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Abstract: This paper investigates a numerical code-coupling technique to tackle multiphysics and
multiscale simulations using state-of-the-art software packages that typically address some specific
modeling domain. The coupling considers the in-house FEM code FEMuS and the FVM code
OpenFOAM by exploiting the MED library from the SALOME platform. The present approach is
tested on a buoyancy-driven fluid flow within a square cavity, where the buoyancy force constitutes
the coupling term. In uncoupled scenarios, momentum and temperature equations are solved in both
FEM and FVM codes without data exchange. In the coupled setting, only the OpenFOAM velocity
and the FEMuS temperature fields are solved separately and shared at each time step (or vice versa).
The MED library handles the coupling with ad hoc data structures that perform the field transfer
between codes. Different Rayleigh numbers are investigated, comparing the outcomes of coupled
and uncoupled cases with the reference literature results. Additionally, a boundary data transfer
application is presented to extend the capabilities of the coupling algorithm to coupled applications
with separate domains. In this problem, the two domains share interfaces and boundary values on
specific fields as fluxes are exchanged between the two numerical codes.

Keywords: CFD; code coupling; conjugate heat transfer

1. Introduction

In the last few decades, the performance increase of computational tools has gained
more and more attention from the scientific community. In computational fluid dynamics
(CFD), accuracy and efficiency remain challenging, especially when dealing with complex
systems. Thus, interest in using multiscale and multiphysics numerical tools to conduct
complex and realistic simulations has grown. The evaluation of the whole system requires a
modeling effort for all the various scales and interactions associated with its different com-
ponents together with the development of numerical tools capable of analyzing phenomena
across multiple scales and physics [1–3].

Nowadays, several computational codes have been developed to solve problems
involving different engineering aspects, from physics (at every scale) to chemistry and from
biology to mathematics. In this context, the concept of high-performance computing (HPC)
assumes a central role as it enables the possibility of addressing complex and sophisticated
problems by using additional computational power.

On the other hand, the simulation of very complex systems is still challenging due to
the different phenomena scales. For this reason, the existing codes are developed to address,
in general, only a family of problems. For instance, we can find in the open-source frame-
work a plethora of simulation software programs that can tackle a subset of the physical
systems we are interested in. We can refer to codes such as OpenFOAM [4], TrioCFD [5], and
code_Saturne [6] for fluid dynamics simulations. These codes can solve the Navier–Stokes
equations, in their incompressible and compressible variations, multiphase flow, turbulence
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phenomena (at different scales, through RANS, LES, or DNS), and so on. Several solvers
are available in the thermomechanical field, including elasticity problems and fracture
propagation. Among them, we can mention Code-Aster [7] or TFEL/MFront [8]. Codes
such as Dragon/Donjon have been developed to tackle neutronic problems. Additionally,
other open-source FEM-based numerical platforms such as libMesh [9], Deal-II [10], and
FEniCS [11] are widely used to solve generic PDE problems.

For the simulation of highly complex problems, the capability of modeling different
physics coming from various application domains is necessary. However, none of the cited
codes can manage the full complexity of any given physics phenomenon. Two main strate-
gies have been explored to simulate these complex multiscale and multiphysics problems.
One way is to develop a new numerical code to model all the relevant physical phenomena.
This strategy is commonly referred to as the monolithic approach. Alternatively, one can
choose to couple existing and validated codes. This second approach is a technique that
can integrate multiple codes to enhance simulation capabilities by using standalone code
strengths. For instance, we can think about the simulation of a nuclear reactor, for which
every physics is tightly coupled to all the others (i.e., neutronics, thermal hydraulics, and
thermal mechanics with the presence of multiphase issues). The code-coupling technique
can be a reasonable strategy to exploit the different code peculiarities and avoid the neces-
sity to develop a new computational tool that incorporates all the necessary features. By
doing so, we can benefit from using codes that have already been extensively validated
and from their expertise developed over many years. Therefore, this strategy focuses on a
framework suitable for coupling of different codes by exchanging efficiently output and
input data, i.e., directly coupling the codes in memory and not through writing and reading
from external files [12].

This paper presents a coupling strategy by exploiting the open-source MED and MED-
Coupling library to link the in-house FEMuS code with the well-established OpenFOAM
software. All simulations performed in this paper have been carried out with OpenFOAM
version 11. FEMuS is a multigrid finite element code that contains solvers for many differ-
ent physical problems [13]. We use two multiphysics examples to show the code-coupling
methodology, where some physical output variables are taken from the first code and are
considered as input data for the second code, and vice versa.

This paper is organized as follows. A brief introduction to the computational en-
vironment and an insight into the two codes adopted for this work is given in the next
section. Then, the coupling strategy for the involved codes is introduced with a detailed
description of the numerical algorithm. Finally, two examples of numerical code coupling
between FEMuS and OpenFOAM are discussed: a coupled application with the exchange
of volumetric fields and another where the exchange is limited to some boundary fields.
Numerical results are provided and compared with the literature data of the same physical
problems performed with the monolithic approach.

2. The Numerical Platform Environment

A numerical platform was developed to improve the portability and communication
of numerical codes. This numerical platform [14] integrates different physical PDE models
with FEM (finite element method) and FVM (finite volume method) discretizations for fluids
and solids. Other features of the platform are the coupling of algebraic and PDE models
implemented in different regions, typical of CFD for multiscale coupling. The platform
creates a numerical environment for multiphysics and multiscale simulations through
the computational capabilities of the FEMuS software. The FEMuS software is available
on github at https://github.com/FemusPlatform/femus, accessed on 26 April 2024. and
communication with other solvers. This coupling and data exchange exploit the simulation
of different physical aspects, avoiding the need to write new physics solvers that may not
be supported. In this way, it is possible to use other highly validated software, saving time
and resources that are crucial when it comes to highly complex simulations.

https://github.com/FemusPlatform/femus
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This numerical platform provides several environments for different user levels: one
for implementing engineering applications and another suitable for developing and cou-
pling internal FEMuS in-house code. In the former case, this environment provides data
entry for input/output using CAD/Mesh generators and visualization/postprocessing
with tools typical of the SALOME computing platform [15], i.e., Paraview [16]. In particular,
the input/output data can be handled by the MED and HDF5 libraries. Implementations
of PDE (partial differential equation) models on the FE and FV discretizations are available
from various codes. The OpenFOAM and FEMuS libraries are the codes of interest for the
applications described in this paper, where the two codes have additional routines that
support the coupling paradigm of the MED libraries.

In the following, brief introductions to the FEMuS finite element and OpenFOAM
finite volume codes, as well as the SALOME platform and MED library functionalities,
are presented.

2.1. FEM Code: FEMuS

The computational environment of the numerical platform revolves around the in-
house FEMuS multigrid finite element library, a C++ code that exploits various open-source
libraries such as PETSc [17] for linear algebra and LibMesh [9] for creating and handling a
mesh hierarchy. It contains multiple solvers for incompressible Navier–Stokes equations,
convective and conductive heat transfer, turbulence, fluid–structure interaction, and mul-
tiphase flow [13]. One of the advantages of the FEMuS code is the easy implementation
of new models by directly coding the constitutive equations to the FEM paradigm. This
approach streamlines the process of integrating new formulations, increasing the versatility
and adaptability of a simulation setup. In this framework, it is possible to efficiently model
new physical phenomena such as the complex dynamics of turbulent flows in unconven-
tional fluids such as liquid metals. Interested readers can find additional development of
the numerical library in [13,18–21].

In addition to its solving capabilities, for this specific work, the FEMuS library was
extended to support the coupling with a MED-compatible C++ interface based on the
SALOME platform.

2.2. FVM Code: OpenFOAM

OpenFOAM is a well-known, open-source, object-oriented C++ library, developed
primarily for computational fluid dynamics simulations, and it is maintained separately by
ESI (Engineering System International) Group and the OpenFOAM Foundation [4]. Its ver-
satility, scalability, and extensive set of solvers and libraries make it one of the most widely
used codes in industry and academia, empowering researchers and engineers to simulate a
wide range of phenomena. OpenFOAM provides a comprehensive and powerful modeling
platform for complex fluid dynamics scenarios, such as multiphase flow, aerodynamics,
turbulence, and heat transfer phenomena. Its modular architecture offers adaptability,
which allows expert users to integrate new functions and models specific to innovative
research fields. This library ensures continuous development and improvement, keeping
the code relevant in many scientific and engineering research fields. The OpenFOAM
community provides additional resources, tutorials, and user-contributed improvements.

The OpenFOAM library is based on the finite volume model (FVM). The FVM tech-
nique discretizes the computational domain into elements, usually referred to as cells, on
which the PDEs are solved. In addition, the software provides utilities for processing static
and dynamic meshes, for pre-/postprocessing, and for multiple processor architectures.

2.3. The MED and MEDCoupling Library from the SALOME Platform

The best strategy to exchange heterogeneous fields between different codes with
different data structures is to use an intermediate representation that is common to all
codes. The MED and MEDCoupling libraries have been developed to offer a very rich set
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of functionalities, and they were used in this work to manage the data exchange between
OpenFOAM and FEMuS.

The coupling procedure was developed, using the MED and MEDCoupling libraries,
with the idea to combine the best features of the FEM and FVM approaches. The MED
library is a module of the SALOME platform for retrieving, processing, and sharing data
at the memory level, avoiding the use of external disk files. This library is a low-level
implementation of an abstraction layer for data structures that can be manipulated and
stored in HDF5 format. The MEDCoupling library, on the other hand, is one of the available
modules of the SALOME platform environment and the main library on which the coupling
work depends. It uses MED communication for the exchange format and implements field
distribution and interpolation algorithms.

SALOME is a numerical platform developed by CEA (Commissariat à l’énergie atom-
ique et aux énergies alternatives) and EDF (Électricité de France) to provide open-source
software for computer-aided engineering (CAE) [22]. This platform offers several modules,
such as GUI, Geometry, Mesh, Fields, YACS, JobManager, and ParaViS, that may manage
every stage of a computational simulation performed by multiple external standalone codes.
The software implements tools for parametric CAD modeling, tetrahedral and hexahedral
mesh generation, code supervision, data analysis, and postprocessing [15]. In particular,
the supervisor can generate simulation workflows that connect different computational
units with the support of the FIELDS and MEDCoupling libraries. This manages data
communication by manipulating the inputs and outputs of the simulations. It can also
perform transfer, modification, and analysis of data . Among its features, the most relevant
for this work are reading/writing from/to files, the aggregation and exchange of data,
interpolation between different grids, format conversion, and renumbering or partitioning
of data for multiprocessor frameworks. In the following, for simplicity, we will refer to the
MED and MEDCoupling libraries only by the name MED.

3. Coupling Procedure through the MED Library

This section explains in detail the coupling approach implemented between the two
CFD codes, FEMuS and OpenFOAM, that will be used for the numerical demonstrations in
the following sections. This procedure can easily be generalized to additional software with
minimum modifications, mainly by translating the internal data structures into the MED
format. It is essential to point out that this framework scales optimally with the number of
computational codes that are connected: adding a new library implies the development of a
single wrapper of its data fields in the MED coupling format instead of developing specific
procedures to couple the new code to each of the other libraries in the platform. In other
words, the coupling strategy follows a hub-and-spoke model instead of a point-to-point
approach that would require a significant effort to add new software. A schematic example
of the two coupling models is reported in Figure 1.

Point-to-Point Hub-and-Spoke

HUB

Figure 1. Coupling strategy models: point-to-point on the left and hub-and-spoke on the right.

The coupling application implements three different classes designed for data transfer
and synchronization. The first class acts as the intermediary between OpenFOAM and
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the MED library by extracting the numerical field data from the internal data structures
into an object compatible with the MED format. This class is the interface OpenFOAM-
MED that we named of_interface. Similarly, the second class, femus_interface, is the
interface between FEMuS and the MED library, enabling the use of the numerical field data
within the FEMuS framework. Finally, the third class, namely, med_class, is responsible
for managing the operations within the MED library itself. It includes tasks such as data
storage, retrieval, and data manipulation. An additional feature available in this class is the
possibility to interpolate a field insisting on a mesh to a different mesh discretization.

In the following, we generally refer to Code 1 and Code 2: the reader can inter-
changeably substitute them with FEMuS and OpenFOAM. Figure 2 illustrates the coupling
procedure. At the supervisor level, the main function manages the interaction between the
two codes and their associated interface structures with specific solver functions. Firstly, it
manages the initialization and setup of both Code 1 and Code 2, ensuring they are correctly
configured and ready to interact. This involves the problem initialization with the interface
structures, including an exchange mesh and its numerical fields. Moreover, the supervisor
function manages the synchronization of the simulation time steps between Code 1 and
Code 2. This enforces that both codes progress together to maintain consistency in the
coupled simulation. At each time step, the supervisor coordinates the exchange of fields,
updates solutions, and monitors convergence criteria.

Supervisor

Code 1 Code 2

Solver 1 Solver 2

Coupling

Figure 2. Coupling procedure scheme.

This framework can be exploited in various simulations involving coupling between
volume or boundary fields.

For simulations requiring volume field transfer, the application allows the exchange
of numerical data representing physical quantities distributed in the whole computational
domain. On the other hand, simulations involving boundary field transfer focus on the
interaction between different physical domains or interfaces within the computational
domain. By transferring boundary conditions, forces, or constraints between Code 1 and
Code 2, we can simulate complex fluid–structure interactions, conjugate heat transfer
processes, and multiphase flow phenomena. For these two types of coupling, the main
structure of the algorithm remains consistent. In the following sections, the algorithm
implemented is described.

Coupling Algorithm

As shown in Algorithm 1, in the initial step of the coupling process, both Code 1
and Code 2 are required to generate a mesh copy in MED format corresponding to the
computational domain (or a portion of it). Both interface classes of Code 1 and Code 2
feature a function named init_interface() used for extracting essential information to
recreate the mesh in MED format. This function assigns the interface name for reference at
the supervisor level and retrieves the mesh connectivity, coordinates, and mapping data
necessary to link the data structure of the code mesh with that of the MED mesh. Since the
FEMuS code employs the finite element method (FEM) and handles biquadratic fields, its
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mesh is biquadratic. However, for coupling with the OpenFOAM problem, which operates
with linear meshes, the interface to the MED coupling implements a linear mesh. Therefore,
holding the information from the original biquadratic mesh, we extract the data to create a
corresponding linear mesh for the FEMuS coupling interface. Once the interface classes
have stored the necessary information, the MED library can generate a copy of the mesh
in MED format. The function responsible for managing the creation of the mesh is called
create_mesh(), and it belongs to the med_class class.

Algorithm 1 Coupling Algorithm

1: procedure main()
2: Initialization of Code 1 and Code 2 structures.

Initialization of interfaces

3: function init_interface()
4: Set interface name for reference at the supervisor level.
5: conn = get_mesh_connectivity() ▷ Get interface mesh connectivity
6: coords = get_mesh_coordinates() ▷ Get coordinates of mesh nodes
7: set_map_CodeFromToMED() ▷ Map mesh nodes ⇄ MED mesh nodes
8: end function
9: function create_mesh()

10: insert cells with conn information into the MED mesh structure.
11: setup coords information into the MED mesh structure.
12: creation of MED mesh copy from the mesh of Code 1 and Code 2
13: end function
14: function init_med_field_on_nodes/cells()
15: assigns the MED field to the corresponding interface MED mesh
16: allocate_med_array() ▷ MED array memory allocation
17: init_med_field() ▷ set MED field values to zero
18: end function

Time loop

19: time_step = 0
20: for time_step = 0 −→ num_steps do
21: Solve system of equations of Code 1
22: get_field_from_Code1() ▷ Extract field solution from Code 1
23: fill_med_array() ▷ Write field solution into MED array
24: update_med_field() ▷ Set MED array values into MED field
25: interpolation() ▷ Interpolate P0 field from Code 1 to Code 2
26: set_field_to_Code2() ▷ Set field solution into Code 2
27: Solve system of equations of Code 2
28: get_field_from_Code2() ▷ Extract field solution from Code 2
29: fill_med_array() ▷ Write field solution into MED array
30: update_med_field() ▷ Set MED array values into MED field
31: interpolation() ▷ Interpolate P0 field from Code 2 to Code 1
32: set_field_to_Code1() ▷ Set field solution into Code 1
33: time_step += 1
34: end for
35: end procedure

At this stage, both codes have their respective copies of the mesh in MED format. Follow-
ing the creation of meshes, both codes initialize the fields to be exchanged. We implemented
two distinct functions within the med_class, which are init_med_field_on_nodes() and
init_med_field_on_cells(). The first creates and initializes a MED format field of the
type MEDCoupling::MEDCouplingFieldDouble on mesh nodes, setting it to zero. In con-
trast, the other function performs a similar operation but targets mesh cells instead of nodes.
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In these functions, an array of the type MEDCoupling::DataArrayDouble is generated
for each field that is required by the specific coupling procedure. This format enables the
MED library to effectively set the values of the MED field based on the stored data.

Both codes have now completed the initialization at the supervisor level through their
dedicated functions within their respective classes. Moreover, the interfaces for the data
transfer have been configured with their corresponding MED mesh copies and MED fields.
At the supervisor level, the process can start the time loop.

The time loop begins with the execution of the solver functions within Code 1, which
are responsible for solving the system of governing equations of the specific physics being
modeled. Once Code 1 has completed its computations and obtained a solution, the
internal fields are transferred to the corresponding MED fields. This transfer process
involves a sequence of functions. Firstly, the interface class of Code 1 uses the function
get_field_from_Code1() to extract the solution of the field from Code 1. Next, within
the med_class class, two functions are employed: fill_med_array(), which sets the field
values into the corresponding DataArrayDouble, and update_med_field(), which sets the
array into the MED field.

At this step, a projection function can be used when a source field from Code 1 has to
be interpolated from the source mesh to a target grid suitable for Code 2. The MED library
provides a range of functions tailored to this functionality. It is important to highlight
that the interpolation functions are available for P0 (e.g., cell-wise) and P1 (e.g., node-wise)
fields, both targeting intensive or extensive fields.

These interpolation algorithms can combine different field types, e.g., it is possible to
interpolate from P0 to P0, from P0 to P1, from P1 to P0, and from P1 to P1. In this application,
a P0 to P0 interpolation scheme is employed, requiring that both fields from FEMuS and
OpenFOAM be represented as cell-wise fields. Given that FEMuS uses biquadratic fields, it
becomes necessary to convert the solution into a cell-wise field. To achieve this conversion,
an interpolation algorithm specifically designed for converting a P2 (biquadratic field)
to a P0 field is employed after the extraction of the solution from FEMuS. Therefore, the
interpolation() function from med_class is called. This function is used to interpolate
the MED field from Code 1 to a MED field over a MED mesh of Code 2. The MED field
interpolated over the mesh of Code 2 is now available (directly in memory) as a MED object.
With an inverse process, it can be stored as the solution of Code 2 using the interface function
set_field_to_Code2(). In the scenario where Code 2 is FEMuS, an interpolation algorithm
from a P0 to a P2 field must be used before calling the set_field_to_Code2() function.
This is necessary to ensure compatibility between the cell-wise field format required by the
coupling framework and the biquadratic solution format required by FEMuS.

With the solution provided by Code 1, Code 2 can proceed to solve its specific physics.
Once the solution of the system of equations in Code 2 is obtained, it provides the field to be
exchanged back to Code 1 using a mechanism analogous to the previous one. The interface
function get_field_from_Code2() is called to extract the solution from Code 2, while
fill_med_array() and update_med_field() are employed to set the solution of Code 2
into the corresponding MED field. Then the interpolation() function is used to interpo-
late the MED field from Code 2 to the target MED field associated with Code 1. Finally, this
interpolated field is written into Code 1 using the set_field_to_Code1() routine.

Once Code 1 receives the solution from Code 2, the data exchange between the two
codes is completed. With both codes now equipped with the necessary fields, the time
loop can proceed to the next time iteration at the supervisor level. This iterative process is
repeated at each time step until the end of the simulation.

4. Numerical Results

In this section, we present two numerical examples that show the capabilities of
the algorithm described above. The idea is to analyze two different aspects of the data
transfer between numerical codes. Specifically, volume and boundary field transfer are
investigated since both situations represent realistic applications. The first example is a
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buoyant-driven cavity where different codes solve the velocity and temperature fields,
while the second one is a conjugate heat transfer problem between two different domains
where temperature and heat flux are exchanged. The examples do not share any signifi-
cant similitude in the temperature profiles and flow pattern. They were selected to test
the coupling methodology and highlight its robustness and accuracy. Both examples are
solved on a two-dimensional square domain with uniform discretization. We recall that
OpenFOAM works exclusively with three-dimensional domains, while FEMuS can deal
with any kind of geometry. The coupling algorithm was extended to transfer quantities
from three-dimension fields to two dimensions and vice versa. For both applications, the
mathematical problem is described with appropriate boundary conditions, and the numeri-
cal results are compared with the literature reference data for the same application setting.
Different resolutions of the discretization were adopted in the numerical simulations, and
their effect on the quality of the result was compared to the results in the literature.

4.1. Buoyant-Driven Cavity

In the following section, a first numerical application is presented to show the simu-
lation results of a code-coupling procedure between volume fields, taking reference data
from the literature as a benchmark. The simulation setting is depicted in Figure 3, where a
square cavity is considered as the numerical domain for the resolution of Navier–Stokes and
temperature equations. In this case, we can consider a Newtonian and incompressible fluid
for which a two-dimensional setting has been investigated. In particular, these equations
are coupled through the buoyancy term. Therefore, considering the velocity u, the pressure
p, and the temperature T, we have

∇ · u = 0 ,
∂u
∂t

+ u · ∇u =
p
ρ
+ ν∆u + gβ(T − T0) ,

∂T
∂t

+ u · ∇T = α∆T + Q ,

(1)

where ν is the kinematic viscosity, ρ the density, β the coefficient of thermal expansion, α
the thermal diffusivity, T0 the reference temperature, and Q the volumetric thermal source.
We recall that ∇· represents the divergence operator and ∇ is the gradient, while ∆ is the
Laplacian. For all the presented tests, a laminar behavior of the flow is considered.

Regarding the boundary condition, we impose no-slip boundary conditions for the
velocity field at each boundary edge. For the energy equation, both Dirichlet and Neumann
boundary conditions are used. In particular, we impose the temperature on two opposite
edges, creating a hot and a cold wall, while on the remaining edges, an insulation condition
is imposed, according to Figure 3. Furthermore, the volumetric thermal source Q is set to
zero for every numerical simulation.

y∗

x∗

T = TCT = TH

∇T · n̂ = 0

∇T · n̂ = 0

g l

Figure 3. Geometry of the buoyant cavity problem with boundary conditions for the temperature field.
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As we know from the literature, the form of the solution to this problem depends on
the nondimensional Rayleigh number that is defined as Ra = gρβL3(TH − TC)/(να), where
L is the reference length of the domain. Referring to Figure 3, we have L = l. Moreover,
the reference temperature T0 is set to the mean value between TH and TC for every specific
simulation. The numerical tests were performed for different Ra numbers, ranging from 103

up to 106 and compared with reference data. Specifically, this problem has been described
in several works [23–27].

Regarding the numerical approach, four different approaches are presented and ana-
lyzed. Two simulations are performed by solving the system of Equations (1) considering a
monolithic solution with the FEMuS code (F) and OpenFOAM (OF) taken as reference. The
other two cases use the code-coupling technique: in the first case (c1), the temperature is
solved in FEMuS and the velocity in OpenFOAM, and vice versa in the second case (c2). In
the two latter procedures, we recall that the coupling between the codes takes place through
two terms in the equations: the buoyancy term, which requires the temperature field in the
momentum equation, and the advection term in the energy equation, which is computed
via the velocity field coming from the momentum equation. This is a necessary condition
for the cases c1 and c2 to satisfy the problem described in (1). In particular, the field transfer
is performed considering the volumetric value of the specific field, so for each cell of the
target mesh, the field is interpolated from the source mesh by using the MED structures
described in the previous section. The entire volumetric field is transferred between the
two codes, adopting the same discretization for the domain, even if the FEM codes consider
biquadratic quadrilateral elements as the FVM code uses linear quadrilateral elements.

4.1.1. Volume Data Transfer Algorithm

Following Algorithm 1, we outline the procedure employed for the coupling applica-
tion involving volume data transfer. In both coupling cases c1 and c2, the init_interface()
and create_mesh() are used to create a MED mesh object of the entire domain. The FE-
MuS problem can use either a 2D or a 3D mesh, according to the problem dimension. In
contrast, OpenFOAM can handle only 3D meshes, even for 2D problems. Since we are
addressing this latter mesh dimension in this context, the volume mesh used by FEMuS
consists of a 2D computational grid. Consequently, the MED meshes employed in this
scenario consider a 2D mesh for FEMuS and a 3D mesh for OpenFOAM with a single cell
across the third dimension.

The initialization of MED fields over the MED meshes involves calling the routine
init_med_field_on_cells() to initialize a cell-wise temperature field and a cell-wise veloc-
ity field for both codes throughout the entire computational domain. We name the P0 tempera-
ture field over MED meshes as temp_P0_2Dmesh for FEMuS and temp_P0_3Dmesh for Open-
FOAM. Similarly, the P0 velocity field is denoted by vel_P0_2Dmesh and vel_P0_3Dmesh for
FEMuS and OpenFOAM, respectively.

We describe the algorithm for the coupling case c1 since the c2 case is entirely similar
but with the fields swapped. Once the time loop is started, FEMuS solves the temperature
equation as described in (1). Then, the get_field_from_femus() function is called to ex-
tract the temperature solution. Given that FEMuS solves for a biquadratic temperature field,
an interpolation from P2 to P0 is performed to correctly pass the data to OpenFOAM, which
works with P0 fields. Following this, the fill_med_array() and update_med_field()
functions are used to set the temp_P0_2Dmesh field. At this point, the interpolation()
routine is used to interpolate temp_P0_2Dmesh into the MED mesh from OpenFOAM to
obtain the target MED field temp_P0_3Dmesh. The function set_field_to_OpenFOAM()
sets the interpolated field into the OpenFOAM temperature field, used to compute the
buoyancy term within the Navier–Stokes equation. Once OpenFOAM has solved the
system of equations, the velocity field is extracted using the get_field_from_OpenFOAM()
routine and set to the vel_P0_3Dmesh field. Then, the interpolation function computes
the vel_P0_2Dmesh to be passed to the FEMuS code. This field must be first interpolated
using the P0 to P2 interpolation scheme and then written into the velocity field of FEMuS
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using the routine set_field_to_femus(). In the following time iteration, FEMuS uses this
updated velocity field in the advection term of the temperature equation.

4.1.2. Simulations Results

The numerical fields resulting from the computation have been nondimensionalized
with the following:

x∗ =
x
L

, u∗ =
u L
α

, Θ =
T − TC

∆T
, (2)

where TC represents the Dirichlet boundary condition for the temperature on the cold wall.
Naturally, by considering these new variables, such as the nondimensional temperature
Θ, the nonhomogeneous Dirichlet boundary conditions change their specific values: on
the cold wall, we now have Θ = 0, while on the hot one, we have Θ = 1. Therefore, the
numerical results are described by using only the nondimensionalized variables.

In Figures 4–7, isolines of the contour of the velocity magnitude (|u|), the nondimensional
velocity components (u∗, v∗), and the nondimensional temperature (Θ) are reported for
four Ra numbers (from 103 up to 106) for the two coupling algorithms (c1 and c2). Reference
results of the physical field contours can be widely found in the literature for this problem.
For this reason, the interested reader can refer to [27] and references therein. For every case
of Ra number, the contour isolines are in agreement with the data found in the literature. In
Table 1, a grid convergence analysis is reported for the maximum value of the v∗ component
evaluated at y∗ = 0.5 for the case of Ra = 105. In particular, three types of grid size were
investigated, corresponding, respectively, to 400, 1600, and 6400 elements (nel), for each
of the four simulation setups. The four simulations show the same convergence behavior,
with a similar value for the finest grid solution. A comparison with [12] for the same
simulations was reported since we used the same grid refinement. It can be noticed that
our results are consistent with the ones already published.
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Figure 6. From left to right, the contour of velocity magnitude, nondimensional velocity components,
and nondimensional temperature. Coupling algorithm c1 (top) and c2 (bottom) for the case with
Ra = 105.

Table 1. Grid convergence of the v∗max value at y∗ = 0.5 for the case with Ra = 105, and comparison
with the same data of [12], for three different level of discretization.

nel F OF c1 c2 [12]

20 × 20 73.639 65.186 66.789 71.908 73.241
40 × 40 73.615 72.470 73.140 73.244 73.189
80 × 80 73.617 73.337 73.515 73.681 73.168
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Figure 7. From left to right, the contour of velocity magnitude, nondimensional velocity components,
and nondimensional temperature. Coupling algorithm c1 (top) and c2 (bottom) for the case with
Ra = 106.

In Tables 2 and 3, we report the maximum value of the nondimensional velocity
components, u∗ and v∗, evaluated, respectively, at the planes x∗ = 0.5 and v∗ = 0.5 with
different Ra numbers and compare them with the same data taken from the literature.

Table 2. Maximum value of u∗ component at x∗ = 0.5 for different Ra numbers and comparison with
literature data.

Ra F OF c1 c2 [23] [24] [26] [27]

103 3.66 3.59 3.64 3.70 3.63 3.68 3.65 3.49
104 16.24 16.22 16.19 16.33 16.18 16.10 16.18 16.12
105 35.70 35.71 35.75 35.80 34.81 34.00 34.77 33.39
106 80.79 81.03 83.16 78.47 65.33 65.40 64.69 65.40

Table 3. Maximum value of v∗ component at y∗ = 0.5 for different Ra numbers and comparison with
literature data.

Ra F OF c1 c2 [23] [24] [25] [26] [27]

103 3.69 3.60 3.68 3.73 3.68 3.73 3.69 3.70 3.69
104 19.80 19.76 19.72 19.88 19.51 19.90 19.63 19.62 19.76
105 73.62 73.34 73.52 73.68 68.22 70.00 68.85 68.69 70.63
106 234.80 234.66 227.41 229.06 216.75 228.00 221.60 220.83 227.11

In general, a good agreement can be noticed for the maximum value of the nondi-
mensional velocity components. For the case of Ra = 106, however, a slight difference is
present concerning other literature data, although the four simulations presented in this
work exhibit values close to each other.

In Figures 8 and 9, the nondimensional velocity components and the nondimensional
temperature are reported for every type of the four simulations (F, OF, c1, c2) and for every
Ra number. A comparison with literature data from [27], symbolized with circular markers,
is also highlighted. Specifically, these plots refer to the variables’ behavior at specific points
in the domain: the line x∗ = 0.5 for the u∗ component and the line y∗ = 0.5 for the v∗

component and the temperature Θ.
Regarding the latter variable, the plotted domain is restricted to x∗ ∈ [0, 0.2] (apart

from Ra = 105) since the literature data can be found only in this interval. Moreover, for
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the same Θ, a good agreement with reference data published in [27] is present for every
case and every type of simulation, including both coupled algorithms. For this reason, we
do not provide a zoom on specific regions of the nondimensional temperature plot since
the lines of the four simulations are almost overlapping. The same trend can also be seen
for the v∗ component, while some discrepancy can be noticed for the u∗ component in the
case of Ra = 106. On the other hand, each of our simulations seems to produce the same
numerical solution, confirming the goodness of the simulations and coupling procedure.
We provide a zoom of the plot in the region close to the maximum/minimum of the velocity
components to better highlight the slight differences between the four simulations and the
literature results.
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Figure 8. Nondimensional temperature Θ (at y∗ = 0.5, top) and nondimensional components u∗ (at
x∗ = 0.5, middle) and v∗ (at y∗ = 0.5, bottom) for the four types of simulations (F, OF, c1, and c2)
with a comparison with literature data from Wan2001 [27] (circular markers). Case with Ra = 103 on
the left and Ra = 104 on the right.
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Figure 9. Nondimensional temperature Θ (at y∗ = 0.5, top) and nondimensional components u∗ (at
x∗ = 0.5, middle) and v∗ (at y∗ = 0.5, bottom) for the four types of simulations (F, OF, c1, and c2) with
a comparison with literature data from Wan2001 [27] (circular markers). Case with Ra = 105 on the left
and Ra = 106 on the right.

4.2. Conjugate Heat Transfer (CHT)

In this section, we present the second application implemented to test the data transfer
between an FVM code and an FEM code in the domain defined by Figure 10. This test aims
to investigate the data transfer through a boundary that connects these two domains. In this
context, we analyze a conjugate heat transfer problem that describes a thermal exchange
between two regions of different materials. In particular, we consider the heat exchange
through a physical boundary between a solid and a fluid region. This kind of application
finds significant attention in several scientific and engineering applications, such as solar
heating [28], heat exchange [29], and nuclear energy production [30].

The solid is modeled as a two-dimensional isotropic material with constant material
properties. Two domains are considered where different equations are solved. The first
region represents a solid domain in which only the temperature equation has been solved,
while in the second region, the momentum and temperature equations are solved for a
buoyant fluid, employing the same system of equations described in (1). The only parameter
which describes the temperature distribution in the solid is the thermal diffusivity α, which
is defined as

α =
k

ρ cp
, (3)
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where k is the thermal conductivity and cp is the thermal capacity of the solid domain.
Therefore, the heat equation in the solid reads as

∂T
∂t

= α∆T . (4)

We recall that in the following discussion, the physical field has been nondimensionalized;
thus, the temperature field T is transformed into the corresponding Θ by using (2).

The peculiarity of this kind of physical setup is the mutual exchange of the boundary
condition values at the interface between the two regions. At the interface, the fluid problem
is defined by a nonhomogeneous Dirichlet boundary condition, while the solid problem is
defined by a nonhomogeneous Neumann boundary condition. Specifically, the temperature
field in the solid at the boundary is used as the boundary condition for the fluid region,
while the heat flux computed at the same interface for the fluid region is the boundary
condition for the temperature equation of the solid. This setup is commonly adopted for
conjugate heat transfer simulations, as detailed in [31].

For the solid subdomain, the boundary conditions include two homogeneous Neu-
mann boundary conditions that are imposed at the top and bottom boundaries, while a
fixed temperature is imposed on one lateral side (the cold wall). The opposite wall is the
exchange interface with the fluid subdomain, where a nonhomogeneous flux condition
with qw computed from the temperature field near the wall in the fluid region is imposed
at every time step.

In the fluid subdomain, the boundary conditions for the velocity field are the same
as the ones that we described for the cavity in the previous section. For the temperature
field, the top and bottom walls are adiabatic, i.e., there is no flux at those walls. There
is a Dirichlet condition on the other two boundaries. The nondimensional temperature
Θ is fixed at the hot wall with value 1, while the other wall is the exchange interface
with the solid subdomain. Here, the temperature profile is dictated by the solution of
the temperature equation in the solid region. A schematic representation of the exchange
of physical quantities can be seen in Figure 10. Here, the gray-colored solid region is
graphically separated from the fluid one with a dashed line, through which the flux (wavy
line, qw) and the temperature (solid line, Tw) are exchanged.

0.2 l l
y∗

x∗

FEM FVM

qw

Tw

Θ = 1Θ = 0

0.8 l l

FEM FVM

qw

Tw

Θ = 1Θ = 0

Figure 10. Geometrical configurations of the CHT problem: on the left is the domain with the solid
wall thickness equal to t1, and on the right it is equal to t2.

4.2.1. Boundary Data Transfer Algorithm

A boundary data transfer algorithm is necessary to replicate numerically the setups
where the heat exchange between the fluid and solid subdomains is not uniform. As
stated in the introductory part, a possibility would be to solve the whole domain with a
single code that implements both physics. In this work, however, we chose the strategy of
using well-established codes for robustness and accuracy, so a suitable strategy must be
developed to exchange data between codes when they share a boundary region.

The method used for the coupling application involving boundary data transfer fol-
lows a procedure similar to the algorithm described in Section 4.1.1. In this scenario, we
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aim to couple the boundary between the solid and the fluid region within a 2D problem.
Hence, the interface structures consist of a 1D mesh for FEMuS and a 2D mesh for Open-
FOAM. After the interfaces and the meshes are created, the fields to be exchanged are
initialized. In this instance, the fields to be transferred between the codes are the tempera-
ture at the boundary and the wall heat flux through the same boundary. Thus, we generate
two MED fields for storing FEMuS data: a cell-wise heat flux field (qs_P0_1Dmesh) and a
temperature field (temp_P0_1Dmesh). Similarly, corresponding MED fields are initialized
for OpenFOAM: qs_P0_2Dmesh and temp_P0_2Dmesh.

At the beginning of the time loop, OpenFOAM solves the governing equation for the
fluid and the temperature equations. It then computes the wall heat flux to be transferred to
FEMuS. The qs_P0_2Dmesh is first extracted from the solution of OpenFOAM with the func-
tion get_field_from_OpenFOAM() and then stored in a MED field over the corresponding
mesh. The heat flux provided by OpenFOAM is interpolated over the target mesh to obtain
the target field qs_P0_1Dmesh. This field is then written into the FEMuS solver as a nonho-
mogeneous Neumann boundary condition using the set_field_to_femus() routine. It is
worth noting that the P0 to P2 interpolation is needed before the solution is written into
the boundary since the field provided by OpenFOAM has a cell-wise approximation. The
updated boundary condition is then used by FEMuS to solve the temperature equation
within the solid domain, as described in (4). After obtaining the temperature solution in
the solid, the get_field_from_femus() function is invoked to retrieve the solution at the
boundary domain. With the inverse mapping, this solution is first converted into a P0
field and then interpolated over the OpenFOAM boundary to yield the temp_P0_2Dmesh
field. This field is used as a Dirichlet boundary condition for OpenFOAM as the boundary
temperature is updated using the set_field_to_OpenFOAM() routine. At this stage, control
is turned back to OpenFOAM, where it continues the task of solving its equations in the
following time step.

4.2.2. Simulations Results

A schematic representation of the physical configuration is reported in Figure 10,
where the mutual exchange of the boundary conditions at the interface is depicted. Note
that the fluid region is described by a squared cavity of dimension l × l. In this work,
two geometric configurations are considered to take into account the solid region with
thicknesses of t1 = 0.2l and t2 = 0.8l, where l is the length side of the cavity. The physical
and geometrical configuration were implemented following the work of Basak et al. [32],
with the idea of reproducing numerical results described in the literature.

Several physical and geometrical configurations were analyzed in [32], changing the
Pr number, the Ra number, the conductivity ratio K, the solid wall thickness t, and its
geometrical position (hot side or cold side). Regarding K, this parameter is defined as the
ratio between solid and fluid thermal conductivity as

[H]K =
ks

k f
, (5)

where the subscripts s and f refer to solid and fluid regions, respectively.
We present the numerical simulation of these tests considering only a few configura-

tions. In particular, the Pr number was considered fixed and equal to 0.015, while two Ra
numbers were considered (103 and 105). Three values of K were investigated, equal to
K1 = 0.1, K2 = 1, and K3 = 10. Concerning the solid wall position, only one configuration
was taken into account, where the solid represents the cold side of the physical domain.

Regarding the initial condition for the temperature field, it is worth noting that
two different thermal conductivities are present in the whole simulated region (fluid +
solid), for which we have that Θ ∈ [0, 1]. Therefore, the linear behavior of the temperature
distribution between cold and hot walls, which is the initial condition, has to take into
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account two different ki with two different region widths. In our simulation, we fix the
initial temperature as

Θ(x) =


x

s1 + s2K
x ∈ solid

x
s1/K + s2

+ Θb x ∈ f luid ,
(6)

where Θb represents the initial temperature on the interface and is equal to s1/(s1 + s2K),
with s1 and s2 as the widths of the two regions. Naturally, (6) arises from the well-known
solution of the temperature distribution inside a wall with two different regions with no
convective motion. Considering the boundary conditions on Θ, which reads Θ = 0 on the
cold wall (solid) and Θ = 1 on the hot wall (fluid), this initial condition ensures that the
temperature flux is always with the right sign, i.e., the thermal flux passes through the
common boundary from the fluid to the solid region.

The convergence criteria that are adopted are based on the residual of the linear system
generated in the discretization of the problem. In particular, in OpenFOAM, all variables
are solved to a precision of 1 × 10−6, meaning that the relative residual of each equation
reaches that value at each time step. Each iteration also includes a single nonorthogonal
correction step. Given the uniform discretization of the grid, no further correction steps are
required. The pressure equation is solved up to 1 × 10−8 since its solution influences the
mass conservation. In FEMuS, the convergence criteria are also based on the linear algebra
residual and kept at the same value as the ones in OpenFOAM when running in split or
monolithic configuration.

In Figures 11–13, the contour of the nondimensional temperature Θ and the velocity
stream function Ψ are reported for the simulated cases. Concerning the temperature contour
θ, we can observe a squeeze of the lines toward the solid region (gray-colored domain) with
the decrease in the conductivity ratio K. Regarding the changing Ra numbers, its increase
results in a stretching of the temperature contour. As the Rayleigh number increases, the
configuration of the solution moves from temperature stratification towards a recirculation
cell. The streamlines contour ψ, instead, tends to have a more circular shape for higher
Rayleigh numbers. In both cases, the increase in the conductivity ratios (K) has the slight
effect of enlarging the velocity zone of interest away from the middle of the domain.

Considering the nondimensional temperature, we can notice a different behavior
for the isolines with different conductivity ratios K. When K < 1, the largest part of the
temperature gradient is located in the solid region, while for values of K > 1, the same
consideration can be drawn for the fluid region. Naturally, increasing the Ra number, we
reobtain the classical temperature isolines of a buoyant cavity, where the isolines distribu-
tion still follows the previous discussion of the conductivity ratio K. These considerations
can be applied also in the case of a solid wall thickness equal to t2.

Regarding the velocity stream function Ψ, the major difference can be noticed between
the simulations with a different Ra number: for Ra = 103, the order of magnitude is lower
than 1, while for Ra = 105, we reach values up to 8. Furthermore, the conductivity ratio
K influences this value, for which an increase in K produces an increase in the stream
function magnitude.

In Figure 14, the local Nusselt number on the interface is reported for the case of
the solid wall thickness equal to t1. The Nusselt number is a global index that effectively
summarizes the heat exchange between a solid and a fluid, and it is relevant in many
engineering applications of interest in the nuclear field and, in general, when there are
complex heat exchange configurations at play. This parameter was computed as the normal
gradient of the nondimensional temperature on the interface and represents the total ratio
between the convective and the conductive heat transfer over the boundary interface. In
particular, we have

Nul =
∂Θ
∂n

. (7)
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Figure 11. Simulations with solid thickness t1 and Ra = 103. From left to right, contour of nondimen-
sional temperature Θ (top) and velocity stream function Ψ (bottom) for K = 0.1, 1, 10.
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Figure 12. Simulations with solid thickness t1 and Ra = 105. From left to right, contour of nondimen-
sional temperature Θ (top) and velocity stream function Ψ (bottom) for K = 0.1, 1, 10.
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Figure 13. Simulations with solid thickness t2 and Ra = 105. From left to right, contour of nondimen-
sional temperature Θ (top) and velocity stream function Ψ (bottom) for K = 0.1, 1, 10.

A comparison with the reference literature data is reported with the white circular
markers (data from [32]), and the gray markers were obtained with the boundary data
algorithm presented in this work. In general, the estimation of the Nusselt number is
in good agreement with the literature data. In the case of Ra = 105 and K = 10, there
is a slight overestimation for y∗ between 0.4 and 0.8. This is mostly due to the mesh
resolution near the wall since the discretization is uniform on the wall domain, while the
computation of the normal derivative near the wall would require a larger set of points. A
slight overestimation concerning the literature data is obtained for the case with Ra = 105

and K = 10.
In Table 4, the average Nusselt number Nul on the shared boundary between the

two regions is reported, with a comparison of the same parameter presented in [32]. A
good agreement with the literature data is achieved for every simulation.

0.0 0.2 0.4 0.6 0.8 1.0

y∗

0.28

0.30

0.32

0.34

0.36

0.38

N
u
l

0.0 0.2 0.4 0.6 0.8 1.0

y∗

0.6

0.8

1.0

1.2

1.4

1.6

N
u
l

0.0 0.2 0.4 0.6 0.8 1.0

y∗

0.36

0.38

0.40

0.42

0.44

N
u
l

0.0 0.2 0.4 0.6 0.8 1.0

y∗

1

2

3

4

5

6

N
u
l

Figure 14. Local boundary Nusselt number for the case with solid thickness t1: gray markers are
the simulations with Ra = 103 on top (K = 0.1 on the (left) and K = 10 on the (right)) and Ra = 105

on the bottom (K = 0.1 on the left and K = 10 on the right). A comparison with data from [32] is
reported (white circular markers).
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Table 4. Average Nusselt number with different conductivity ratios K, varying the Ra number and
wall thickness t. A comparison with results from [32] is also reported.

Ra
t1

K1 [32] K2 [32] K3 [32]

103 0.332 0.335 0.898 0.890 1.08 1.08
105 c0.412 c0.412 c1.897 c1.907 c3.269 3.162

Ra
t2

K1 [32] K2 [32] K3 [32]

105 0.118 0.117 0.850 0.851 2.556 2.578

The two codes exploit different linear systems resolution paradigms, the FVM (Open-
FOAM) and the FEM (FEMuS). Nevertheless, the execution times are similar for both the
presented applications. In all cases, OpenFOAM is a much more optimized code, and it can
reach the stationary solution with a simulation time in the order of a few seconds for the
computational meshes with coarser resolution. FEMuS is a research code that therefore has
seen much less optimizations and, for the same simulation, can require a time that is double
or more that of OpenFOAM. The coupling algorithm does not add a significant overhead to
the simulation, where the largest amount of computational resources are still required for
the solution of the linear algebra problem arising from the discretization. It has also to be
noted that OpenFOAM uses a split approach for the solution of the Navier–Stokes system,
the so-called PISO, SIMPLE, and PIMPLE algorithms, while FEMuS can indifferently use a
fully coupled solver for the velocity and pressure, as well as a projection algorithm that
is similar in concept to the ones listed for OpenFOAM [33]. The monolithic solver for
Navier–Stokes is generally more accurate and any splitting technique will always introduce
a discretization error proportional to the time step of the simulation, as well as an additional
nonphysical boundary condition for the pressure. Interested readers can refer to [33] for
additional details on the topic.

5. Conclusions

In this work, an algorithm for the numerical coupling of a finite volume code (Open-
FOAM) and a finite element code (FEMuS) is presented by using an external library (MED).
The code coupling relies on volumetric and boundary data exchange over the simulated
domain without using external files. The algorithm is suitable for multiphysics simulations
where different codes with different fields of application can be coupled based on their
specific field features.

Specifically, we presented two types of data exchange: a volume and a boundary data
transfer. The volume coupling considers the volume transfer data in a buoyant-driven cav-
ity problem. The boundary coupling considers a conjugate heat transfer problem between
a solid and a fluid. The usage of the two coupling strategies is strictly connected to the
engineering and physical problem under examination and does not affect the performance
of the coupling. In fact, many engineering applications can be successfully modeled with
the coupling methodology described in this paper, leveraging the features and strengths of
the standalone codes.

In the first application, we tested the code coupling through the buoyancy term in
the momentum equation, while in the second application, the coupling was performed by
considering the thermal boundary condition on the interface between the two regions. For
the buoyant cavity application, the coupling was performed in two ways, firstly solving
the momentum equation in OpenFOAM and temperature in FEMuS and then switching
the equation to solve between the two codes.

In the first test, we reported the nondimensional velocity field for different Ra numbers
and compared them with the same data taken from the literature. In general, a good agree-
ment can be noticed for the maximum value of the nondimensional velocity components.
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For the case of Ra = 106, however, a slight difference can be noted when compared with
the literature data. However, all strategies, i.e., OpenFOAM standalone, FEMuS standalone,
coupling A, and coupling B, produced similar results. In the second test, by increasing the
Ra number, we obtained the classical temperature isolines of a buoyant cavity, where the
isolines distribution still followed the conductivity ratio K. This behavior was independent
on the thickness of the solid subdomain.

Future works will investigate the capability of the presented algorithm to exchange
additional physics, such as turbulence modeling, with the aim of enhancing the OpenFOAM
models with specific thermal turbulence models available in the FEMuS code.

Author Contributions: Methodology, G.B., A.C., F.G., S.M. and L.S.; Validation, G.B., A.C., F.G., S.M.
and L.S.; Investigation, G.B., A.C., F.G., S.M. and L.S.; Writing—original draft, G.B., A.C., F.G., S.M.
and L.S.; Writing—review & editing, G.B., A.C., F.G., S.M. and L.S. All authors have read and agreed
to the published version of the manuscript

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Drikakis, D.; Frank, M.; Tabor, G. Multiscale computational fluid dynamics. Energies 2019, 12, 3272. [CrossRef]
2. Groen, D.; Zasada, S.J.; Coveney, P.V. Survey of multiscale and multiphysics applications and communities. Comput. Sci. Eng.

2013, 16, 34–43. [CrossRef]
3. Cordero, M.E.; Uribe, S.; Zárate, L.G.; Rangel, R.N.; Regalado-Méndez, A.; Reyes, E.P. CFD Modelling of Coupled Multiphysics-

Multiscale Engineering Cases in Comput. Fluid Dyn.-Basic Instrum. Appl. Sci. 2017, 10, 237–263. [CrossRef]
4. Jasak, H.; Jemcov, A.; Tukovic, Z.; et al. OpenFOAM: A C++ library for complex physics simulations. In Proceedings of the

International workshop on coupled methods in numerical dynamics, Dubrovnik, Croatia, 19–21 September 2007; Volume 1000,
pp. 1–20.

5. Angeli, P.E.; Bieder, U.; Fauchet, G. Overview of the TrioCFD code: Main features, VetV procedures and typical applications to
nuclear engineering. In Proceedings of the NURETH 16-16th International Topical Meeting on Nuclear Reactor Thermalhydraulics,
Chicago, IL, USA, 30 August–4 September 2015.

6. Archambeau, F.; Méchitoua, N.; Sakiz, M. Code Saturne: A finite volume code for the computation of turbulent incompressible
flows-Industrial applications. Int. J. Finite Vol. 2004, 1, 1–62

7. Levesque, J. The Code Aster: A product for mechanical engineers; Le Code Aster: Un produit pour les mecaniciens des structures.
Epure 1998, 60, 7–20.

8. Helfer, T.; Michel, B.; Proix, J.M.; Salvo, M.; Sercombe, J.; Casella, M. Introducing the open-source mfront code generator:
Application to mechanical behaviours and material knowledge management within the PLEIADES fuel element modelling
platform. Comput. Math. Appl. 2015, 70, 994–1023. [CrossRef]

9. Kirk, B.S.; Peterson, J.W.; Stogner, R.H.; Carey, G.F. libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening
Simulations. Eng. Comput. 2006, 22, 237–254. [CrossRef]

10. Bangerth, W.; Hartmann, R.; Kanschat, G. deal. II—a general-purpose object-oriented finite element library. ACM Trans. Math.
Softw. (TOMS) 2007, 33, 24-es. [CrossRef]

11. Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.E.; Wells, G. The FEniCS
project version 1.5. Arch. Numer. Softw. 2015, 3, 9–23.

12. Da Vià, R. Development of a computational platform for the simulation of low Prandtl number turbulent flows. Ph.D. Thesis,
University of Bologna, Bologna, Italy, 2019.

13. Barbi, G.; Bornia, G.; Cerroni, D.; Cervone, A.; Chierici, A.; Chirco, L.; Da Vià, R.; Giovacchini, V.; Manservisi, S.; Scardovelli, R.
FEMuS-Platform: A numerical platform for multiscale and multiphysics code coupling. In Proceedings of the 9th International
Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2021,
Barcelona, Spain, 14–16 June 2021; International Center for Numerical Methods in Engineering: Catalonia, Spain, 2021; pp. 1–12.

14. Numeric Platform. Available online: https://github.com/FemusPlatform/NumericPlatform (accessed on 26 April 2024 ).
15. SALOME. 2023. Available online: https://www.salome-platform.org/?page_id=23 (accessed on 26 April 2024).

http://doi.org/10.3390/en12173272
http://dx.doi.org/10.1109/MCSE.2013.47
http://dx.doi.org/10.5772/intechopen.70562
http://dx.doi.org/10.1016/j.camwa.2015.06.027
http://dx.doi.org/10.1007/s00366-006-0049-3
http://dx.doi.org/10.1145/1268776.1268779
https://github.com/FemusPlatform/NumericPlatform
https://www.salome-platform.org/?page_id=23


Appl. Sci. 2024, 14, 3744 22 of 22

16. Ahrens, J.; Geveci, B.; Law, C.; Hansen, C.; Johnson, C. 36-paraview: An end-user tool for large-data visualization. Vis. Handb.
2005, 717, 50038-1.

17. Balay, S.; Abhyankar, S.; Adams, M.F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.M.; Dalcin, L.; Dener, A.;
et al. PETSc Web Page. 2023. Available online: https://petsc.org/ (accessed on 26 April 2024).

18. Chierici, A.; Giovacchini, V.; Manservisi, S. Analysis and numerical results for boundary optimal control problems applied to
turbulent buoyant flows. Int. J. Numer. Anal. Model. 2022, 19, 347–368.

19. Da Vià, R.; Giovacchini, V.; Manservisi, S. A Logarithmic Turbulent Heat Transfer Model in Applications with Liquid Metals for
Pr = 0.01–0.025. Appl. Sci. 2020, 10, 4337. [CrossRef]

20. Chirco, L. On the Optimal Control of Steady Fluid Structure Interaction Systems. Ph.D. Thesis, University of Bologna, Bologna,
Italy, 2020.

21. Cerroni, D. Multiscale Multiphysics Coupling on a Finite Element Platform. Ph.D. Thesis, University of Bologna, Bologna, Italy,
2016.

22. Ribes, A.; Caremoli, C. Salome platform component model for numerical simulation. In Proceedings of the 31st annual
international computer software and applications conference (COMPSAC 2007), Beijing, China, 24–27 July 2007; IEEE: Beijing,
China, 2007; Volume 2, pp. 553–564.

23. de Vahl Davis, G. Natural convection of air in a square cavity: A benchmark numerical solution. Int. J. Numer. Methods Fluids
1983, 3, 249–264. [CrossRef]

24. Manzari, M. An explicit finite element algorithm for convection heat transfer problems. Int. J. Numer. Methods Heat Fluid Flow
1999, 9, 860–877. [CrossRef]

25. Massarotti, N.; Nithiarasu, P.; Zienkiewicz, O. Characteristic-based-split (CBS) algorithm for incompressible flow problems with
heat transfer. Int. J. Numer. Methods Heat Fluid Flow 1998, 8, 969–990. [CrossRef]

26. Mayne, D.A.; Usmani, A.S.; Crapper, M. h-adaptive finite element solution of high Rayleigh number thermally driven cavity
problem. Int. J. Numer. Methods Heat Fluid Flow 2000, 10, 598–615. [CrossRef]

27. Wan, D.C.; Patnaik, B.S.V.; Wei, G.W. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular
convolution. Numer. Heat Transf. Part B Fundam. 2001, 40, 199–228.

28. Pangavhane, D.R.; Sawhney, R.; Sarsavadia, P. Design, development and performance testing of a new natural convection solar
dryer. Energy 2002, 27, 579–590. [CrossRef]

29. Fitzgerald, S.D.; Woods, A.W. Transient natural ventilation of a room with a distributed heat source. J. Fluid Mech. 2007, 591, 21–42.
[CrossRef]

30. Espinosa, F.; Avila, R.; Cervantes, J.; Solorio, F. Numerical simulation of simultaneous freezing–melting problems with natural
convection. Nucl. Eng. Des. 2004, 232, 145–155. [CrossRef]

31. John, B.; Senthilkumar, P.; Sadasivan, S. Applied and theoretical aspects of conjugate heat transfer analysis: A review. Arch.
Comput. Methods Eng. 2019, 26, 475–489. [CrossRef]

32. Basak, T.; Anandalakshmi, R.; Singh, A.K. Heatline analysis on thermal management with conjugate natural convection in a
square cavity. Chem. Eng. Sci. 2013, 93, 67–90. [CrossRef]

33. Guermond, J.L.; Minev, P.; Shen, J. An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech.
Eng. 2006, 195, 6011–6045. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://petsc.org/
http://dx.doi.org/10.3390/app10124337
http://dx.doi.org/10.1002/fld.1650030305
http://dx.doi.org/10.1108/09615539910297932
http://dx.doi.org/10.1108/09615539810244067
http://dx.doi.org/10.1108/09615530010347187
http://dx.doi.org/10.1016/S0360-5442(02)00005-1
http://dx.doi.org/10.1017/S0022112007007598
http://dx.doi.org/10.1016/j.nucengdes.2004.06.005
http://dx.doi.org/10.1007/s11831-018-9252-9
http://dx.doi.org/10.1016/j.ces.2013.01.033
http://dx.doi.org/10.1016/j.cma.2005.10.010

	Introduction
	The Numerical Platform Environment
	FEM Code: FEMuS
	FVM Code: OpenFOAM
	The MED and MEDCoupling Library from the SALOME Platform

	Coupling Procedure through the MED Library
	Numerical Results
	Buoyant-Driven Cavity
	Volume Data Transfer Algorithm
	Simulations Results

	Conjugate Heat Transfer (CHT)
	Boundary Data Transfer Algorithm
	Simulations Results


	Conclusions
	References

