raceway and only contacts the outer raceway due
to the inertial effect, which causes the difference in the contact state between the ball and
the inner raceway in the static and quasi-static models under the same load condition.
Xie et al. [4] studied the influences of load conditions and structural parameters on the
moment rigidity and rotation accuracy of the main bearings for the RV reducer. Deng
et al. [5] analyzed the force state of the main bearings for the RV reducer under extreme
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load conditions. Regarding carrying capacity, allowable contact stress [6], fatigue life [7,8],
deflection, and elliptical truncation [9] are usually used to characterize the carrying capacity.
Harris et al. [10] propose a method for computing the axial carrying capacity in cases where
the contact ellipse fails to surpass the raceway rib, but their method only applies to purely
axial force conditions. Xu et al. [11] improved this method and applied it to arbitrary
working conditions, then studied the influences of geometric parameters and radial force
on the carrying performance of the bearing. Wang et al. [12] explored the influence of
the elliptical truncation rate on the bearing contact characteristics. The findings indicate
that elliptical truncation leads to a relocation of the ball–raceway maximum contact stress
position from the contact center to the raceway edge, and a 10% elliptical truncation would
lead to a 50% reduction in fatigue life. Gao et al. [13] used the maximum contact stress to
characterize the carrying capacity. They compared the sensitivity of different structural
parameters influencing the carrying capacity. He et al. [14] investigated how the mesh size
of the finite element model impacted the carrying capacity. Their findings indicate that for
simulation results closest to theoretical predictions, the mesh size should not exceed half of
the short semi-axis length of the Hertzian contact ellipse. However, previous researchers
only studied the carrying capacity of bearings under rigid conditions, with little attention
paid to the effect of ring deformation on carrying capacity.

Contemporary advanced bearing technology toward the direction of thin walls and
component integration, and some studies indicate that ring deformation can change the
bearing contact characteristics [15,16]. Harris et al. [17] were the first to consider the
influence of ring deformation. They used the outer ring two-point support condition
to study planetary gear bearings. They found that the ring deformation worsens the
ball–raceway contact state, significantly reducing bearing fatigue life. Cavallaro et al. [18]
described the ring deformation based on the Roark formula and introduced it into the
bearing balance equation. They found that structural deformation causes the expansion of
the loaded zone and a decrease in maximum contact stress. Wagner et al. [19] found that
compared to the rigid outer ring, the elastic deformation of the ring amplifies the absolute
radial displacement of the inner ring while diminishing its radial stiffness. Liu et al. [20]
demonstrated that structural elastic deformation significantly affects bearing vibration. Hao
et al. [21] created a simulation model for the bearing system to investigate how temperature
influenced ring displacement. Their findings indicate that the outer ring displacement is
influenced by the structure of the bearing housing, and the ring displacement exhibits a
wavy pattern due to ring deformation. Mao et al. [22] analyzed the impact of the clearance
fit on the outer ring deformation. The results indicate that an appropriate clearance fit can
improve the bearing contact characteristics and lubrication state and extend the fatigue life.
Unfortunately, this study ignored the structural elasticity of the bearing housing. Wang
et al. [23] applied the deformation coordination theory to derive the deformation rules of
the ring under different assembly states of the shaft and ring. Furthermore, they concluded
that cage flexibility could alleviate the skid phenomenon [24]. However, the above studies
are focused on radial bearings, with few investigations on angular contact ball bearings,
which are primarily subjected to axial loads. Moreover, the mechanism of ring deformation
and the influence of ring deformation on flexible contact characteristics have not been fully
investigated.

In this paper, according to the actual assembly state and restraint conditions of the RV
reducer, a simulation model of the planetary frame–main bearings–pin gear housing, which
can fully consider structural elastic deformation, is established. Firstly, the ring deformation
and contact characteristics of the two main bearings were comparatively analyzed under
normal operating conditions of the RV reducer. Then, the effect of load conditions and
bearing geometric parameters on ring deformation, ball–raceway contact state, the relative
ratio of the maximum load, and ultimate carrying capacity under rigid ring and flexible
ring models are given.
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2. Theoretical Analysis
2.1. Mathematical Model

In this study, the bearing outer ring is in a fixed state, while the inner ring is rotating.
Figure 1 illustrates the relative displacement relationship of the curvature centers of the
inner and outer raceways before and after the bearing is loaded. Before the bearing is
loaded, there is no contact deformation between the ball and the raceway, and the distance
A between the curvature centers of the inner and outer raceways can be expressed as

A = ( fi + fo − 1)Dw (1)

where fi and fo are the curvature coefficients of the inner and outer raceways, respectively,
and Dw is the diameter of the ball.
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After the bearing is loaded, the curvature center of the inner raceway changes relative
to the curvature center of the outer raceway, and the curvature center of the inner raceway
moves from Oi to O′

i . According to the geometric relationship in Figure 1, the distance S
between the curvature centers of the inner and outer raceways at any ball position φ can be
expressed as

S =

√
(A sin αo + δa +ℜiθ cos φ)2 + (A cos αo + δr cos φ)2 (2)

where αo is the initial contact angle; δa, δr, θ are the axial, radial, and angular relative
displacements of the inner and outer ring; ℜ = dm/2 + (fi − 0.5)Dwcosαo; dm is the pitch
diameter of the bearing.

According to Equations (1) and (2), the ball–raceway total contact deformation δn can
be expressed as

δn = δi + δo = S − A =

√
(A sin αo + δa +ℜiθ cos φ)2 + (A cos αo + δr cos φ)2 − A (3)

where δi, δo are the contact deformations of the ball–inner raceway and the ball–outer
raceway.

According to the load-displacement relationship of the ball–raceway contact, the
expression of the ball–raceway contact load Q is as follows:{

Q = 0, δn ≤ 0
Q = Knδn, δn > 0

(4)

where Kn is the load-displacement coefficient, and n = 3/2 for ball bearings. When δn ≤ 0,
the ball separates from the raceway, while when δn > 0, the ball makes contact with the
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raceway. The specific expression for the ball–raceway contact load at any azimuth angle φ
can be obtained by substituting Equation (3) into Equation (4):

Q = Kn

(√
(A sin αo + δa +ℜiθ cos φ)2 + (A cos αo + δr cos φ)2 − A

)1.5
(5)

According to the geometric relationship in Figure 1, the expression of the ball–raceway
contact angle at any azimuth angle φ is as follows:

sin α = A sin αo+δa+ℜiθ cos φ√
(A sin αo+δa+ℜiθ cos φ)2+(A cos αo+δr cos φ)2

cos α = A cos αo+δr cos φ√
(A sin αo+δa+ℜiθ cos φ)2+(A cos αo+δr cos φ)2

tan α = A sin αo+δa+ℜiθ cos φ
A cos αo+δr cos φ

(6)

Assuming that the axial force, radial force, and moment applied to the bearing are
Fa, Fr, and M, respectively, and that the external load applied to the inner ring should be
balanced with the load applied to the inner ring by the balls, then, the balance equation of
the inner ring can be written as

Fa = ∑ Qk sin αk
Fr = ∑ Qk cos φk cos αk
M = dm

2 ∑ Qk cos φk sin αk

(7)

where Qk and αk represent the ball–raceway contact load and contact angle at the angular
position φk, respectively, and subscript k represents the kth ball.

However, due to the influence of substantial external forces, the bending deformation
of thin-walled bearing rings is particularly significant, approaching or even exceeding the
Hertzian contact deformation. In this case, the influence of radial deflection at arbitrary
ring positions on the contact deformation must be considered. Figure 2 shows the radial
deflections wφo and wφi caused by the ring deformation at the arbitrary azimuth φ. Then,
the ball–raceway radial deflection is

wφ = wφo − wφi (8)
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According to Equations (2) and (8), the ball–raceway total radial deformation δφr at
any position φ of the ring under the flexible ring model is

δφr = δφr − wφ = A cos αo + δr cos φ − wφ (9)

where δφr is the radial displacement of the curvature center of the inner ring relative to the
curvature center of the outer ring after the bearing is loaded under the rigid ring condition.
According to Equation (9), the key to obtaining the bearing contact characteristics under
the flexible ring condition is to solve the ball–raceway radial deflection wφ at any position.

Bearing ring bending deformation can be considered a planar problem. According
to the thin-walled ring plane bending theory [25], the differential equation for the radial
deflection deformation of the ring at the arbitrary azimuth φ is given by

d2w
dφ2 + w = − M

EI
R2 (10)

where w is the bending radial displacement of the thin-walled ring relative to the center
of the circle; M is the bending moment that causes the curvature of the circle to change
(M = Q

2

[
cos φ

sin(∆ϕ/2) −
2

∆ϕ

]
R; Q is the ball–raceway contact load; ∆ϕ is the ball equidistant

angle; E is the elastic modulus of the material; I is the section moment of inertia in bending
(I = π/64

(
D4 − D′4); D is the outer diameter of the outer ring; D′ is the inner diameter of

the outer ring), and R is the pitch radius of the ring.
The thin-walled ring produces small deflection deformation under external force, and

the displacement at any point on the center line of the ring can be decomposed into a radial
displacement w and a tangential displacement v, as illustrated in Figure 3. Pr is the radial
force; Pt is the tangential force; ϕQ

k is the azimuthal angle of the load, and the subscript k
represents different load positions in Figure 3. The expression for the trigonometric series
of radial displacement and tangential displacement is given by

w(φ) =
n=∞
∑

n=2
(an cos(nφ) + bn sin(nφ))

v(φ) =
n=∞
∑

n=2
(an cos(nφ)− bn sin(nφ))

(11)

where a and b are the major and minor axes of contact deformation caused by deflection
deformation, respectively, and n is a constant.
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The ring is initially in equilibrium, and with the effect of the radial force Pr and
the tangential force Pt, the ring deviates from the equilibrium position and produces an
imaginary displacement. Thus, the imaginary displacement along the radial direction at
the point of force action can be described as

∆w =
n=∞

∑
n=2

(
∆an cos

(
nϕQ

k

)
+ ∆bn sin

(
nϕQ

k

))
(12)

∆v =
1
n

n=∞

∑
n=2

(
∆an cos

(
nϕQ

k

)
− ∆bn sin

(
nϕQ

k

))
(13)

Suppose the ring receives l radial force and j tangential force; then the work executed
by all external forces is as follows:

∆W =
k=l
∑

k=1
Prk

(
∆an cos

(
nϕQ

k

)
+ ∆bn sin

(
nϕQ

k

))
+

1
n

k=j
∑

k=1
Ptk

(
∆an cos

(
nϕQ

k

)
− ∆bn sin

(
nϕQ

k

)) (14)

The strain energy of the ring due to deflecting deformation can be written as

U =
∫ 2π

0

M2R
2EI

dφ (15)

By substituting Equations (10) and (12) into Equation (15), the strain energy can be
represented by the following equation:

U =
πEI
2R3

n=∞

∑
n=2

(
n2 − 1

)(
a2

n + b2
n

)
(16)

According to the principle of imaginary displacement, the change in strain energy of
the ring is equal to the work carried out by the external force; then,

∂U
∂an

∆an +
∂U
∂bn

∆bn = ∆W (17)

By incorporating Equations (14) and (16) into the equation provided above, the expres-
sion of an and bn can be derived as follows:

an = R3

πEI(n2−1)2

(
l

∑
k=1

Prk cos
(

nϕQ
k

)
+ 1

n

j
∑

k=1
Ptk sin

(
nϕQ

k

))

bn = R3

πEI(n2−1)2

(
l

∑
k=1

Prk sin
(

nϕQ
k

)
− 1

n

j
∑

k=1
Ptk cos

(
nϕQ

k

)) (18)

The radial displacement wp caused by the radial force and the radial displacement wt
caused by the tangential force are, respectively,

wp(φ) =
R3

πEI

l

∑
k=1

∞

∑
n=2

Prk cos
(

nϕQ
k − nφ

)
(n2 − 1)2 (19)

wt(φ) =
R3

πEI

j

∑
k=1

∞

∑
n=2

Ptk sin
(

nϕQ
k − nφ

)
n(n2 − 1)2 (20)

From the above analysis, the radial deformation wpo and wto of the ball–outer ring
and the radial deformation wpi and wti of the ball–inner ring, which are caused by the
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ring deformation, can be obtained. Therefore, the total contact deformation from the ring
deformation at arbitrary azimuth angle φ is

wφ = wφo − wφi = wpo + wto − wpi − wti

= R3

πEIo

 l
∑

k=1

∞
∑

n=2

Po
rk cos

(
nϕ

Po
r

k −nφ
)

(n2−1)2 +
j

∑
k=1

∞
∑

n=2

Po
tk sin

(
nϕ

Po
t

k −nφ

)
n(n2−1)2

−
R3

πEIi

 l
∑

k=1

∞
∑

n=2

Pi
rk cos

(
nϕ

Pi
r

k −nφ

)
(n2−1)2 +

j
∑

k=1

∞
∑

n=2

Pi
tk sin

(
nϕ

Pi
t

k −nφ

)
n(n2−1)2


(21)

where Io and Ii are the bending moments of inertia of the outer and inner rings, respectively;
Po

rk, Po
tk, Pi

rk, and Pi
tk represent the radial and tangential forces on the outer and inner rings.

To sum up, considering the ring deformation, the ball–raceway total radial contact
deformation is

δφr = δφr − wφ = A cos αo + δr cos φ−

R3

πEIo

 l
∑

k=1

∞
∑

n=2

Po
rk cos

(
nϕ

Po
r

k −nφ
)

(n2−1)2 +
j

∑
k=1

∞
∑

n=2

Po
tk sin

(
nϕ

Po
t

k −nφ

)
n(n2−1)2

+
R3

πEIi

 l
∑

k=1

∞
∑

n=2

Pi
rk cos

(
nϕ

Pi
r

k −nφ

)
(n2−1)2 +

j
∑

k=1

∞
∑

n=2

Pi
tk sin

(
nϕ

Pi
t

k −nφ

)
n(n2−1)2


(22)

The ring deformation leads to a change in the ball–raceway total contact deformation.
Based on Equations (21) and (22), the geometric equation in the bearing rigid ring model is
updated, where the expression of the distance between the curvature centers of the inner
and outer raceway can be updated as follows:

S′ =
√
(A sin αo + δa +ℜiθ cos φ)2 + (A cos αo + δr cos φ − wφ)

2 (23)

The expression of the ball–raceway total contact deformation can be updated as fol-
lows:

δ′n = δ′ i + δ′o =
√
(A sin αo + δa +ℜiθ cos φ)2 + (A cos αo + δr cos φ − wφ)

2 − A (24)

The expression of the ball–raceway contact angle can be updated as follows:
sin α′ = A sin αo+δa+ℜiθ cos φ√

(A sin αo+δa+ℜiθ cos φ)2+(A cos αo+δr cos φ−wφ)
2

cos α′ =
A cos αo+δr cos φ−wφr2√

(A sin αo+δa+ℜiθ cos φ)2+(A cos αo+δr cos φ−wφ)
2

tan α′ = A sin αo+δa+ℜiθ cos φ
A cos αo+δr cos φ−wφ

(25)

It is worth noting that after considering the ring deformation, the inner ring equilib-
rium equations should also include the ring deformation at each ball position φk, and thus,
Equation (7) is updated to

Fa = ∑ Qk sin αk
Fr = ∑ Qk cos φk cos αk
M = dm

2 ∑ Qk cos φk sin αk

wφk −
(

wφok − wφik

)
= 0, k = 1, 2, · · · , z

(26)
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Model Solution

The rigid ring model is composed of geometric Equations (1)–(3), Hertz contact Equa-
tion (5), and inner ring equilibrium Equation (7). This model is a set of simultaneous
nonlinear equations with unknown variables (axial displacement δa, radial displacement δr,
and angular displacement θ). The flexible ring model should also consider the ring bending
deformation wφ of the ring at each rolling element position and its influence on the bearing
contact characteristics. This model is solved by the Newton–Raphson iterative algorithm,
and the detailed iterative process is shown in Figure 4. Firstly, the geometric parameters,
material parameters, and working condition parameters of the bearing are input, and then
the global displacement iteration variables are initialized. The ball–raceway contact defor-
mation is calculated according to the geometric relationship, and the ball–raceway contact
state is judged. Then, the ball–raceway contact load is calculated according to the Hertz
contact theory. The above results are substituted into the inner ring equilibrium equations,
and the Newton–Raphson iterative algorithm is used to solve the inner ring equilibrium
equations. Finally, the bearing contact characteristics under the rigid ring conditions are
obtained. Based on the rigidity results, the ring bending deformation is analyzed. Then,
the contact deformation, contact load, contact angle, and inner ring equilibrium equations
are updated. Finally, the above iterative steps are repeated to obtain the ring deformation
and bearing contact characteristics under the flexible ring condition.
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2.2. Analysis of the Carrying Capacity

Elliptical truncation is not negligible in bearing performance analysis, and there are
few studies on the effect of ring deformation on elliptical truncation [26]. The elliptical
truncation is used as the judging condition of the carrying capacity of bearings in this paper,
and the influences of radial force and geometric parameters on the axial carrying capacity
of bearings are analyzed under rigid ring and flexible ring models.

Figure 5 illustrates the geometric relationship between the ball–raceway contact ellipse
and the raceway rib. Under the action of axial force, the contact ellipse moves toward the
raceway rib until elliptical truncation occurs. The expression for the angle ϕi/o associated
with the larger rib of the raceway is

ϕi/o = arccos
(

1 − hi/o
ri/o

)
(27)
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where hi/o represents the large rib height of the inner or outer raceway; ri/o represents
the inner or outer raceway groove curvature radius. The expression for the angle φaij/oj
associated with the semimajor axis of the contact ellipse is

φai/o = arcsin
(

ai/o
ri/o

)
(28)

where a is the semimajor axis of the contact ellipse; the calculation method can be referred
to the reference [10].
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The ellipse truncation rate is usually used to characterize the degree of the ellipse
truncation. The expression of the ellipse truncation rate is as follows:

Rij/oj =
αij/oj + φaij/oj − ϕi/o

2φaij/oj
× 100% (29)

where αi/o is the ball–raceway contact angle; the contact ellipse is truncated when Rij/oj > 0.
However, the contact ellipse is not truncated when Rij/oj < 0. In addition, when Rij/oj = 0,
the contact ellipse is not truncated, and the axial force at this time is the axial carrying
capacity of the bearing. It is worth noting that the ring deformation can cause a change in
αij/oj, which affects the carrying capacity.

2.3. Simulation Model of the RV Reducer Main Bearings

Figure 6 illustrates the assembly diagram of the main bearing for the RV reducer.
The bearing outer ring is fixed to the pin gear housing, and the inner ring interferes with
the planetary frame. The bolt holes are evenly distributed on the pin gear housing to fix
the reducer. Figure 7 shows that the flexible ring model is established based on Romax
software(2022) according to the actual structure of the RV reducer. The outer rings are
connected with the pin gear housing by RBE3. Fixed constraints are added to all bolt holes
on the pin gear housing. The force and speed are applied at the coupling point, which is
located at the midpoint of the line connecting the centers of the two main bearings. The
main parameters of the thin-walled angular contact ball bearing used in this study are
given in Tables 1 and 2. The data in Tables 1 and 2 are provided by the BH Technology
Group Co., Ltd. (Taizhou, China)
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Table 1. Geometry parameters of the thin-walled angular contact ball bearing.

Parameter Value

Inner race diameter (mm) 115

Outer race diameter (mm) 145

Curvature coefficient of the inner raceway 0.525

Curvature coefficient of the outer raceway 0.515

Ball diameter (mm) 9.525

Ball number 37

Bearing width (mm) 15

Number of bolt holes 16

Pitch diameter (mm) 130

Pitch diameter of bolt hole (mm) 175

Left rib height of inner raceway (mm) 3.746

Right rib height of outer raceway (mm) 4.319

Bearing initial contact angel (◦) 40
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Table 2. Material parameters of the thin-walled angular contact ball bearing.

Component Modulus of Elasticity E (GPa) Poisson’s Ratio ν Density ρ (kg/m3)

Planetary frame 210 0.29 7850

Inner and outer ring 205 0.3 7806

Ball 203 0.29 7810

Pin gear housing 169 0.286 7120

3. Results and Discussion
3.1. Model Validation

The results of the flexible ring model are contrasted with those obtained from the
Harris rigid hypothesis model to confirm the validity of the proposed model [10]. The
bearing geometric parameters remain unchanged, and the model approaches the conditions
of rigid constraints by increasing the wall thickness and applying the fixed constraints on
all the outer surfaces of the pin gear housing. The comparison results show that the ring
shape calculated by the flexible ring model is close to the standard circle, and the load
distribution curve exhibits an excellent agreement with that of the Harris model, as shown
in Figure 8.
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3.2. Comparison of Rigid and Flexible Ring Model Results

The ring deformation and contact characteristics of the two main bearings are com-
parative analyses under the normal operating conditions of the RV reducer. As seen in
Figure 9, to facilitate the characterization of the ring deformation, the Y-axis denotes the
vertical direction, while the X-axis represents the horizontal direction. The ring is deformed
irregularly under the action of the ball–raceway contact loads, and the deformation level
is in the same micrometer scale as the ball–raceway contact deformation, which further
proves the necessity and correctness of the flexible ring model, as shown in Figure 10.
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The forces in the y and z directions in Figure 10 are external load conditions for these
specific results. Compared with the standard circle of the rigid ring model, the outer ring
deformation of the left bearing tends to be an elliptical shape, and the horizontal and
vertical diameters become larger, with the maximum increment of the horizontal diameter
being 2.4 µm and the maximum increment of the vertical diameter being 4.08 µm. The outer
ring deformation of the right bearing appears to be a cam shape, with a decrease in the
horizontal diameter and an increase in the vertical diameter. The maximum reduction in the
horizontal diameter measures 2.46 µm, while the maximum increase in the vertical diameter
is 3.14 µm. The two trends are closely linked to the distribution of the ball–raceway contact
load. All balls of the left bearing are loaded, causing the ring diameter to increase, while
the contact loads of the right bearing are concentrated in the 90◦ azimuth area, causing the
ring diameter to increase in that direction and decrease in the horizontal direction.

The ring deformation inevitably induces alterations in the bearing contact characteris-
tics. In Figure 11a,b, compared with the rigid ring hypothesis, the ring deformation reduces
the maximum contact load of the left bearing from 1294.7 N to 1250 N, representing a
decrease of 3.4%, and the maximum contact load of the right bearing from 1382 N to 1296 N,
representing a decrease of 6.2%. In Figure 11c,d, the ring deformation leads to a decrease in
the contact angles near the 90◦ azimuth of the left bearing and an increase in the contact
angles near the 270◦ azimuth, resulting in a decreased contact angles within the loaded
zone of the right bearing. According to the above content and the analysis of reference [5],
compared with the left bearing, the right bearing has more complex ring deformation and
worse load distribution due to the different constraint positions and load conditions of the
two bearings. Therefore, the subsequent analysis mainly focuses on the right bearing.
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left bearing; (b) ball–raceway contact load of the right bearing; (c) contact angles of the left bearing;
(d) contact angles of the right bearing.

3.3. The Effect of Axial Force

Figure 12 illustrates the effect of axial force on the outer ring deformation under
constant radial force. Noticeable differences in ring deformation and variation tendency
are observed between the vertical and horizontal directions. When under pure radial force,
the ball–raceway contact loads concentrate in the 90◦ azimuth area, causing an expansion
in the vertical diameter and a reduction in the horizontal diameter of the ring. As the axial
force increases, the vertical diameter of the ring increases while the horizontal diameter
decreases further. This is because the increase in the axial force causes the balls at the 270◦

azimuth angle area to be loaded, which in turn causes the vertical diameter of the ring to
increase, while the unloaded zone in the horizontal area leads to a further decrease in the
ring diameter. Figure 13 depicts the variation trend in the loaded zones under the action
of axial force. When all the balls are loaded, the decrease in ring diameter tends to the
maximum. However, with further increases in axial force, the horizontal diameter of the
ring begins to increase. As seen in Figure 14, there is a critical axial force on the deformation
curve of the horizontal diameter of the ring. The trend of ring deformation on both sides of
the critical axial force is different, and the critical axial force values are variable. When the
radial force is 3.1 kN, the critical axial force is 3 kN. Meanwhile, when the radial force is
3.5 kN and 3.9 kN, the critical axial force values change to 3.4 kN and 3.6 kN, respectively.
As the radial force value increases, the critical axial force value increases. The primary
reason is that a larger radial force makes a larger unloaded zone and a larger reduction in
ring diameter in the horizontal direction at the same axial force. Therefore, a larger axial
force is required to load the balls in the horizontal area and then change the tendency of
ring deformation in that area.
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Figure 15a indicates the influence of axial force on the ball–raceway contact state. As
the axial force increases, more balls are gradually loaded until all balls are loaded. However,
notable distinctions are observed between the rigid and flexible ring models in terms of the
increasing trend and mutation position in the number of loaded balls. This is due to the
ring deformation changing the radial clearance and the curvature of the raceway, making
the ball and raceway easier to contact. The influence of axial force on the relative ratio



Appl. Sci. 2024, 14, 3741 15 of 23

of the maximum load is shown in Figure 15b. The relative ratio of the maximum load is
defined as the maximum ball–raceway contact load in a flexible ring divided by that in a
rigid ring. A smaller relative ratio corresponds to a smaller maximum contact load in the
flexible ring, indicating a more pronounced optimization effect in load distribution due
to the ring deformation. However, as the axial force increases, the relative ratio also rises,
suggesting that the load optimization effect becomes less evident under higher axial force.
This can be attributed to the increase in axial force reducing the difference between the
ball–raceway contact loads, leading to the ring deformation tending to a standard circle,
thus reducing the degree of load optimization. As axial force increases, the maximum
contact stress initially decreases and then increases. This occurs because the increased
number of loaded balls initially reduces contact stress. However, once all balls are loaded,
the contact stress increases as the axial force increases. Figure 15c illustrates how the axial
force affects the radial displacement of the inner ring. The displacement of the inner ring
under flexible conditions is greater than that under rigid conditions. The reason is that
under rigid conditions, the shaft and inner ring can only deflect at an angle to balance
the external load. However, the bearing rings and supporting structures can also produce
elastic deformation to balance the external load under flexible conditions [27]. Figure 15d
shows the influence of axial force on ball–raceway contact angles. The contact angles near
90◦ azimuth increase with axial force, while the contact angles near 270◦ azimuth change
conversely. Meanwhile, the contact angles near 90◦ azimuth are smaller than those in the
rigid condition, while the contact angles near 270◦ azimuth are larger than those in the
rigid condition.
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3.4. The Effect of Radial Force

Figure 16 shows the influence of the radial force on the outer ring deformation under
constant axial force. Under pure axial force, the ring deformation tends to be a standard
circle. The reason is that all balls are loaded and exert almost the same force on the
outer ring. As the radial force increases, the horizontal diameter of the ring continuously
decreases while the vertical diameter increases. This is because the increase in radial force
causes the concentration of the ball–raceway contact load in the vertical areas, resulting in
an increase in the ring diameter in that direction, while the contact load in the horizontal
direction decreases and eventually disappears, leading to a reduction in the ring diameter.
Figure 17 illustrates the variation trend in the loaded zones under radial force.
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Figure 18a demonstrates the effect of radial force on the bearing contact state. As the ra-
dial force increases, the radial clearance increases and the number of loaded balls decreases
gradually. The decreasing trend and mutation position of the number of loaded balls under
the rigid and flexible models are different, proving that the rigid ring model inadequately
describes the contact state inside the thin-walled bearings. Figure 18b shows that the
degree of load optimization becomes more pronounced under high radial force conditions.
This phenomenon is because the increase in radial force intensifies the difference between
ball–raceway contact loads, consequently enhancing ring deformation and optimizing load
distribution. However, the increase in radial force results in a rise in the contact stress. After
accounting for ring deformation, the ball–raceway contact angle increases, bringing the ball
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closer to the raceway rib and making the bearing more susceptible to elliptical truncation.
Figure 18c shows that the radial displacement of the flexible inner ring is greater than that
of the rigid inner ring. The cause behind this phenomenon mirrors that of the phenomenon
depicted in Figure 15c, which is not explained here. However, it should be noted that
the variance in displacement between the rigid and flexible rings increases alongside the
increase in radial force. Compared with the flexible ring, the rigid ring only produces rigid
displacement to balance the external load, but large rigid displacement leads to excessive
ball–raceway contact load, which increases the error of accurately evaluating the bearing
performance [19]. Figure 18d shows that the increase in radial force can decrease the contact
angles near 90◦ azimuth and increase the contact angles near 270◦ azimuth. The effect of
ring deformation on the contact angles parallels the discussion in Section 3.3.
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3.5. The Effect of the Outer Ring Thickness

The influence of the outer ring thickness on the ring deformation is shown in Figure 19.
It is evident that with the increase in ring thickness, both the horizontal and vertical
diameters of the ring decrease. The ring thickness only affects the ring deformation and
does not change the deformation trend of the ring. However, there is a significant distance
between the fixed constraint surface of the reducer and the outer ring surface, and this
distance leads to significant ring deformation, making it difficult for the ring to approximate
a standard circle, even with larger ring thicknesses.
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Figure 20a shows the number of loaded balls with different ring thicknesses, which
increases from 29 under the rigid ring model to 37 under the flexible ring model. It can
also be concluded that the thinner the ring thickness, the more the contact load is reduced,
and the load optimization effect is more pronounced. However, the thinner ring thickness
increases the failure risk of plastic deformation. The bearing fatigue life based on [28] was
calculated, as shown in Figure 20b. The calculation equation of the bearing fatigue life is
as follows:

Ln = a1a2a3L10 (30)

where Ln is the bearing fatigue life modified by [28]; a1 is the reliability coefficient; a2
is the material coefficient, and a3 is the service condition coefficient. The fatigue life
L10 is determined by the service life of the ball–raceway contact, which is calculated as
follows [29]:

L10 =
(

L−10/9
i + L−10/9

o

)−0.9
(31)

where Li and Lo are the contact life of the ball-inner raceway and the ball-outer raceway,
respectively, and the calculation method is as follows:

Li,o =

(
Ci,o

Qi,o

)3
(32)

where Ci,o is the basic dynamic load rating of the inner and outer raceway; Qi,o is the
dynamic equivalent rolling element load of the inner and outer raceway, and the calculation
method of Ci,o is as follows:

Ci =
Cr

0.407Z(cos α)0.7

{
1 +

[
1.04

(
1−γ
1+γ

)1.72( 2 fi fo− fi
2 fi fo− fo

)0.41
]10/3

}0.3

Co =
Cr

0.389Z(cos α)0.7

{
1 +

[
1.04

(
1−γ
1+γ

)1.72( 2 fi fo− fi
2 fi fo− fo

)0.41
]−10/3

}0.3 (33)

where Cr is the basic dynamic load rating of the bearing, which is calculated as follows:

Cr = bm fc(i cos α)0.7Z2/3D1.8
w (34)

where bm is the dynamic load coefficient; i is the number of the bearing rows; α is the
bearing contact angle; Z is the number of balls; Dw is the diameter of the ball, and the
expression of fc is
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fc = 39.9

1 +

[
1.04

(
1 − γ

1 + γ

)1.72( 2 fi fo − fi

2 fi fo − fo

)0.41
]10/3


−0.3

× γ0.3(1 − γ)1.39

(1 + γ)1/3

(
2 fi

2 fi − 1

)0.41
(35)

where γ is a dimensionless parameter with the expression

γ =
Dw cos α

dm
(36)
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In this study, the outer ring is fixed while the inner ring rotates. Therefore, the
calculation methods for Qi,o are as follows:

Qi =

(
1
Z

Z
∑

k=1
Q3

ik

)1/3

Qo =

(
1
Z

Z
∑

k=1
Q10/3

ok

)0.3 (37)

where Qik and Qok are the contact loads of the ball–inner raceway and ball–outer raceway,
respectively, calculated by the mathematical model of the bearing.

It is evident that the fatigue life remains unaffected by variations in the thickness of
the rigid ring. When considering ring deformation, the fatigue life decreases as the ring
thickness increases. With the increase in ring thickness, the ring deformation gradually
decreases. Consequently, the optimization effect of ring deformation on the load distribu-
tion gradually diminishes, resulting in a decrease in the number of loaded balls and an
increase in the maximum ball–contact load under flexible ring conditions. According to
Equations (30)–(32), the fatigue life decreases and becomes closer to the fatigue life of bear-
ings with rigid rings. Due to the inability to fully simulate rigid constraints, it is difficult to
achieve the same bearing life as the rigid ring model, even with larger ring thicknesses.

Figure 21 illustrates the axial ultimate carrying capacity of the thin-walled bearings
under the influences of radial force and outer ring thickness. It is apparent that the carrying
capacity decreases as the radial force increases. The increase in radial force promotes the
movement of the contact ellipse toward the raceway rib, making it easier for the bearing
to experience elliptical truncation under high radial force conditions. In addition, the
thickness of the rigid ring does not affect the carrying capacity. However, the overall
carrying capacity of the bearing decreases compared to that of the rigid condition after
considering the ring deformation, and the carrying capacity decreases as the ring thickness
decreases. From the above discussion, it is evident that while reducing the thickness of
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the ring can improve the optimization effect of the ring deformation on the contact load, it
concurrently diminishes the carrying capacity. These results are difficult to obtain from the
rigid ring model.
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3.6. The Effect of Radial Clearance

Figure 22 illustrates the effect of radial clearance on ring deformation. With increasing
radial clearance, the vertical diameter of the ring increases while the horizontal diameter
decreases, and the changing trend of the horizontal diameter is more significant than that
of the vertical diameter. This is due to the fact that as the clearance increases, two unloaded
zones appear in the horizontal direction, causing a swift reduction in the horizontal diam-
eter of the ring. As shown in Figure 23a, it can be found that compared with the factors
discussed above (axial and radial forces), the clearance exacerbates the distinction between
the two models in terms of the ball–raceway contact state. Considering the ring deforma-
tion enables obtaining more accurate bearing contact characteristics. Figure 23b illustrates
that the degree of load optimization improves as the clearance increases. However, this
improvement comes at the expense of an increase in contact stress, ultimately leading to
the truncation of the contact ellipse.
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fully consider the elastic deformation, is established in this paper. The validity of the pro-
posed model is confirmed by comparing its results with those obtained from conventional 
methods. The effects of load conditions, ring thickness, and clearance on ring deformation, 
ball–raceway contact state, the relative ratio of the maximum load, and the ultimate car-
rying capacity are analyzed, respectively. The significant findings are as follows: 
(1) Ring deformation cannot be ignored in the analysis of thin-walled bearings. The dis-
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relative ratio of the maximum load and ball–raceway contact stress.

Figure 24 shows the influence of radial force and clearance on the axial ultimate carry-
ing capacity of thin-walled bearings. The observed trend reveals that with the increment of
radial force and radial clearance, there is a corresponding decrement in the axial ultimate
carrying capacity. Considering the ring deformation, the maximum reduction in carrying
capacity is 38.2%, which occurs under the condition of maximum radial force and max-
imum radial clearance. In this condition, the ring deformation is most pronounced; the
ball–raceway contact angle is greater, and the ball is closer to the raceway rib. It is worth
mentioning that compared with the rigid ring model, the axial carrying capacity of the
flexible ring model shows a higher sensitivity to the radial force and clearance, which can
be observed in the trend of carrying capacity. Therefore, the clearance can be moderately
increased to enhance the degree of load optimization, but attention should be paid to
excessive contact stresses and the occurrence of elliptical truncation phenomena.
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4. Conclusions

According to the actual assembly structure of the main bearing for the RV reducer,
a simulation model of the planetary frame–main bearings–pin gear housing, which can
fully consider the elastic deformation, is established in this paper. The validity of the pro-
posed model is confirmed by comparing its results with those obtained from conventional
methods. The effects of load conditions, ring thickness, and clearance on ring deforma-
tion, ball–raceway contact state, the relative ratio of the maximum load, and the ultimate
carrying capacity are analyzed, respectively. The significant findings are as follows:
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(1) Ring deformation cannot be ignored in the analysis of thin-walled bearings. The
distribution of ball–raceway contact loads determines both the extent and the trend
of ring deformation. Ring deformation can improve the mechanical characteristics
and extend the fatigue life of bearings. However, the ring deformation makes the
ball–raceway contact ellipse closer or even exceeds the raceway rib, leading to ellipse
truncation. Therefore, focusing on the raceway rib design is crucial when designing
thin-walled bearings;

(2) The optimization effect of ring deformation on load distribution varies under different
conditions. The increase in axial force and ring thickness weakens this optimization
effect, while the increase in radial force and clearance enhances it but also results
in an increase in contact stress. In actual engineering, bearing engineers can design
ring thickness, clearance, and the raceway rib reasonably according to the research
results of this paper and improve the optimization effect of ring deformation on load
distribution and fatigue life without plastic deformation of bearings to improve the
service performance of bearings effectively;

(3) Significant differences are observed in the variation trends and mutation positions in
the number of loaded balls between the rigid and flexible ring models, resulting in
substantial differences in the contact characteristics of the two models under the same
load condition;

(4) After considering the ring deformation, the carrying capacity of the bearing decreases,
with a heightened sensitivity to radial force and radial clearance. In this research, the
maximum carrying capacity was reduced by 38.2%, which occurred by coupling the
maximum radial force and the maximum clearance.
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