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Abstract: Viscoelastic materials are applied in several fields, and their relaxation characteristics are
intricately related to the failure mechanism of sealing components and the generation of indentation
rolling resistance in belt conveyors. Therefore, it is imperative to explore the relaxation characteristics
of viscoelastic materials using characterization models. This article focuses on exploring these
characterization models and the indentation rolling resistance of viscoelastic materials. The research
comprises the following aspects: (1) A 2N + 2 element generalized Maxwell constitutive model is
proposed for the relaxation behavior of viscoelastic materials to address the limitations of conventional
relaxation models. (2) We conducted numerical calculations based on the relaxation modulus to
solve the relaxation spectrum using several relaxation spectrum models. The findings showed that
the model parameters were dependent on the testing time range. (3) The relationship between the
indentation rolling resistance and relaxation model parameters was evaluated based on the theoretical
foundation of the indentation rolling resistance calculation.

Keywords: viscoelastic materials; relaxation modulus; characterization model; relaxation spectrum;
indentation rolling resistance

1. Introduction

Belt conveyors account for 30% of the total installed power of coal mines and consume
60% of the energy in coal mining operations, making them the main energy consuming
equipment in coal mines [1]. One approach to reduce energy consumption is to intelligently
monitor and adjust the operating status of belt conveyors. Another strategy involves funda-
mentally reducing energy consumption through design and manufacturing improvements
aimed at enhancing machine performance and reducing operating resistance. Under stable
operation, the operating resistance of a belt conveyor mainly comprises the following com-
ponents: main resistance, additional resistance, special resistance, and lifting resistance [2].
The main resistance of the conveyor encompasses the rotational resistance of the rollers, the
indentation rolling resistance generated by the relative movement between the conveyor
belt and the rollers, and the bending resistance produced when the conveyor belt repeatedly
bends under the action of the driving roller [3].

The proportion of indentation rolling resistance exceeds half of the overall operating
resistance [4]. This resistance is generated by the rolling of a rigid roller on the surface of a
viscoelastic material, such as the conveyor belt cover surface. The process of deformation
and recovery of viscoelastic materials occurs gradually over time, leading to strain lagging
behind stress [5]. When a rigid cylinder rolls on the surface of a viscoelastic material, the
contact area between the conveyor belt and the roller is asymmetric relative to the center
of the roller. This results in an asymmetric distribution of the contact stress, generating
resistance that hinders the movement of the conveyor belt, known as collapse rolling resis-
tance [6]. When the transportation distance of the belt conveyor is increased, it requires
more rollers to support its weight, leading to a greater accumulation of collapse rolling
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resistance [7]. In summary, the formation of indentation rolling resistance is attributed
to the inherent characteristics of the material. Therefore, it is imperative to explore the
characterization method of viscoelastic materials using the relaxation model (relaxation
modulus function) and evaluate the relationship between the model and the indentation
rolling resistance. The Maxwell model is used to characterize the viscoelastic properties
of materials and establish the relaxation modulus function. However, the three-element
Maxwell model, commonly used as an engineering characterization method, can only
roughly provide an approximate characterization of the materials [8]. In practical scenarios,
material structures are more intricate, rendering the three-element model too simple to
characterize them. The generalized Maxwell model, a theoretical representation method, of-
fers a more comprehensive characterization of the viscoelasticity of materials [9]. However,
its applicability is limited by the actual testing time range. In this study, we address this
limitation by modifying and streamlining the generalized Maxwell model. Subsequently,
the model is integrated into the collapse rolling resistance formula to evaluate the collapse
rolling resistance.

2. Related Studies

Wheeler and Munzenberger (2008) assessed indentation rolling resistance using the
finite element analysis method [10]. In addition, these scholars conducted experimental
research to explore the indentation rolling resistance between the steel core conveyor belt
and the roller using a testing device obtained from the University of New Zealand in
Australia [11]. In 2009, in a previous study, these researchers reported that different fabric
layers can affect the outcome of indentation rolling resistance [12]. In addition, Mao and
Yang et al. have widely investigated indentation rolling resistance and reported insightful
results. Their research mainly comprises leveraging the viscoelastic characteristics of
conveyor belts and energy consumption method to derive the calculation formula for
indentation rolling resistance and designing a testing device for evaluating indentation
rolling resistance [13–17]. Qin and Yu et al. (2011) used the finite element method to assess
the stress distribution in the contact area as a moving load rolled over a rubber cover
layer [18]. Hötte and Von Daacke et al. addressed the shortcomings of the method for
the calculation of indentation rolling resistance in the LDIN22123 standard [19]. O‘Shea
and Wheeler et al. [20] analyzed the errors in the results obtained from the calculation
of indentation rolling resistance using different viscoelastic testing methods. Hou and
Wang (2014) from the China University of Mining and Technology delved into extensive
simulation analyses of indentation rolling resistance. They established the relationship
between stress and strain in the contact area using Fourier series and derived a two-
dimensional boundary element discrete equation. Moreover, they proposed an iterative
algorithm for solving the boundary element equation [21].

In summary, extensive research has been conducted on indentation rolling resistance
in the past. Several studies have conducted theoretical analyses on indentation rolling
resistance and in-depth investigations into viscoelastic properties. These studies provide a
valuable reference for further research endeavors. However, there is a gap in the literature
regarding the accurate characterization of models of viscoelastic materials. This paper seeks
to address this gap by conducting research on the relaxation model of viscoelastic materials
based on existing theoretical frameworks. The goal is to apply the characterization model
parameters of the materials to calculate the indentation rolling resistance of belt conveyors.

3. Generalized Maxwell Relaxation Model for Viscoelastic Materials
3.1. Shortcomings of the 2N + 1 Component Generalized Maxwell Model

This section introduces the most common characterization model of viscoelastic mate-
rials, the generalized Maxwell model, prior to establishing the 2N + 2 Maxwell viscoelastic
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material characterization model proposed in this paper. Figure 1 illustrates a series of
components of the generalized Maxwell model.

E(t) = E0 +
N

∑
i=1

Eie
− t

τi (1)
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Figure 1. A schematic illustration of the generalized Maxwell model.

The modulus E(t) is a time-dependent function as shown in the equation above, where
E(t) represents the relaxation modulus; t denotes the time; Ei represents the modulus or
spectral strength of an ideal spring; τi denotes the relaxation time for Ei and ηi (as shown
in Figure 1), which is equivalent to the ratio of viscosity ηi to elastic modulus Ei for each
series mechanism, whereby a series mechanism is a Maxwell model; and N represents the
number of Maxwell models. Theoretically, N represents an indeterminate value and E0
denotes the value of E(t) as time approaches infinity, typically regarded as a constant. This
model has 2N + 1 elements, so the model shown in Figure 1 can be referred to as the 2N + 1
element generalized Maxwell model [22].

Equation (1) can also be expressed as shown below:

E(t) = E0 +
m

∑
i=1

Eie
− t

τi +
j

∑
i=m+1

Eie
− t

τi +
N

∑
i=j+1

Eie
− t

τi (2)

In Expression (2), m represents the limit for an infinitely small relaxation time, and
j denotes the limit for an infinitely large relaxation time. N represents the number of
Maxwell models. When t >> τm, τm is considered infinitesimal; conversely, when t << τj,
τj is regarded as infinite.

Therefore:
m

∑
i=1

Eie
− t

τi = 0,
N

∑
i=j+1

Eie
− t

τi =
N

∑
i=j+1

Ei (3)

The following equation can be obtained from these expressions:

E(t) = E0 +
N

∑
i=j+1

Ei +
j

∑
i=m+1

Eie
− t

τi (4)

This implies that the τm varies and τj is distinct for different time-limited intervals.
Consequently, the second, third, and fourth terms on the right side of Equation (2) are
different, leading to differences in Equation (4). The E0 obtained from actual testing
represents the sum of the first two terms on the right side of Equation (4), hence differing
with varying maximum testing times. Therefore, the 2N + 1 element generalized Maxwell
model is not unique. A Maxwell model of 2N + 1 elements within a specified testing time
range is correct and unique.

The 2N + 1 element model is a universal viscoelastic material characterization model
that effectively expresses the stress relaxation behavior of viscoelastic materials under
unit strain. However, the notion of infinite time is an idealized concept, whereas in real-
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world scenarios, time is finite. E0 represents the value of E(t) as time approaches infinity,
constituting an ideal constant value that remains unaffected by finite time durations t.
Therefore, E0 does not theoretically exist.

Assuming the maximum testing time is a fixed value tmax, if τi >> tmax, then the
effect of tmax on the contribution of the i-th spring and the i-th adhesive component to
the relaxation modulus of the material is negligible, implying that is not affected by a
value of t that is smaller than tmax. Therefore, for any time t, the contribution of the i-th
spring and the i-th adhesive component to the relaxation modulus of the material remains
constant. This implies that all springs and adhesive pots with a relaxation time greater than
τi contribute a constant value to the relaxation modulus of the material. Summing up all the
constant values together yields E0, implicitly representing the effect of a set of springs and
a viscoelastic component, essentially equating them to a single spring E0. However, this
value does not depict the relaxation spectrum Ei of this set of springs, as well as the ratio
τi of spring Ei to viscoelastic component ηi. Therefore, theoretically, E0 offers incomplete
characterization. In summary, the 2N + 1 model exhibits several shortcomings.

3.2. The Proposal of the 2N + 2 Generalized Maxwell Model and Spectral Line Reduction Method

To address the shortcomings of the 2N + 1 component Maxwell model, this paper
introduces a 2N + 2 component Maxwell model. Theoretically, the 2N + 2 component
Maxwell model offers a more comprehensive description than the 2N + 1 model. This is
mainly because the 2N + 2 Maxwell model does not impose restrictions on the testing time
range, and it eliminates the concept of the theoretically non-existent E0. The expression of
the 2N + 2 component Maxwell model is shown in Equation (5):

E(t) =
N

∑
i=0

Eie
− t

τi (5)

i.e., E(t) =
min−1

∑
i=0

Eie
− t

τi +
max

∑
i=min

Eie
− t

τi +
N

∑
i=max+1

Eie
− t

τi (6)

Equation (5) can be expanded into Equation (6), where min represents the limit for an
infinitely small relaxation time, and max denotes the limit for an infinitely large relaxation
time. N represents the number of Maxwell models. When t >> τmin, τmin is considered
infinitesimal, whereas when t << τmax, τmax is regarded as infinite.

Therefore:
min−1

∑
i=0

Eie
− t

τi = 0,
N

∑
i=max+1

Eie
− t

τi =
N

∑
i=max+1

Ei (7)

The equation can be simplified as follows:

E(t) =
N

∑
i=max+1

Ei +
max

∑
i=min

Eie
− t

τi (8)

This equation demonstrates that the 2N + 1 component Maxwell model is a special
case of the 2N + 2 component Maxwell model. Within a limited testing time interval, the
2N + 1 element Maxwell model is still applicable to characterize the viscoelastic properties
of the material.

However, the equation obtained in (8) is varies for different time-limited intervals.
Therefore, ensuring the accuracy of the 2N + 1 requires specifying the testing time.

y(t) = e−
t
τ

i.e., y(t) =


1, log(t/τ) < −4

e−
t
τ ,−4 ≤ log(t/τ) ≤ 2

0, log(t/τ) > 2

(9)



Appl. Sci. 2024, 14, 3750 5 of 14

In Equation (9), t represents the test time and τ denotes the relaxation time. Equation
(9) typically delineates the boundary between testing time and relaxation time, enabling
the establishment of a range of relaxation times based on the testing time range. For a
given testing time range (tmin, tmax), the value of the exponential decay function y(t) of the
relaxation spectral lines located outside four logarithmic units to the right of tmax can be
considered as 1. Under this condition, the spectral strengths of each spectral line satisfying
the condition can be treated independently from each Maxwell unit, and their sum is
regarded as a constant. This constant can be regarded as the Young’s modulus of the model.
The impact of all relaxation spectral lines located outside the two logarithmic units to the
left of tmin is almost zero, hence they can be discarded. This essentially entails disregarding
a substantial number of spectral lines, hence this simplified method is called the “spectral
line reduction method”.

4. Simulated Relaxation Time Spectrum

In this study, virtual relaxation time spectra were established for several materials to
assess whether the error of relaxation modulus using the spectral line reduction method
was within a specified threshold. The proposed relaxation time spectrum models are all
virtual ideal spectral lines, so this section presents simulation and analysis of only these
ideal materials. The relaxation spectra of these ideal virtual materials are regular, whereas
the relaxation spectra of real materials typically demonstrate irregular variations. Therefore,
the experimental testing on real materials is not the primary focus of this study.

1⃝ The expression for a horizontal linear distribution is presented below:

Ei(τi) = (Eg − Ee)× Cline × τk
i

Cline =
1

N
∑

i=1
τk

i

(10)

In the above expression, Ei represents the intensity of each relaxation spectral line; Eg
denotes the glass modulus; Ee represents the equilibrium modulus; N denotes the number
of relaxation time spectral lines; Cline is a calculated and determined coefficient; and k
represents the slope of a straight line in a logarithmic coordinate system. For a horizontal
line, k = 0.

2⃝ The equation for the slope-type distribution is as follows:

Ei(τi) = (Eg − Ee)× Cramp × τk
i

Cramp = 1
N
∑

i=1
τk

i

(11)

In the above expression, Ei denotes the intensity of each relaxation spectral line;
Eg represents the glass modulus; Ee denotes the equilibrium modulus; N represents the
number of relaxation time spectral lines; Cramp is a calculated and determined coefficient;
and k denotes the slope of a straight line in a logarithmic coordinate system. In this section,
k = −0.5.

3⃝ The expression for a trapezoidal distribution is shown below:

Ei(τi) =


(Eg − Ee)× Cwedge × τk

i , i ≤ (N − M)/2
(Eg − Ee)× Cwedge × τk

(N−M)/2+1, (N − M)/2 < i < (N + M)/2

(Eg − Ee)× Cwedge × τ−k
i , i ≥ (N + M)/2

Cwedge =
1

(N−M)/2
∑

i=1
τk

i +M×τk
(N−M)/2+1+

N
∑

(N+M)/2+1
τ−k

i

(12)

In the above expression, Ei represents the intensity of each relaxation spectral line;
Eg denotes the glass modulus; Ee represents the equilibrium modulus; N denotes the
number of relaxation time spectral lines; M represents the number of relaxed spectral lines
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contained in the horizontal part of the trapezoid; Cwedge is a calculated and determined
coefficient; and k denotes the slope of a straight line in a logarithmic coordinate system. In
this section, k = 1.35.

4⃝ The Lorentz-type distribution is expressed as follows:

Ei(τi) = (Eg − Ee)× Clorentzian × 1
(τi/τ0)

r+(τ0/τi)
r

Clorentzian = 1
N
∑

i=1

1
(τi/τ0)

r+(τ0/τi)
r

(13)

In the above expression, Ei represents the intensity of each relaxation spectral line; Eg
denotes the glass modulus; Ee represents the equilibrium modulus; N denotes the number
of relaxation time spectral lines; Clorentzian is a calculated and determined coefficient; τ0
represents the position of the axis of symmetry; and r is a coefficient that can be used to
adjust the width of the distribution curve. In this section, τ0 = 1 and r = 1.

5⃝ The Gaussian-type distribution is expressed as follows:

Ei(τi) = (Eg − Ee)× Cgauss × e−
(lgτi−µ)2

σ2

Cgauss =
1

N
∑

i=1
e
− (lgτi−µ)2

σ2

(14)

In the above expression, Ei denotes the intensity of each relaxation spectral line;
Eg represents the glass modulus; Ee denotes the equilibrium modulus; N represents the
number of relaxation time spectral lines; Cgauss is a calculated and determined coefficient;
τ0 represents the position of the axis of symmetry; and σ is used in this equation to control
the width of the distribution curve. In this section, µ = 0 and σ2 = 12.38.

A simulated relaxation time spectrogram was drawn in the logarithmic coordinate
system based on the quantitative relationship of Expressions (10)–(14). The following
prerequisites were established: the relaxation time range considered in the logarithmic
coordinate system spanned from −15 to 15; the relaxation time interval was set to 0.5; the
number of spectral lines was set to 61; and Eg was set to 109 Pa and Ee to 99900.999 Pa. The
resulting graph is presented in Figure 2.
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Based on the findings from Section 3, the relaxation spectral lines outside the relaxation
time boundary can be discarded. It is imperative to evaluate whether the reduced relaxation
spectrum effectively represents the unreduced relaxation spectrum. This analysis mainly
focused on four distribution forms of the relaxation time spectra: slope, trapezoid, Lorentz,
and Gaussian. The logarithmic time interval of the relaxation modulus function was set
to [−16, 16]. The relaxation modulus function curve was generated by plotting a point at
every 0.1 unit of logarithmic time. For each distribution form, the relaxation time spectra
with 61 spectral lines and a time interval of 0.5 logarithmic units, and their corresponding
relaxation modulus curves, are illustrated in Figures 3–6.
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The reduction method depends on specific circumstances and mainly considers
two aspects as follows:

(1) The characteristic region of the stress relaxation curve exhibited by the viscoelastic
material at a given temperature.

(2) The deviation between the relaxation modulus calculated by the reduced model and
that generated by the original model.

Simplified calculations were conducted across several logarithmic time intervals,
[−16, −14], [−12, −10], and [−8, −6], to explore the error of the relaxation modulus after
reducing the relaxation spectrum. The following preparation steps were undertaken before
conducting the calculations:

(1) Determination of the logarithmic testing time range: the three logarithmic time
intervals mentioned above.
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(2) Determination of the relaxation time limit: The two logarithmic units were extended
outward from the leftmost side of the selected time range to serve as the lower
bound of the relaxation time. Similarly, the time range was extended outward by
four logarithmic units on the far right to serve as the upper bound for relaxation time.

The number of spectral lines was increased to 121 and 241 to comprehensively study
the characteristic region suitable for applying the spectral line reduction method. The same
logarithmic time interval was selected in different regions for calculation and comparison.
The calculation results are summarized in Table 1.

Table 1. Residual sum of squares of relaxation modulus data before and after simplifying the model.

Type of Spectral
Lines

Number of
Spectral Lines Logt:[−16,−14] Logt:[−12,−10] Logt:[−8,−6]

Slope-type

61 7.461 × 10−15 6.872 × 10−15 2.881 × 10−16

121 2.122 × 10−14 1.972 × 10−14 1.010 × 10−15

241 3.424 × 10−14 3.196 × 10−14 1.811 × 10−15

Trapezoid-type

61 7.330 × 10−18 1.441 × 10−12 1.669 × 10−12

121 7.079 × 10−18 2.819 × 10−12 3.247 × 10−12

241 7.032 × 10−18 3.852 × 10−12 4.430 × 10−12

Lorentz-type

61 1.042 × 10−26 3.625 × 10−19 3.358 × 10−12

121 1.088 × 10−26 3.790 × 10−19 3.860 × 10−12

241 1.088 × 10−26 3.871 × 10−19 4.122 × 10−12

Gaussian-type

61 1.116 × 10−17 8.749 × 10−14 5.403 × 10−12

121 1.404 × 10−17 1.304 × 10−13 9.720 × 10−12

241 1.568 × 10−17 1.575 × 10−13 1.280 × 10−11

The results presented in Table 1 indicate the following:

(1) With the exception of the data exhibiting a trapezoidal distribution in the logarithmic
time interval of [−16, −14], an increase in the number of relaxation time spectral lines
of all types within any distribution interval led to a higher sum of squared residuals
of the relaxation modulus data resulting from the model reduction before and after.

(2) When using the “spectral line reduction method” to simplify the mechanical character-
ization model of viscoelastic materials, except for the slope-type, the sum of squared
residuals increased for the other types of relaxation spectrum distributions as the
logarithmic time interval shifted to the right.

(3) In summary, for all types of relaxation spectrum distributions, the sum of squared
residuals across all logarithmic time intervals was less than 1 × 10−10. Therefore, the
“spectral line reduction method” proposed in this paper is practical and feasible.

5. Research on Calculation of Indentation Rolling Resistance Based on Relaxation
Model Parameters

The “spectral line reduction method” can be used to assess the viscoelastic relaxation
modulus of the transmission belt, facilitating the substitution of the relaxation modulus into
the formula for calculating indentation rolling resistance. This enables the determination
of indentation rolling resistance under different operational conditions. An introduction
to the theoretical basis for calculating indentation rolling resistance is presented in the
subsequent section.

5.1. Theoretical Basis of Calculation of Indentation Rolling Resistance

The calculation of indentation rolling resistance, viewed from a temporal perspective,
mainly addresses the operational resistance encountered in belt conveyors. As the conveyor
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belt moves on the rollers, it undergoes compression, leading to deformation. Subsequently,
as the conveyor belt moves, the rollers gradually disengage from contact with the conveyor
belt, resulting in a residual deformation that persists. This phenomenon of hysteresis creates
indentation rolling resistance between the conveyor belt and the rollers. To conceptualize
the scenario of contact between the conveyor belt and the roller, we established a model: the
interface between the conveyor belt and the roller was likened to the surface of a viscoelastic
material, whereas the roller was treated as a rigid cylinder. A schematic representation of
the model established in this study is shown in Figure 7.
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Figure 7. A schematic diagram of the contact model in the indentation area.

In the illustration of the model, h refers to the thickness of the covering layer; v denotes
the speed of the conveyor belt movement; a represents the initial contact point between the
conveyor belt and the roller; −b denotes the position where the conveyor belt and the roller
disengaged; R represents the radius of the roller; h0(t) denotes the depth of indentation
during stable motion; and δ(t) represents the depth of indentation at different positions.
Previous findings indicate that, assuming that δ(t) is significantly smaller than R, after
sequential integration and other numerical operations [23], the following equations can
be obtained:

E0

2
(1 + ξ)(1 − ξ) +

N

∑
i=1

Eiki[ki − ξ − (1 + ki)e−(1+ξ)/ki ] = 0 (15)

Rh
a3 W = E0

6 (2 + 3ξ − ξ3) +
N
∑

i=1
Eiki

{
1
2 (1 − ξ2)− ki[(1 + ki)

(1 − e−(1+ξ)/ki )− (1 + ξ)]
} (16)

F = E0a4

8R2h (1 − 2ξ2 + ξ4) +
N
∑

i=1

Eia4ki
R2h [ki

3 − ki
2 (1 + ξ2) + 1

3

(1 + ξ3)− ki(1 + ki)(ki + ξ)e−(1+ξ)/ki ]

(17)

In the above expressions, where W represents the load, F denotes the indentation
rolling resistance, E0,τi, and Ei are viscoelastic parameters, ξ = b/a, and ki = vτi/a.
Viscoelastic parameters, v, h, W, and R are established constants.

The values of a and ξ can be determined by setting an initial value for a and iteratively
solving Equations (15) and (16). Subsequently, the indentation rolling resistance can
be determined by substituting the values of a and ξ as well as other parameters into
Equation (17).
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5.2. Numerical Calculation of Indentation Rolling Resistance under Different Time Ranges

Different time ranges can denote the testing time range corresponding to the relaxation
modulus and the relaxation time span of the relaxation time spectrum. These distinct
relaxation time ranges also correspond to different characteristic regions of the material,
such as glass state, glass transition zone, equilibrium state, and viscous flow state. In this
section, the numerical characteristics of indentation rolling resistance under different time
range conditions are explored using the “spectral line reduction method”. The parameters
of the working conditions were an idler radius (R) = 0.08 m; a thickness of the conveyor belt
cover layer of 0.008 m; and a vertical load of 2000 N/m. Simulation analysis was conducted
by varying the magnitude of the speed.

For the Lorentz-type relaxation spectrum model, considering τ0 = 10−8 and r = 1,
the number of spectral lines was 61. The calculation of indentation rolling resistance
across different time ranges was conducted to determine the sensitivity of viscoelastic
materials to stress over time. Consequently, four testing time intervals were selected in
the logarithmic coordinate system: [−14, 6], [−14, −8], [−8, −2], and [−2, 4]. Using
the “spectral line reduction method”, the relaxation time range in these intervals were
determined as follows: [−16, 7], [−16, −4], [−10, 2], and [−4, 7]. Subsequently, the iterative
equation solving method outlined in the previous section was used to determine the
indentation rolling resistance. In the interval [−14, 6], the ratio of the sum of relaxation
spectral line intensities to the total relaxation spectral intensity was 0.9999. Therefore, the
relaxation spectrum within the interval adequately represents the relaxation spectrum of
the Lorentz-type material. The calculated indentation rolling resistance within this interval
can be considered as the actual indentation rolling resistance. The calculated indentation
rolling resistance value in other intervals can be compared with this established actual
indentation rolling resistance value.

The findings showed that the calculated indentation rolling resistance in the interval
[−14, 6] aligns closely with the actual indentation rolling resistance (Figure 8). Conversely,
the calculated indentation rolling resistance values within the intervals [−14, −8] and
[−2, 4] were smaller than the true values, with the values in the interval [−2, 4] exhibiting
the smallest values. Notably, the calculated indentation rolling resistance values within the
interval [−8, −2] were closest to the actual indentation rolling resistance values.
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Similarly, µ = −11 and σ2 = 7.6 were set as the parameters for the Gaussian-type
relaxation spectrum model, and the number of spectral lines was set to 61. Four testing time
intervals were selected in the logarithmic coordinate system: [−10, 2], [−10, −6], [−6, −2],
and [−2, 2]. The process of solving the indentation rolling resistance was similar to that
used for the Lorentz-type. The indentation rolling resistance calculated on the interval
[−10, 2] was considered as the actual value. The values obtained for the other intervals
were compared with the set of actual indentation rolling resistance values.

The following numerical patterns were obtained by evaluating the results presented
in Figures 8 and 9:

(1) Within the interval [−14, −8], the Lorentz-type material exhibited a glassy state with
low viscosity. When the roller rolled on the surface of the material, the strain lagged
behind the stress briefly, resulting in a lower indentation rolling resistance than the
actual value.

(2) As the Lorentz-type material transitioned from the [−8, −2] interval, it moved be-
tween the glassy and the elastic platform zone. The Gaussian-type material spanned
the [−10, −6] and [−6, −2] intervals, showing significant viscosity. When the roller
rolled on the surface of the material, the strain lagged behind the stress for a long
time, resulting in significant indentation rolling resistance. During this phase, the
indentation rolling resistance was close to the actual value.

(3) In the conventional state, the two materials were located in the elastic plateau region in
the interval [−2, 4] and [−2, 2], and they exhibited low viscosity. Consequently, when
the roller interacted with the surface of the material, the delay between the strain and
stress was minimal, resulting in the lowest possible the indentation rolling resistance.

(4) The fluctuations in the calculated indentation rolling resistance across various regions
of materials could be attributed to the different relaxation spectrum parameters
obtained in distinct testing time intervals. This indicates the variation of E0 and other
parameters in the 2N + 1 component Maxwell model across different testing time
ranges. Therefore, this model is applicable within a specific testing time range rather
than serving as a universally theoretical model.
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6. Conclusions

(1) Analysis of the viscoelastic expression method of materials revealed that the 2N + 1
element generalized Maxwell model varies with different testing time ranges. Con-
versely, the 2N + 2 element generalized Maxwell model lacks a time-independent
quantity, implying that it is a more theoretically comprehensive model. A 2N + 1
element generalized Maxwell model with a limited time range can serve as a practical
model to represent the relaxation characteristics of viscoelastic materials, owing to the
limitations of the actual testing time range.

(2) The “spectral line reduction method” is feasible as demonstrated through simula-
tion calculations using different relaxation spectrum models across distinct testing
time intervals.

(3) The “spectral line reduction method” was used to determine the indentation rolling
resistance at 17 different belt speeds within various time ranges using two material
models. The findings indicated that an approximation of the actual indentation rolling
resistance was only achieved within a suitable time range.
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