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Abstract: Stones are one of the primary objects that impede the normal activity of underground
pipelines. As human intervention is difficult inside a narrow underground pipe, a robot with a
machine vision system is required. In order to remove the stones during regular robotic inspections,
precise stone detection, segmentation, and measurement of their distance from the robot are needed.
We applied Mask R-CNN to perform an instant segmentation of stones. The distance between the
robot and the segmented stones was calculated using spatial information obtained from a lidar
camera. Artificial light was used for both image acquisition and testing, as natural light is not
available inside the underground pipe. ResNet101 was chosen as the foundation of the Mask R-CNN,
and transfer learning was utilized to shorten the training time. The experimental results of our model
showed that the average detection precision rate reached 92.0; the recall rate was 90.0%; and the
F1 score rate reached 91.0%. The distance values were calculated efficiently with an error margin
of 11.36 mm. Moreover, the Mask R-CNN-based stone detection model can detect asymmetrically
shaped stones in complex background and lighting conditions.

Keywords: Mask R-CNN; deep learning; segmentation; distance measurement; lidar camera;
underground pipe

1. Introduction

In recent decades, with the proliferation of cities, tens of thousands of underground
pipes have been installed to serve a multitude of functions. It is not common for oil and gas
pipelines to carry large solid objects like stones or rocks. But any abnormality or pipeline
break due to natural disaster may cause pipeline blockage through solid materials like
stones and sand aggregates. At the same time, efficient transportation of gravel and sand
aggregates through pipelines is essential for a variety of industries, from construction
to mining. In order to ensure a seamless flow of materials, maintaining the integrity
of these pipelines is crucial for their continued operation. There is a substantial risk in
this domain of stones, rocks, or other solid debris entering into the pipeline, which can
lead to disruptions, blockages, and structural damage. Therefore, routine checking and
maintenance are essential. It is difficult for workers to explore inside a tiny pipe. Even with
large-diameter pipes, workers are at risk of severe and often deadly injuries. Taking all the
facts into account, a robotic solution came into place and has been increasingly deployed in
extremely difficult environments, including underground pipeline exploration.

A large number of pipeline inspection robots have been developed over the past
decades and can be operated in various pipelines such as water, oil, and gas, sewerage
systems, or any specific pipeline where regular inspection is inevitable [1–3]. However,
for the underground pipeline exploration robot, it is important to understand the pipeline
environment and identify potential objects that could block the pipeline and interrupt its
usual activities.
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Currently, computer vision technology is extensively employed in robot inspection
systems to understand an inspection site. Several studies have been conducted on vision-
based systems. In a previous work [4], a pipe-inspection robot was developed based
on YOLOv3 for defect detection and localization in a sewage pipeline. Also, another
study worked on a deep learning-based method for underground sewage pipeline defect
classification and location recognition [5]. However, the above studies were conducted
for defect detection in pipes, but identifying objects inside the underground pipe is still
very challenging, and stones are the most commonly found objects on the internal pipeline
surface. Therefore, to recognize stones and their precise positioning along the underground
pipeline, a robotic system with stone detection is needed.

The primary challenges in vision-based stone grasping are to develop robust and
accurate stone detection algorithms that can effectively detect stones in different back-
ground and lighting conditions in an underground pipeline. In the past few years, many
researchers have worked on rock detection and segmentation problems. For example,
ref. [6] proposed an object detection model that was designed based on a modified U-net
to recognize complex rock fragments. Further, a visual system with online rock mass
assessment was developed based on semantic segmentation [7]. Rocks located in natural
scenes were taken into account for another work [8], and a superpixel segmentation algo-
rithm was developed to detect and locate rocks with an exact border. Furthermore, deep
learning methods were utilized in the detection and segmentation processes of rock blast
fragments [9].

Numerous research studies have been carried out on segmenting rocks and stones
using Mask R-CNN. In reference [10], researchers explored dump particle segmentation and
achieved a training accuracy of 97.2%. In another study [11], the author focused on blast
fragmentation, achieving a precision score of 92%. In reference [12], a 93.18% detection
accuracy was achieved by analyzing thin rock slices. The training dataset influences
identification accuracy, particularly when it concerns recognizing small particles. Although
the above approaches can detect rocks from daylight images of outdoor environments,
when the lighting conditions change, the detection performance is significantly reduced. A
CNN-based method for rock fragment classification inside a tunnel using indoor lighting
was studied in [13]. However, the diameter of tunnel-like spaces provides sufficient room
for object investigation, whereas narrow underground pipelines pose significant challenges
for tasks related to object recognition.

For estimating the distance between the camera and segmented stones, and for the
grasping action of the explorer robot, spatial knowledge is needed. Object distance mea-
surement has been gradually used in various industrial applications. Several distance mea-
surement methods are available, such as stereo vision image processing techniques [14–16],
ultrasonic sensors [17], and depth cameras [18]. However, depth camera technology has
gained much attention in recent years, mostly due to its high acquisition rates, long mea-
surement ranges, and cost effectiveness. In this research study, we chose a single RGB-D
camera (Intel RealSense L515) to perform both segmentation and distance measurement.

To automatically identify stones and determine their distances from the explorer
robot, a stone detection and distance measurement method based on Mask R-CNN is
proposed. An end-to-end instance segmentation architecture is applied in the proposed
method, which accepts a single picture as input and, without any preprocessing, returns all
instances of stones (detection and pixel-level classification). Finally, distance estimation
and classification results are merged for use in real applications. In this research study, we
focus on detecting the stones on the underground pipeline surface and measuring their
distance from the exploration robot. This study does not consider the additional process of
weighing the stone and moving it by the robot manipulator.

The contributions of this study are summarized as follows:

• A Mask R-CNN-based system is developed to identify the stones and measure their
distances from the robot in the underground pipeline.

• A manually validated and labeled data set is presented for the segmentation work.
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• This system offers a precise and fast robotic study of underground pipeline object
detection research.

The structure of this paper is organized as follows: Section 2 introduces the Mask
R-CNN model, data acquisition, data processing, and evaluation methods. Experimental
details and test results are discussed in Section 3. In Section 4, limitations, future directions,
and conclusions are presented.

2. Materials and Methods
2.1. Dataset Acquisition

Our research target for this study was to explore inside a narrow pipe to detect stones
and measure their distance from the robot. Therefore, a pipe with an inner diameter of
25.0 cm was chosen for this study. Sand and gravel aggregates are typically classified
according to their gradation, and the size of these aggregates is determined by the use for
which they are intended. Past research [19] shows the gravel size can be 2 mm to 20 mm
and more. However, in this study, the stone size was 5 mm to 50 mm. An Intel RealSense
L515 camera (manufactured by Intel Corporation, 2200 Mission College Blvd, Santa Clara,
CA 95054-1549, USA) mounted on a four-wheeler explorer robot captured all the images,
as depicted in Figure 1. The camera system was placed inside the pipe and captured the
images from various angles. During image capture, since natural light does not reach
the underground pipe, an artificial light with moderate intensity was applied. For this
study, stones scattered on divergent backgrounds were considered, such as a wetted pipe,
a pipe partially filled with sand, and a regular pipe surface. At the time of capture, the
resolution of the RGB frame was set to 1920 × 1080 pixels, and the storage format was
JPEG. Three sample images with different backgrounds captured by the Intel RealSense
L515 camera are shown in Figure 2. There were 365 captures, and approximately 3500 stone
images were obtained. However, this stone dataset was incredibly challenging in terms
of the segmentation task, considering the sizes of the stones, the backgrounds, and the
light intensities.Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 15 
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Figure 2. Sample images.

2.2. Dataset Construction and Annotation

In order to ensure the accuracy of model training, the images were scaled down to
760 × 570 pixels. Out of 365 images overall, 280 were randomly selected for the Mask
R-CNN model training, 30 images for verification, and 55 images for testing. The details
are shown in Table 1. The VIA Tool (VGG image annotator) was utilized to manually create
the annotation [20]. Each image contains multiple polygonal masks of the different shapes
of the annotated stones at pixel level. Figure 3 demonstrates an example of manually
annotated images with multiple stones.

Table 1. Splitting of training, test, and validation dataset.

Usage #Images #Stones

Training 175 2185
Validation 75 937

Testing 30 375

Total 280 3497
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2.3. Mask R-CNN

This paper utilized the Mask R-CNN model to implement the stone detection system.
The Mask R-CNN [21] model is an extended algorithm based on a fusion of the Faster
R-CNN [22] object detection algorithm. Mask R-CNN introduces a novel feature in the
form of a ‘mask’, which can provide pixel-to-pixel estimation of the shape of the detected
object. Therefore, the Mask R-CNN model is capable of both object detection and instance
segmentation, while the Faster R-CNN model is unable to provide the pixel-to-pixel analysis
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at the output level and was only designed for object detection. Mask R-CNN outputs a
segmentation mask in each region of interest (ROI) through a fully convolutional network
(FCN). Figure 4 shows the architecture of the Mask R-CNN model.
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2.4. Training and Loss Function

In this study, Mask R-CNN was implemented based on the feature pyramid network
(FPN), which extracts low-level features as well as high-level features, and ResNet101 was
applied as a backbone. ResNet101 makes use of a residual learning process, which decreases
the number of parameters that must be adjusted and minimizes the total computing
cost. However, the learning time taken by ResNet101 is too long, as the structure has
101 layers, and every layer requires considering so many things while solving a new
problem. Therefore, we applied transfer learning by employing a pretrained model trained
with an MS-COCO (Microsoft Common Objects in Context) dataset to lessen the learning
time and determine the number of images required to train the whole network [23]. The
RPN, classifier, and mask heads of the network were trained up to 100 epochs to fine-tune
the weights for detecting stones. The stochastic gradient descent with a momentum of
0.9 was used to train the model, where the learning rate was set to 0.001, and the details of
the training specification are shown in Table 2.

Table 2. Specification of the training and testing platform.

Attribute Name Value

CPU AMD Ryzen 7 5800H at 3.2 GHz × 16
Memory 40 GB

GPU NVDIA RTX3060
OS Windows 10
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The loss function of the Mask R-CNN [21] model is calculated as Equation (1) in
the following:

L = Lclass + Lbbox + Lmask (1)

where L represents the total validation loss and is calculated with the combination of Lclass
(classification loss), Lbbox (bounding box loss), and Lmask (mask loss). Classification loss takes
into account the model’s confidence in predicting the true class, and the bounding box loss
function provides the error between the actual bounding box and the predicted bounding
box. Finally, the mask loss function generates a pixel-to-pixel mask for all detected classes.

2.5. Distance Measurment of the Segmented Stones

In this research study, an Intel RealSense LiDAR L515 camera was used, which uses
laser scanning technology and is compact in size (61 mm × 26 mm) and specially designed
for an indoor environment. The camera depth output resolution is 1024 × 768; the field
of view is 70◦ × 55◦; and the measurement range is 0.25 m to 9.0 m. And the RGB frame
resolution is 1920 × 1080, and the field of view is 70◦ × 43◦. Moreover, it has the ability to
generate 23 million depth points per second, and this advantage was utilized for real-time
distance calculation.

The basic idea was to align the RGB and depth frames obtained from the lidar camera.
By using the stone detection model based on Mask R-CNN, stones are segmented into the
bounding box. The bounding box of the segmented stone is defined by the coordinates of
its top-left (x1, y1) and bottom-right (x2, y2) corners. And we calculated the middle point
coordinates of the segmented stone using the following equations:

x =
x1 + x2

2
(2)

y =
y1 + y2

2
(3)

We utilized the Intel RealSense camera APIs to align the depth frame. Then, the
center points of each stone were estimated from the bounding box coordinates using
Equations (1) and (2). The distance value of the center point coordinate was obtained
from the aligned depth map. Finally, the distance between the explorer robot and each
segmented stone was shown with a label. The algorithmic process of distance measurement
is illustrated in Figure 4. A measuring tape with a precision of ±0.5 mm is used to verify
the estimated distance from our model.

2.6. Evaluation for the Stone Detection Model

The stone detection model was evaluated by applying three performance matrices:
precision, recall, and F1 score. Thirty selected images were used for model evaluation.
True Positive (TP) represents the number of positive cases that are detected as positive.
False Positive (FP) represents the number of negative cases that are detected as positive.
False Negative (FN) represents the number of positive cases that are detected as negative.
These parameters are calculated by using the following equations:

Precision =
True Positive

True Positive + False Positive
(4)

Recall =
True Positive

True Positive + False Negative
(5)

F1 score =
2 × Precision × Recall

Precision + Recall
(6)
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3. Experimental Results and Analysis
3.1. Evaluation of the Stone Detection Model

The loss function change of Mask R-CNN during training is shown in Figure 5. In
the training process of our model, while the learning rate was set to 0.001, the loss value
dropped quickly from 0.9 to 0.6 then gradually dropped to less than 0.2. The Precision–
Recall curve shown in Figure 6 indicates that the trained model has achieved an adequate
detection accuracy.
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An example of true positive results of the stone detection model is shown in Figure 7,
where all the stones are detected and segmented correctly. Figure 7a shows the original
image of a regular pipe with low light intensity. In Figure 7b, the detected stones are shown
in the square box with the confidence score. And Figure 7c shows the binary image with all
the segmented stones.
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Figure 7. Example of accurate detection result. (a) Original image with normal background and low
light intensity, (b) Output of the stone detection model (true positive case), and (c) Binary image with
all segmented stones.

While our model successfully identified the stones in the majority of test photos, there
were instances where it was unable to identify the objects. To demonstrate the shortcomings
of our model, we ran the test for false negative and false positive scenarios. The details of
these tests are shown in Figures 8 and 9, respectively.
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In Figure 8, two objects indicated by white square boxes are expected to be detected by
the model but are not detected and thus create false negative cases. There were sufficient
training images similar to the Figure 8 backgrounds that are partially filled with sand. The
original image of the stones with a sand background in moderate light intensity is shown in
Figure 8a. Figure 8b shows the detected stones with a color mask and the undetected stones
with square boxes. Figure 8c demonstrates the binary image of the segmented stones.
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Finally, an example of a false positive case is shown in Figure 9, where an object marked
by a yellow squared box is wrongly detected as a stone by the stone detection model.
Figure 9a shows the original picture of a wetted background with stones in moderate light
intensity. Figure 9b shows the segmented stones with a false positive case. And Figure 9c
shows the binary image of the segmented result.

3.2. Testing of Distance Measurement

Our model is tested in a real environment to measure the distance between the ex-
plorer robot and the segmented stones. The explorer robot shown in Figure 1 is used for
testing the real-time stone segmentation and distance measurement systems inside the
underground pipeline. The robot is equipped with an L515 LiDAR camera, and the major
specification details are shown in Table 3. The distance of each masked stone in the RGB
frame is calculated through the depth frame by estimating their centroid point. Examples
of underground pipeline object distance measurements in various backgrounds along with
spatial frames are shown in Figure 10. The class name and measured distance in millime-
ters is displayed on each segmented stone. Figure 10a shows a regular background of an
underground pipe where three stones are segmented by the stone detection model, and
their distances are calculated and marked inside the squared boxes; the depth frame shows
the clear spatial information. Figure 10b shows a frame partially filled with sand, and all
the eight stones are correctly segmented, including their distance values. Figure 10c shows
the underground pipeline surface with water where six stones are partially immersed, and
the model detects those perfectly and provides distance information.

Table 3. Specification of the robot platform.

Attribute Name Value

CPU Quad-Core ARM A57 @ 1.43 GHz
Memory 4 GB 64-bit LPDDR4 25.6 GB/s

GPU Maxwell Core 128EA
OS Ubuntu 20.04
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shows the clear spatial information. Figure 10b shows a frame partially filled with sand, 
and all the eight stones are correctly segmented, including their distance values. Figure 
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uring tape with a precision of ±0.5 mm is used to verify the estimated distance from our 
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our model. In Figure 12, the system interface is presented, where segmented stones with 
their estimated distances are shown. 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Examples of distance measurement with depth image. (a) Stones are in an empty pipe;
(b) Stones are scattered on sand; and (c) Stones are dipped in water in the pipe.

In this study, object distance measurement is tested on 40 segmented objects from
eight frames, and their values are recorded to estimate the average error. The experimental
images with distance information are shown in Figure 11. The error difference between the
actual distance and the measured distance is shown in millimeters in Table 4. A measuring
tape with a precision of ±0.5 mm is used to verify the estimated distance from our model.
The experimental result shows that the average absolute error is 11.36 mm. We developed a
GUI using Python to monitor the real-time pipeline inspection results using our model. In
Figure 12, the system interface is presented, where segmented stones with their estimated
distances are shown.
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Figure 11. Measurement data. (a) Showing four stones and their distances inside the pipe’s hollow
space; (b) Showing six stones and their distances inside the pipe’s hollow space; (c) Showing three
stones and their distances inside the pipe’s hollow space; (d) Showing three stones and their distances
inside the pipe’s hollow space; (e) Displaying six stones and their distances in a pipe partially
filled with sand; (f) Displaying eight stones and their distances in a pipe partially filled with sand;
(g) Displaying four stones and their distances in a pipe with water; and (h) Displaying six stones and
their distances in a pipe with water.
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Table 4. Average distance measurement error.

Trail Images Detail Measurement Unit: mm

Test Images No. of Objects Serial No. Actual Distance Measured Distance Absolute Error

Figure 11a 4

1 260.50 248.00 12.50
2 355.00 339.25 15.75
3 389.50 382.00 7.50
4 437.50 433.00 4.50

Figure 11b 6

1 270.00 264.00 6.00
2 305.00 294.00 11.00
3 326.00 316.25 9.75
4 357.00 363.00 6.00
5 418.00 405.75 12.25
6 460.00 456.75 3.25

Figure 11c 3
1 431.00 416.25 14.75
2 537.00 529.25 7.75
3 726.00 722.00 4.00
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Table 4. Cont.

Trail Images Detail Measurement Unit: mm

Test Images No. of Objects Serial No. Actual Distance Measured Distance Absolute Error

Figure 11d 3
1 328.50 315.75 12.75
2 447.00 430.00 17.00
3 635.00 622.00 13.00

Figure 11e 6

1 262.00 248.50 13.50
2 268.50 254.75 13.75
3 335.00 314.25 20.75
4 317.00 328.75 11.75
5 379.00 398.75 19.75
6 453.00 442.75 10.25

Figure 11f 8

1 260.50 243.75 16.75
2 267.00 253.25 13.75
3 280.50 273.75 6.75
4 318.00 305.25 12.75
5 320.50 312.75 7.75
6 313.00 324.75 11.75
7 402.00 389.00 13.00
8 441.00 433.25 7.75

Figure 11g 4

1 242.50 230.75 11.75
2 318.00 310.50 7.50
3 357.00 342.50 14.50
4 410.00 393.75 16.25

Figure 11h 6

1 278.00 265.75 12.25
2 309.00 314.75 5.75
3 345.00 335.50 9.50
4 373.50 361.25 12.25
5 431.00 418.50 12.50
6 507.00 492.75 14.25

Total 40 454.25

Average absolute error 11.36

4. Conclusions

In this research study, Mask-RCNN was applied to detect stones inside an under-
ground pipeline through an inspection robot. Stones are a very common object that can be
found on pipeline surfaces during a regular inspection period. Since natural sunlight does
not reach into an underground pipe, artificial lights with moderate intensity are used dur-
ing the inspection time. Furthermore, because the stones vary in size and color, it is difficult
to accurately identify the stones using a straightforward image processing technique. To de-
tect the stones in moderate light, it is crucial to understand the background and the stones.
Through a simple image processing approach, it is hard to contend with background noise.
Mask R-CNN can reliably detect stones and understand the background of the pipeline,
even at low or medium brightness. All the images were collected from inside a pipe with
moderate lighting and a variety of backgrounds and stones. The total number of images
was 280, which covers various angles and contains approximately 3500 stones. The test
results of our stone detection model showed that the precision, recall, and F1 scores were
92.0%, 90.0%, and 91.0%, respectively. Distance measurement algorithms can be used in
real time to calculate the distance between a robot and each stone with an error margin of
11.36 mm. The idea of this project can be useful for researchers in this field for any kind of
underground pipeline exploration work.
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