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Abstract: In regions of China experiencing severe cold, the duration of the winter heating season
significantly contributes to elevated heating energy consumption in rural dwellings. This study
focuses on typical brick-and-concrete rural homes in the Wusu area. Utilizing the Rhino–Grasshopper
parametric modeling platform, it aims to minimize heating-related carbon emissions and the overall
costs associated with retrofitting. The approach involves improving the insulation properties of
the building envelope to reduce energy requirements. Additionally, the study incorporates solar
photovoltaic systems atop rural homes, building upon low-carbon, passive, energy-efficient design
principles. By examining the influence of various factors on rural housing energy consumption,
the research employs the entropy weight method to identify the most effective design solutions.
The goal is to explore strategies for the energy-efficient retrofitting of rural dwellings in areas faced
with harsh winter conditions, aligning with the objectives and preferences of Applied Sciences. The
simulation results reveal the following: (1). In comparison with the baseline scenario, 42.2% of the
optimized solutions within the Pareto frontier satisfy the current standards for 75% energy savings
in energy-efficient residential design. (2). The lowest recorded thermal consumption index for the
buildings can reach 12.427 W/m2, at which point the rate of energy savings is elevated to 79.5%.
(3). Within the solutions identified by the Pareto frontier, 80% exhibit initial investments that are lower
than the cost savings over the lifecycle due to reduced energy consumption (dCg < 0), demonstrating
the economic feasibility of the proposed retrofitting strategies.

Keywords: rural housing; multi-objective optimization; heating carbon emissions; incremental
overall costs

1. Introduction

As the number of rural dwellings in village areas continues to rise, undertaking energy-
saving and consumption reduction retrofits on these structures is of immediate practical
importance. According to the “China Building Energy Efficiency Annual Development
Report 2020 (Rural Housing Special Topic)”, approximately 110 million tons of standard
coal equivalent (tec) are consumed in rural area buildings, leading to about 420 million
tons of CO2 emissions from building operations [1,2]. In cold regions, the main energy
consumption of rural residences occurs during the heating season. Specifically, in the Wusu
area, the heating period extends to 183 days, with historical temperatures dipping as low
as −29 ◦C. Furthermore, scattered coal remains the predominant heating method during
winter in Wusu, with coal consumption far exceeding electricity use and displaying an
annual increasing trend. This situation underscores the urgent need for energy efficiency
and carbon reduction efforts.

Recent research has extensively explored the energy consumption renovation of ex-
isting buildings, with some scholars achieving mature studies in the energy consumption
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simulation and renovation of the enclosing structures of rural houses. For instance, Fur-
tado A and others have enhanced the energy efficiency of existing buildings by up to
70% through the renovation of enclosing structures with different materials filled into the
masonry of exterior walls [3]. Faezeh Bagheri Moghaddam and colleagues have shown that
constructing green walls on the south-facing side of buildings can reduce overall energy
consumption by 28% [4]. LM López-Ochoa and others optimized the insulation thickness of
walls and roofs to significantly lower total heating costs [5]. Zhao J’s analysis revealed that
the total heating demand during the heating season was reduced by 52.5% after renovating
all enclosing structures [6]; Hou J and others increased the insulation thickness of the
exterior walls of rural traditional houses, improving the energy-saving rate by 29.5% [7].
Huang J and others conducted an energy-saving renovation of existing residential buildings
based on the whole lifecycle cost, finding that enhancing window performance did not
necessarily achieve the best economic benefits [8]. Ma L and others selected the optimal
solution for adding sunspaces to rural houses in severely cold areas through the entropy
method, concluding the best optimization scheme for these added sunspaces [9]. Wang J
utilized OpenStudio for numerical simulations of annual energy consumption in tubular
houses, discovering that energy consumption could be reduced by 1.6% to 30.5% through
various retrofit measures. The study posits that employing solar energy in sunrooms is
the most effective strategy, with an energy-saving rate of 28% [10]. Shao T evaluated the
impact of different design factors on heating energy consumption through simulations on
typical architectural models. The research optimized a combination of design parameters
for reducing energy consumption in Zhalantun rural residences, establishing a hierarchy
and significance of design factors affecting energy consumption [11]. Tahsildoost employed
a multi-criteria decision-making tool to prioritize retrofitting strategies for rural houses
under various climatic conditions [12]. Lili Zhang and colleagues discovered a positive
correlation between the proportion of Trombe walls on the southern side of buildings
and the indoor temperatures [2]. In their empirical study on ultra-low-energy buildings,
Schnieders et al. found that heating energy consumption was reduced by 80% compared to
conventional buildings, while overall energy savings reached 50% [13]. T.I. Neroutsou and
team identified an optimal retrofit strategy for residential buildings in London, achieving
a 61% reduction in total energy consumption and an 85% decrease in thermal load [14].
Raphael Wu and his research group concluded that optimizing the external walls or overall
building enhancements during the winter can decrease heating requirements by more
than 50% [15]. Charisi et al. reported a 13.65% reduction in energy consumption after
installing 200 mm of expanded polystyrene insulation on building exteriors [16]. Using
DesignBuilder software, Liang X focused on retrofitting the exterior and window structures
of rural homes in Beijing, noting an approximate 60% savings in annual heating energy
post-retrofit [17]. YeR and collaborators demonstrated that incorporating Trombe walls
and solar absorption coatings in cold regions can lead to a 40% savings in building en-
ergy consumption [18]. It is evident that factors such as building orientation, ventilation
performance and air tightness, solar radiation gain, window-to-wall ratio (WWR), and
window shading mutually influence the thermal performance and energy efficiency of
buildings [19,20].

Some scholars have focused on building energy-saving renovations that combine
passive and active strategies, verifying the good applicability of solar energy systems in
severely cold regions, which are economically advantageous and have significant energy-
saving and emission-reduction effects [21,22]. Shahryar Habibi and others studied energy-
saving renovations involving the addition of photovoltaic panels, EPDM membranes, and
insulation layers to roofs, finding that such renovations could reduce energy consumption
and enhance overall building performance [23]. Kapicioglu, A, and others demonstrated
the cost-effectiveness of ground-source heat pumps in remote areas through simulations
of these systems supported by a hybrid renewable energy-powered generation system
using eQUEST [24]. Liu Q and others optimized the architectural structure and insulation
measures of rural houses through orthogonal experiments and designed a solar-assisted
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heating system for energy savings [25]. Xu J studied the addition of solar photovoltaic
systems to passive rural house renovations, showing good economic benefits [26]. Gao Y
and others renovated rural houses under low-carbon and zero-carbon scenarios, indicating
that both passive and active energy-saving renovations significantly improve the carbon
emissions of rural houses [27]. Further, some scholars have analyzed the energy-saving
renovations of buildings using actual measurement data, with practical results demonstrat-
ing significant energy-saving effects in renovated rural houses, as shown by Li J and others
comparing the heating energy consumption differences between solar active heating and
traditional small coal-fired boilers [28]. Zhang Ye proposed a new type of solar thermal
storage floor radiant heating system for office buildings in Urumqi based on experimental
setups [29], and Li J tested the indoor thermal environment of rural houses before and
after renovation, indicating a significant energy-saving effect post-renovation [30]. Luo C’s
research identified the most effective energy-saving measures for energy-efficient buildings
as improving the performance of air conditioning systems and enhancing the thermal
performance of walls and windows [31]. Chen Y proposed a comprehensive energy sys-
tem based on Solar-Assisted Ground Source Heat Pump (SGSHP), achieving performance
coefficients of 4.2 with solar collectors installed and 3.5 without [32]. Ma L conducted an
analytical study on the impact of utilizing solar spaces on the heating energy consumption
of rural residences, focusing on three aspects: type of glass in solar spaces, type of filling
gas, and thickness of the gas layer [33]. Aleksandra Siudek and others studied the energy
efficiency and CO2 emissions of renewable energy in new construction and renovations in
rural areas [34]. Gang Li and colleagues proposed a new method of energy utilization in
rural areas, demonstrating that rooms heated with the new system are more comfortable
and economically perform better than those with traditional systems [35].

The optimization design of building envelopes is a prerequisite for improving building
performance. With the development of science and technology, the use of performance
simulation and algorithm optimization to achieve multi-objective optimization of building
performance has become widely used in architectural design and retrofitting. In the
field of architecture, multi-objective optimization can be linked with energy consumption
simulation software such as EnergyPlus, Ecotect, and TRNSYS and with software like
MATLAB or Python to focus on optimizing energy savings, carbon emissions, and economic
performance [36]. Chen and others have developed an optimization framework on the
Python platform to simulate the minimum carbon emissions, indoor discomfort hours, and
overall costs of buildings [37]. Ascione and colleagues integrated EnergyPlus and MATLAB
tools to optimize the energy consumption, thermal comfort, economic, and environmental
impacts of office buildings, obtaining Pareto frontier solutions [38].

Researchers have combined architectural simulation tools such as Ecotect and En-
ergyPlus with optimization algorithms to identify optimal energy-saving solutions [39].
Moreover, these optimization algorithms can balance choices between the set objective
functions and constraints of the design variables [40]. Among these, genetic algorithms are
favored for handling non-linear problems in building performance optimization and for
exploring global optimal solutions while avoiding local optima [41]. Scholars have applied
genetic algorithms to optimize building energy consumption [42,43].

In recent years, architectural performance simulation and optimization have often
been conducted on the parametric platform Rhino–Grasshopper, utilizing energy plugins
such as Ladybug Tools and Honeybee. Typically, simulations for building energy consump-
tion are conducted based on relevant algorithms, using building energy consumption as
either a single objective or incorporating it within multi-objective optimizations. Kiss B and
colleagues developed an optimization framework for apartment residences using variables
such as geometric shape, envelope construction, shading devices, and types of heating
sources, which improved the environmental impact performance by 60–80% [44]. Ana
Vukadinović and others optimized residential buildings based on energy consumption and
thermal comfort, proposing solutions based on analysis of Pareto frontier solutions [45].
N. Abdou and colleagues performed multi-objective optimization on residential buildings
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based on an economic efficiency, energy consumption, and thermal comfort standards,
selecting building orientation, window types, window-to-wall ratio, thermal transmittance
of the envelope, and permeability as parameters for retrofitting [42]. N. Abdou and col-
leagues conducted multi-objective optimization on residential buildings based on economic,
energy consumption, and thermal comfort criteria. They demonstrated that improving the
building envelope effectively reduces energy consumption, achieving energy savings of
over 21% in the Morocco region [42].

CNY Y. and others used the Octopus plugin for parametric modeling of dormitory
building clusters to optimize the building’s spacing, floor height, and balcony width [46]. Yu
H. constructed a multi-objective optimization model for a library in a cold region, focusing
on building energy consumption and indoor light environment, and conducted a simulation
analysis to optimize the atrium space [47]. Tian Y. used a genetic algorithm to optimize
office buildings in cold regions, studying the relationship between design parameters,
building energy consumption, and light-thermal comfort [48]. Gao Y. and others built an
optimization design framework for rural residences in the north, aiming to reduce heating
energy consumption and improve thermal comfort, and analyzed design solutions for
L-shaped and U-shaped rural houses [49]. Xu K. and Wang Y. used performance objectives
such as thermal climate index, heat radiation, and sky openness, employing Ladybug and
Honeybee simulation plugins and the Wallacei genetic optimization plugin, to optimize
the architectural layout of university campuses [50].

Existing studies primarily focus on the retrofitting of building envelopes. With the
advancement of energy conservation and carbon reduction efforts, there has been a gradual
integration of renewable energy sources to lower the energy consumption of rural dwellings.
However, a comprehensive optimization strategy for the energy retrofit of existing rural
houses in severely cold areas remains lacking. This paper selects single-story brick–concrete
rural houses in the Wusu area as the research subject, aiming to optimize their energy
efficiency with a focus on reducing carbon emissions and retrofit costs during the heating
period. Using the current operational conditions of these rural houses as the baseline model,
the study explores retrofitting the building envelope and applying solar photovoltaic
systems. The goal is to provide beneficial references for the retrofit of rural houses in the
Wusu area and theoretical support for the construction of new rural residences.

2. Research Methods
2.1. Multi-Objective Optimization Algorithm

Intelligent optimization algorithms are a category of algorithms inspired by natural
and social behaviors, designed to solve complex optimization problems, particularly those
that are difficult to address with traditional mathematical methods. These algorithms
typically exhibit strong global search capabilities, effectively finding near-optimal solutions
within vast search spaces. Key intelligent optimization algorithms include genetic algo-
rithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), simulated
annealing (SA), and others.

In the realm of intelligent algorithms, genetic algorithms (GAa) and their improved
versions play a dominant role, followed by particle swarm optimization (PSO) [51]. Basic
genetic algorithms primarily focus on single-objective optimization, iterating towards
optimal solutions through selection, crossover, and mutation processes. The NSGA-II
(Non-dominated Sorting Genetic Algorithm II), developed by Srinivas and Deb, is among
the most widely used genetic algorithms. It is a rapid, non-dominated, multi-objective
optimization algorithm based on Pareto optimal solutions [52,53]. NSGA-II’s elite preserva-
tion strategy ensures that high-quality individuals from the parent population are directly
carried over to the next generation, preventing the loss of non-inferior solutions. This
algorithm is known for its fast performance, high efficiency, and strong convergence,
simplifying the complexity of non-inferior quality genetic algorithms [54].

Researchers like Penna have utilized TRNSYS combined with the NSGA-II genetic
algorithm for optimizing single-family homes, aiming to reduce energy costs and discom-
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fort times, with results showing more than a 57% reduction in energy consumption [55].
Chaturvedi, S., has demonstrated the application of the NSGA II algorithm in multi-
objective building optimization under operational uncertainties [56]. Rabani proposed an
optimization solution for automatically identifying the best configurations of windows, en-
velopes, shading systems, and energy supply systems for an office building in Norway [57].
Ascione combined Energy Plus with NSGA-II to optimize the design of residential build-
ings in Spain, balancing window sizes, types of glass, and external walls and roofs for
heating and cooling demands [58]. Ferrara used the PSO algorithm in GenOpt to optimize
buildings for energy, cost, and acoustic performance, while also incorporating analyses
with the NSGA-II algorithm [59]. Delgarm, taking buildings in Iran as an example, used
Energy Plus and NSGA-II for optimizing building orientation, window area, and window
shading, showing a total energy consumption reduction of 23.8–42.2% [60].

As research and the evolution of algorithms progress, scholars are also experimenting
with a variety of algorithms like NSGA-III [37,61], SPEA-II [62], HypE [63], MOPSO, and
MOEA/E [41,64]. Usman, M., and others achieved optimal passive design for single-family
homes in different climates by coupling the NSGA-III genetic algorithm with the building
energy simulation tool TRNSYS [65]. Mostafazadeh used an improved version of the
NSGA-III algorithm, prNSGA-III, as the research optimization algorithm [61].

From the above, it’s clear that researchers have employed various evolutionary al-
gorithms to optimize architectural design. Delgarm and others used the multi-objective
artificial bee colony (MOABC) algorithm to maximize building energy efficiency and indoor
thermal comfort in different climate zones of Iran [66]. Delgarm and his team also used
the multi-objective particle swarm optimization (MOPSO) algorithm to evaluate schemes
based on annual heating, cooling, and lighting energy consumption standards [67]. Hamdy
and others compared commonly used optimization algorithms in architectural design,
including NSGA-II, MOPSO, two-phase optimization using a genetic algorithm (PR GA),
elitist non-dominated sorting evolution strategy (ENSES), and multi-objective dragonfly
algorithm (MODA), with PR GA showing higher repeatability and a larger solution space,
followed by NSGA-II [68].

Ant colony optimization (ACO) is a metaheuristic algorithm inspired by the behavior
of ants [69]. It is a global stochastic optimization algorithm capable of solving complex
nonlinear problems without the need for derivatives of the objective function. Initially
developed for discrete optimization problems, it has evolved to address continuous vari-
ables, leading to the development of continuous domain ant colony optimization (ACOr).
Bamdad K and others have conducted extensive research on the ant colony optimization
algorithm (ACO), developing the continuous domain ant colony optimization (ACOR)
algorithm in 2017 for optimizing commercial buildings in Australia, and comparing ACOR
with the Nelder–Mead (NM) algorithm, particle swarm optimization with inertia weight
(PSOIW), and a hybrid particle swarm optimization with the Hooke–Jeeves (PSO-HJ) al-
gorithm. Results showed that ACOR could find better solutions in less time, saving over
11.4% of energy even with common energy-saving measures [70]. In 2018, Bamdad K,
and others developed a modified version of the ant colony optimization algorithm for
mixed variables (ACOMV-M), which converged to similar quality solutions with about
50% fewer simulations [71]. Subsequently, ant colony optimization was applied in model
predictive control directions, with Bamdad, K. and others using ant colony optimization
(ACO) algorithms from different starting points to solve multiple model predictive control
(MPC) optimization problems, demonstrating that ACO provides high-quality optimized
control sequences while also requiring shorter computation times, achieving fairly good
solutions within 15 min [72].

This research faces a classic multi-objective decision-making problem, aiming to
find a reasonable balance between minimizing per-unit building area heating carbon
emissions and overall cost minimization. Although using efficient insulation materials
and incorporating photovoltaic technology can effectively reduce energy consumption and
carbon emissions, this typically comes with higher initial investments and maintenance
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costs. Conversely, aiming to minimize costs may correspond to a high-carbon emission
scheme. To address this conflict, this study opts to use the NSGA-II algorithm provided by
the Wallacei X 2.7 tool for optimization. This algorithm generates a range of Pareto frontier
solutions, offering multiple trade-off options between carbon emissions and costs. Through
the visual display of these solutions, decision-makers can more clearly see the trade-offs
between different schemes, thereby making a choice between the two objectives.

2.2. Selection of Multi-Objective Decision-Making Methods

Facing the Pareto frontier solutions derived from multi-objective optimization, deci-
sion theory is applied for further analysis and decision-making. Common decision theories
include multi-criteria decision analysis (MCDA), group decision theory, and behavioral
decision theory, among which MCDA is commonly used to assess multiple feasible solu-
tions on the Pareto frontier. By weighing the importance of different objectives, MCDA can
help decision-makers choose the most suitable solution. Common methods include the
weighted sum method, the analytic hierarchy process (AHP), and the technique for order
preference by similarity to the ideal solution (TOPSIS).

When the results of multi-objective optimization require selection by a team or group,
group decision theory can be chosen. Issues studied in group decision-making typically
have characteristics of autonomy, coexistence, and consensus. Decision-makers have
relatively independent decision-making power and choices, and their decisions or actions
are not dominated by power factors, but there may be mutual constraints and influences
between decision-makers and other group members. Additionally, members of group
decision-making are considered as a whole. The outcomes or actions ultimately made
by the group should be schemes that all group members can unanimously accept [73].
Commonly used methods, such as the Delphi method and majority voting, are employed
to integrate the preferences of group members to achieve collective decision-making. Li D.
and others used the analytic hierarchy process and the Delphi expert consultation method
to establish an evaluation system for the energy-saving suitability of nearly zero-energy
building envelopes in different climate zones [74].

Behavioral decision theory explores “how people actually make decisions” and “why
they make decisions this way”, starting with the Allais paradox in 1953 and the Edwards
paradox in 1961 [75]. Behavioral decision theory emphasizes psychological factors in
the decision-making process, applicable in multi-objective optimization scenarios where
decision-makers can understand how they evaluate different solutions and explore the
psychological mechanisms behind their preferences.

In typical multi-objective optimization problems, no single solution can achieve the
optimum for all performance indicators simultaneously; all non-dominated solutions are
on the Pareto frontier. In this context, the entropy weight method, as an objective weighting
method, plays an important role in multi-criteria decision analysis by eliminating the
impact of subjective human factors and providing objective evaluation criteria [76]. It is
used to determine the weights of various indicators by analyzing the variability of each
indicator, effectively avoiding the subjectivity of weight determination and the problem of
information overlap between multiple indicators.

Facing the Pareto frontier solutions derived from multi-objective optimization, decision-
makers need to apply appropriate decision theories for further analysis and selection.
Common decision theories include multi-criteria decision analysis (MCDA), group deci-
sion theory, and behavioral decision theory. Among these theories, MCDA is particularly
suitable for evaluating multiple feasible solutions on the Pareto frontier, allowing decision-
makers to identify which schemes best meet their preferences by comparing the relative
advantages of different solutions. Common MCDA methods include the weighted sum
method, the analytic hierarchy process (AHP), and the technique for order preference by
similarity to the ideal solution (TOPSIS), each with its own unique advantages and applica-
ble in different situations. The weighted sum method is suitable when decision-makers
can clearly quantify the weight of each objective; AHP helps decision-makers understand
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and evaluate each decision criterion through pairwise comparisons; while TOPSIS makes
decisions based on the comparison of each scheme’s distance from an ideal solution.

When determining the relative importance of each objective, objectivity is crucial. The
entropy weight method provides an objective way to determine the weights of various
decision criteria, reflecting the amount of information and variability of the criteria. The
smaller the entropy value of an indicator, the lower its uncertainty and the greater its
weight, indicating its higher importance in the evaluation. C. L. Hwang and K. Yoon
proposed the TOPSIS method, which ranks alternatives based on the shortest distance
to the ideal solution and the furthest distance from the negative ideal solution [77]. The
entropy weight method is an objective way to determine weights, used in the TOPSIS
method to determine attribute weights [78].

Combining the entropy weight method with TOPSIS, known as the entropy weight
TOPSIS method, not only enhances the objectivity of weight determination but also en-
hances the scientific and rational nature of the decision-making process. The entropy weight
TOPSIS method, by quantifying each scheme’s relative distance to the ideal and negative
ideal solutions, provides a clear, quantified decision-support tool, helping to choose the
best scheme from many feasible Pareto optimal solutions that meet the needs and context of
the decision-makers [76]. Therefore, this paper opts for a comprehensive decision-making
based on the entropy weight TOPSIS method, selecting the optimal solution from the
Pareto solution set. According to research by Chen and others, normalization is the most
commonly used method in entropy weight TOPSIS calculations [79]. The detailed steps of
the entropy weight TOPSIS method are as follows:

The entropy weight method is an objective weighting method used in multi-criteria
decision analysis to determine the weights of various indicators. By measuring the vari-
ability of each indicator, it effectively prevents the subjective determination of weights
and the information overlap among multiple indicators. An indicator’s entropy value is
inversely proportional to its certainty level; the smaller the entropy value, the lower the
uncertainty and, consequently, the higher its weight. This indicates that the indicator has a
higher significance in the evaluation [80].

Given that the original data may vary in dimension and magnitude, they are first
subject to dimensionless processing through range standardization, with the formula as
follows for positive indicators:

rij =
xij − min(xi)

max(xi)− min(xi)
(1)

For negative indicators, the standardization formula is as follows:

rij =
max(xi)− xij

max(xi)− min(xi)
(2)

In the formula, xij represents the original value of the j-th evaluation object on the i-th
indicator, and rij represents the corresponding standardized value. After standardizing the
data, the weight of each indicator is calculated using the following formula:

pij =
rij

∑n
j=1 rij

(3)

In the formula, n represents the number of evaluation objects.
Entropy is used to measure the variability of an indicator, with the formula as follows:

ei = − 1
ln(n)∑

n
j=1 pijln

(
pij

)
(4)
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The coefficient of variation reflects the amount of effective information an indicator
carries. The larger the coefficient of variation, the greater the weight of the indicator. The
formula is as follows:

di = 1 − ei (5)

Finally, by normalizing the coefficients of variation for all indicators, the weights
of each indicator can be obtained. These weights reflect the relative importance of each
indicator in the overall evaluation. The formula for this process is as follows:

wi =
di

∑m
i=1 di

(6)

In the formula, m represents the total number of indicators.
The next step involves determining the positive and negative ideal solutions. The

positive ideal solution consists of the maximum values from each column, while the
negative ideal solution is composed of the minimum values from each column. The
standardized matrix Z at this stage is as follows:

Z =


z11 z12 · · · z1m
z21 z22 · · · z2m

...
...

. . .
...

zn1 zn2 · · · znm

 (7)

Positive ideal solution:

Z+ = (Z+
1 , Z+

2 , · · · Z+
m ) =

(max(z11, z21, · · · zn1, ), max(z12, z22, · · · zn2, ) · · · , max(z1m, z2m, · · · znm))
(8)

Negative ideal solution:

Z+ = (Z+
1 , Z+

2 , · · · Z+
m ) =

(min(z11, z21, · · · zn1, ), min(z12, z22, · · · zn2, ) · · · , min(z1m, z2m, · · · znm))
(9)

To construct the weighted matrix, each column of the standardized matrix Z is multi-
plied by the corresponding weights, as shown in the algorithm:

Z =


ω1 ∗ z11 ω2 ∗ z12 · · · ωm ∗ z1m
ω1 ∗ z21 ω2 ∗ z22 · · · ωm ∗ z2m

...
...

. . .
...

ω1 ∗ zn1 ωm ∗ zn2 · · · ωm ∗ znm

 (10)

The Euclidean distance can be used to calculate the distance between the evaluation
object and both the positive and negative ideal solutions, incorporating weights:

D+
i =

√√√√ m

∑
j=1

ωj

(
Z+

j − zij

)2
(11)

D−
i =

√√√√ m

∑
j=1

ωj

(
Z−

j − zij

)2
(12)

The distance to the negative ideal solution is used to calculate the evaluation object’s
closeness to the optimal solution, with scores ranging from 0 to 1, where a higher score
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indicates a better result. To calculate the relative closeness of each scheme, the following
equation is used:

Si =
D−

i
D+

i + D−
i

(13)

This method is used to address multi-attribute or multi-criteria decision-making
problems, taking into account the weight of each objective to seek a choice under multiple
objective trade-offs [81]. Through the genetic algorithm, a set of solutions on the Pareto
frontier is obtained, and the relative closeness of the numerous feasible solutions is further
calculated. The retrofit scheme with the highest score is considered the best solution.
Usman, M., and others used the TOPSIS method to select the optimal design parameters
from the Pareto frontier solutions. Mostafazadeh and others also utilized the TOPSIS
method to choose the final strategy [61]. Wang, M., and colleagues, based on the entropy
weight TOPSIS decision theory, considered the performance objectives of CEC, ADH, NSE,
and GC comprehensively, seeking the best trade-off solution from the set of Pareto optimal
solutions, resulting in the best energy-saving scheme, the most comfortable scheme, and
the best trade-off scheme in terms of passive design parameters [36].

The performance simulation and multi-objective optimization systems are integrated
within the Rhino and Grasshopper platforms. Energy consumption simulation calculations
are performed using Ladybug and Honeybee to invoke EnergyPlus [82]. The multi-objective
optimization algorithm employs the NSGA-II algorithm provided by the Wallacei X tool.
The entropy weight TOPSIS method is used to comprehensively rank the Pareto frontier
solutions in order to select the optimal rural housing retrofit scheme.

3. Model Development
3.1. Development of the Baseline Rural House Model

Based on the Heating Degree Days (HDD18) and Cooling Degree Days (CDD26)
criteria set forth by the XJJ001-2021 “Energy Efficiency Design Standards for Residential
Buildings in Severe Cold and Cold Regions”, the Wusu area falls within the severe cold
zone 1C. Field surveys were carried out in Dongliang Village, with their specific locations
depicted in Figure 1, to collect fundamental data on typical rural houses.
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Figure 1. (a) Scope of the Wusu area; (b) overview of Dongliang Village (“SITE” represents the
location of the benchmark rural homestead).

Field research indicates that the primary structural form of rural houses in the Wusu
area is brick–concrete construction. The main structures typically feature 490 mm brick
walls with roofs made of cast-in-place concrete sloping roofs. Interior floors are compacted
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earth with a layer of cement mortar or concrete padding before tiling. Windows are
generally made of single-layer plastic steel, but due to the construction quality in rural
areas, the sealing performance of some windows may not be guaranteed. To combat the
cold winter, rural houses tend to minimize their external surface area. A smaller form
factor means that the building’s external surface area is relatively small compared to its
volume, which helps maintain indoor temperature by reducing heat loss through external
walls during winter, thereby reducing heating demands and saving energy. The research
shows that the thermal transmittance coefficients of the existing rural residential envelope
structures in the Wusu area are all higher than the requirements of energy-saving design
standards, and the window-to-wall ratio of the south wall is lower than the specified value
of the design standards. A single-story brick–concrete rural house in Dongliang Village
was selected as the subject for constructing the baseline rural house model, with model
information and construction practices as shown in Figure 2 and Table 1.
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Table 1. Standard rural house enclosure structure.

Enclosure Structure Structure (from Outer to Inner) Heat Transfer
Coefficient W/(m2·K)

External Wall ceramic tile, 20 mm cement mortar, 490 mm
porous brick KP1, and 20 mm mixed mortar 0.95

Roof 20 mm cement mortar, 120 mm cast-in-place
reinforced concrete, and 20 mm mixed mortar 3.79

Exterior Window Plastic steel window 2.8

Interior Wall 20 mm mixed mortar, 300 mm porous brick
KP1, and 20 mm mixed mortar 1.40

Floor 20 mm cement mortar, 100 mm concrete
cushion layer, and compacted soil 3.25

Exterior Door Single-layer steel fire door 1.76

For rural residences, it is possible to opt for a household on-grid photovoltaic (PV)
power generation system, which connects the solar PV system to the electric grid. Its
operational mode involves the solar PV cells producing direct current (DC) electricity
under sunlight. Under the overcharge protection of the controller, the current generated
by the PV system is converted into alternating current (AC) by the inverter to power
the heating equipment, with the surplus electricity fed into the national grid. As the
heating duration increases, the proportion of building energy consumption and cost borne
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by building insulation initially increases and then decreases, whereas the proportion of
building energy consumption and cost borne by the solar energy system first decreases and
then increases [83].

Using Ladybug to analyze solar radiation and the performance of solar photovoltaic
(PV) panels in the Wusu area (latitude: 44.43, longitude: 84.67), it was found that the
optimal annual tilt angle for installing PV panels in the Wusu area is 35.0◦, as shown in
Figure 3, with the highest radiation reaching 1490 kWh/m2. However, due to the significant
difference in solar radiation between summer and winter, the optimal tilt angles for summer
and winter are notably different. The optimal tilt angle for PV panels in summer is 22◦,
while in winter, due to the lower solar altitude angle, the optimal tilt angle is 54◦. It
is important to note that when the tilt angle exceeds the optimal value, the amount of
radiation received by the PV cells decreases with the increase in tilt angle. Frequently
adjusting the tilt angle of the PV panels would increase the cost and maintenance workload.
Therefore, to achieve a higher energy collection efficiency throughout the year, this paper
selects the annual optimal tilt angle for simulation calculations.
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3.2. Operational Parameters of the Baseline Rural House Model

Survey and measured data indicate that during the heating season, the 24-h average
indoor temperature in unheated rural houses remains at 4.7 ◦C. In contrast, in rural houses
where heating measures are implemented, the 24-h average indoor temperature was main-
tained between 16 ◦C and 25 ◦C during the period from 20 January to 25 January 2022. This
method of maintaining temperature is influenced by the farmers’ own perception of cold
and their economic situation [84].

Based on the current status of rural houses and the autonomous region’s building
energy-saving design standards, the operational parameters for the baseline rural house
model are set as follows: For the severe cold C zone, the heating period is from 15 October
to 15 April of the following year, totaling 183 days. Heating equipment operates throughout
the day, with the indoor heating temperature set at 20 ◦C. The indoor person density is
0.02 people/m2, with an average metabolic rate of 0.9 met (1 met = 58.15 W/m2), winter
average clothing thermal resistance of 1.2 clo (1 clo = 0.155 m2·K/W), and ventilation rate
of 0.5 h−1. Indoor lighting power is 5 W/m2, and equipment power density is 3.8 W/m2,
with operating times from 8:00 to 9:00 and 20:00 to 24:00. For the heating period energy
consumption simulation, meteorological data in EPW format from the CSWD database of
the China Meteorological Administration is used.

In this study, the building energy consumption model was established using Rhino–
Grasshopper, with Ladybug Tools employed as the building performance simulation
tool for heating energy consumption simulations. Grasshopper integrates plugins such
as EnergyPlus and OpenStudio, and energy consumption calculations are performed
using Ladybug and Honeybee to invoke EnergyPlus [82]. Its accuracy has been widely
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validated [85–87]. The benchmark rural dwelling energy consumption model created
using Rhino–Grasshopper’s visualization is shown in the Figure 4, with heating energy
consumption simulated using Ladybug Tools. The results indicate that as temperatures
drop, the demand for heating increases, primarily from November to March of the following
year. The total heating energy consumption simulation value is 35,920.08 kWh, as shown in
Figure 5b’s heating energy consumption chart; the average winter heating coal usage of
7.2 tons is calculated based on the measured average daily coal consumption during winter
for the benchmark rural dwelling, as shown in Figure 5a for daily coal consumption, using
Type III bituminous coal. At this time, the thermal efficiency of the heating system is 88%,
resulting in a heating energy consumption of 39,312 kWh during the heating period, with
an error rate of 8.6% compared to the simulation value. Therefore, the results of the energy
consumption simulation calculations are considered quite accurate and reliable.
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Rural residences often have smaller capacity photovoltaic systems installed on their
roofs, mainly for household electricity use. These systems typically utilize photovoltaic
panels, and in some cases, photovoltaic tiles may replace traditional tiles on sloped roofs.
This study opts for monocrystalline silicon photovoltaic panels for simulation, installing
panels produced by a certain manufacturer at the optimal annual tilt angle of 35◦. Table 2
provides detailed parameters of the photovoltaic modules used in the simulation, which
employs the Hay diffuse anisotropic model to analyze inclined radiation.

Table 2. Parameters of photovoltaic modules.

Parameter Value Parameter Value

Component Type Monocrystalline
Silicon Peak Power Voltage (V) 34.7

Number of Components 20 Peak Power Current (A) 10.96
Component Size (mm) 1755 × 1038 × 30 Irradiance Gref (W/m2) 1000

Maximum Power PMAX (W) 380 Power Temperature
Coefficient (%/◦C) −0.34

Open Circuit Voltage Voc (V) 41.44 Bifacial Coefficient 0.7

Short Circuit Current Isc (A) 11.67 Rated Cell Operating
Temperature (◦C) 45
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3.3. Baseline Rural House Measure Variable Settings

Based on the constructed model, optimizing the variables of the building envelope
involves focusing on the thickness and type of insulation material, which are key to the
optimization of the building’s envelope structure. Therefore, the thickness of the insulation
layer for external walls and roofs, as well as the type of insulation material, are considered
as measure variables. The performance of exterior windows, which is primarily affected by
their thermal transmittance (U-value) and size, directly influences indoor heating energy
consumption. Hence, the window-to-wall ratio is included as a design parameter to
seek optimization that reduces heat transfer losses, effectively decreasing heating energy
consumption and improving the building’s heating energy efficiency.

The names of the optimization variables, their value ranges, and initial investment
costs are shown in Table 3. The upper limit of the change interval for the insulation layer
thickness and the thermal transmittance of external windows encompasses the limits pre-
scribed by the autonomous region’s standards in the “Energy Efficiency Design Standards
for Residential Buildings in Severe Cold and Cold Regions”. The prices for insulation mate-
rials and doors/windows are set based on data from the Xinjiang government procurement
website and market research to ensure the model’s realism and feasibility. The price of
EPS insulation board is 260 CNY/m3, XPS extruded board is 600 CNY/m3, and rock wool
board is 310 CNY/m3.

Table 3. Retrofit measure variables.

Retrofit Area Parameter Variable Value Range Simulation Step Size Initial Investment

External Wall
EPS Board 10–300 mm 10 mm 260 CNY/m3

XPS Board 10–300 mm 10 mm 600 CNY/m3

Rock Wool Board 10–300 mm 10 mm 310 CNY/m3

Roof
EPS Board 10–300 mm 10 mm 260 CNY/m3

XPS Board 10–300 mm 10 mm 600 CNY/m3

Rock Wool Board 10–300 mm 10 mm 310 CNY/m3

Farmhouse
Story Height Story Height 2700–3600 mm 100 mm /

Window-Wall Ratio

South-facing window/wall ratio 0.20–0.45 0.01 /
North-facing window/wall ratio 0–0.25 0.01 /

East/west-facing
window/wall ratio 0–0.30 0.01 /

Window Type

6 mm clear, 12 mm air,
and 6 mm clear 2.8 W/(m2·K)

Select by type

780 CNY/m2

6 mm high-transmittance low-E,
12 mm air, and 6 mm clear 1.9 W/(m2·K) 800 CNY/m2

6 mm medium-transmittance low-E,
12 mm air, and 6 mm clear 1.8 W/(m2·K) 800 CNY/m2

6 mm high-transmittance low-E,
12 mm argon, and 6 mm clear 1.5 W/(m2·K) 820 CNY/m2

6 mm medium-transmittance low-E,
12 mm argon, and 6 mm clear 1.4 W/(m2·K) 820 CNY/m2

Triple glazing (5 mm clear,
12 mm air, 5 mm clear, 12 mm air,

and 5 mm clear)
1.7 W/(m2·K) 880 CNY/m2

Triple glazing (5 mm
medium-transmittance low-E,

12 mm air, 5 mm low-E, 12 mm air,
and 5 mm clear)

1.2 W/(m2·K) 920 CNY/m2

Photovoltaic Modules
Angle 35◦ 1◦

875 CNY/m2

Area 36.43 m2 Number of
component blocks
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In severe cold regions, the effective operation of solar heating systems is highly
dependent on the good performance of the building’s envelope structure. When the
performance of the envelope structure is poor and the building itself has a high heating
thermal load, it becomes impractical for the solar system to provide heating on its own.
Therefore, improving the insulation performance of the envelope structure is fundamental
to reducing heating energy consumption. In the rural houses of the Wusu area, this paper
simulates the use of a hybrid model that combines photovoltaic with electric heating for
the heating system. When the solar assurance rate is insufficient, the system switches to
electric heating, utilizing subsidized electricity rates to ensure heating efficiency.

4. Objective Function Setting
4.1. Heating Carbon Emissions per Unit Building Area

Surveys indicate that in the Wusu area, rural residents are busier in the fields during
the summer, leading to lower occupancy rates during the day and infrequent use of cooling
equipment. In contrast, heating is required throughout the day in winter. Therefore, this
study targets the carbon emissions from heating per unit of building area during the heating
season as the objective for retrofitting the baseline rural house. Meteorological parameters
use the typical meteorological year data for Wusu City downloaded from the EnergyPlus
official website, with other operational parameters as previously described.

The carbon emissions of a building include those from construction, operation, de-
molition, and the production and transportation of building materials. After retrofitting,
carbon emissions can be defined as the sum of the following components: (1) implicit and
direct carbon emissions during the production and transportation of retrofit materials, and
(2) direct and indirect carbon emissions from heating and cooling during the operational
phase. A life cycle carbon emission analysis is applicable to new construction and may not
fully apply to the retrofitting of existing buildings. The electricity consumption by solar
photovoltaic systems, which is provided by the systems themselves without consuming
external grid electricity, is therefore not considered in the carbon emission calculations, as
solar systems contribute to reducing electricity consumption for heating.

Currently, there are four main methods for calculating carbon emissions internation-
ally: the measurement method, the input–output method, the material balance method, and
the emission factor method [88]. The emission factor method calculates carbon emissions
based on the statistical average amount of gas emitted per unit of product produced under
normal economic and management conditions [89]. This paper focuses on the impact of
different retrofit measures on carbon emissions during the heating period, paying particular
attention to heating carbon emissions in the operational phase after retrofitting, using the
emission factor method to calculate CECO2 values. Lower values indicate better environ-
mental performance of the building. According to the basic formula revised by IPCC in
2006, “Greenhouse gas emissions = Activity data × Emission factor”, the accounting scope
considers only CO2 greenhouse gases, with the calculation formula as follows:

CECO2 = E × EFCO2 (14)

In the formula, CECO2 represents the carbon emissions per unit area of heating for
the rural house, measured in kgCO2/m2; E is the heating energy consumption per unit
building area, measured in kw·h/m2; CECO2 is the CO2 emission factor for a specific type
of energy, measured in kgCO2/KW·h [90]. For electricity, EFCO2 adopts the value from the
“2019 Annual Emission Reduction Project Regional Power Grid Baseline Emission Factor for
China” for the northwest regional power grid, which is converted to 0.8922 kgCO2/KW·h.

4.2. Global Cost

The economic evaluation indicators for a building’s lifecycle typically include Net
Present Value (NPV), Annuity (NA), Internal Rate of Return (IRR), Cost-Effectiveness Ratio
(a), and Payback Period, among others. In the recast of the EU Energy Performance of
Buildings Directive (EPBD) 2010, global cost (Cg) is introduced as an indicator to measure
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the economic efficiency of energy-saving buildings throughout their lifecycle. Global cost
considers the initial incremental investment costs brought by energy-saving technologies
and the benefits from energy cost savings during the calculation period. This indicator
calculates costs associated only with energy-saving technology-related components, in-
cluding insulation layers and exterior windows, excluding the costs of building structural
base components, as well as costs arising from material transportation and environmental
impacts of construction. This allows for a preliminary assessment of the lifecycle economic
efficiency of buildings during the retrofitting phase [91].

The difference in global cost before and after retrofitting the baseline rural house, dCg,
is the difference between the global cost after retrofitting, Cg(j), and the global cost before
retrofitting, Cg(re f ). This difference intuitively reflects the lifecycle benefits brought by the
retrofit investment. The calculation formula is as follows:

dCg = Cg(j)− Cg(re f ) (15)

Cg(j) =
C1 + ∑25

i=1[Ce,i × Rd(i)]
A f loor

(16)

Rd(i) =
1 + (1 + RR)

−i

RR
(17)

RR =
Ri − Re

1 + Re
(18)

In the formula, C1 represents the initial investment cost (in CNY); Ce,i is the energy
cost in the year i (in CNY), with an annual energy cost increase rate of 3.5%; Rd(i) is the
discount rate in the year i; A f loor is the total building area in square m2; RR is the real
interest rate; Re is the energy price increase rate, set at 1.2% [92]; and Ri is the market
interest rate, set at 4.25% [92]. The calculation period is set to 25 years, and the service life
of active photovoltaic components is also considered to be 25 years, because the accuracy
of economic calculation results beyond 30 years can be affected [91]. If dCg > 0, it indicates
that the retrofitting scheme is economically unfeasible; if dCg < 0, it indicates that the
retrofitting scheme is economically feasible, and the smaller the dCg value, the better the
lifecycle economic benefit of the retrofitting scheme.

In this study, the direction of optimization is to adjust design parameters to minimize
the values of CECO2 and dCg. The function can be expressed as follows:

Min
{

f1(x) = CECO2 , f2(x) = dCg
}

, x = [x1, x2, x3 · · · xn] (19)

In this case, the optimization goal is naturally to find the set of parameters (x) that
minimize the objective functions f1(x) and f2(x). In this study, there is no need to convert
maximization problems into minimization problems as the values of the objective functions
are already indicators of minimization.

4.3. Payback Period

The payback period refers to the time required for the added benefits of a project
to compensate for the investment made. It is a key indicator for assessing the feasibility
of rural house retrofit projects. This study focuses on reducing energy consumption
through passive envelope improvements and integrated photovoltaic panels, without
considering construction costs. The initial investment includes the cost of insulation
materials, installation fees, and the cost of photovoltaic components. This paper also
considers the additional costs of using grid electricity to supplement electric heating when
photovoltaic generation is insufficient to meet all heating needs.

According to the “Notice on the Adjustment of Electricity Prices for the Xinjiang
Power Grid by the Development and Reform Commission of the Autonomous Region”,
the unified electricity price for dispersed electric heating to households is 0.22 CNY/kWh.
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The “Scheme for Perfecting the New Energy Pricing Mechanism in Our Region” issued
by the Development and Reform Commission of the Xinjiang Uygur Autonomous Region
specifies the on-grid electricity price as 0.262 CNY/kWh. By comparing these costs with
the long-term energy-saving benefits, the calculation formula is as follows:

t =
c

c1 − c2 − c3
(20)

In the formula, t is the payback period (years); c is the total initial investment cost; c1
is the annual energy saving cost (savings); c2 is the annual operation and maintenance cost;
and c3 is the cost of supplementing electric heating with grid electricity.

5. Results
5.1. Analysis of Optimal Solution’s Objective Performance

Based on the simulation results from EnergyPlus, the initial values for the optimized
variables of the baseline building and the heating energy consumption per unit of building
area are presented in Table 4. These values exceed the current standards for residential
buildings, which require a 75% energy saving rate.

Table 4. Initial Performance of the Baseline Building.

Type

Exterior Wall
Additional
Insulation

Layer

Roof
Additional
Insulation

Layer

Floor Height
(m)

South-Facing
WWR

North-Facing
WWR

Heating Load
per Unit of

Building Area
(kWh/m2)

Baseline
Building None None 3.0 0.23 0.10 211.51

Simulating the selected photovoltaic (PV) components reveals that from May to
September, and as shown in Figure 6, the solar irradiance is abundant, gradually de-
creasing with the change in the sun’s elevation angle, where the irradiance on an inclined
surface is slightly higher than on a flat surface. The electricity generation from the PV
components is lowest in November, with some energy loss through the inverter. From May
to September, the output of electricity can reach up to 900 kWh. During the winter heating
period, the PV components generate a total of 3603.23 kWh of electricity, which can be fed
into the grid during the summer without the need for additional energy consumption.
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For setting optimization algorithm parameters, reference is made to related research.
Under the premise of ensuring the accuracy of the Pareto solution set and reasonable
computation time, the settings for the NSGA-II optimization algorithm are as follows:
a population size of 50, a number of generations of 20, a crossover probability of 0.9,
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and a mutation probability of 0.1. The maximum number of iterations is used as the
termination condition for optimization. After comprehensive optimization, the Pareto
solution set under the control of objectives is obtained, as shown in Figure 7. Overall, it is
evident that the various retrofit measure variables for the rural house all have significant
optimization potential.
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After 20 generations of calculation, the multi-objective optimization tends towards
convergence, yielding 64 Pareto optimal solutions for the rural house retrofit. As the cost of
the rural house retrofit increases, the trend of reducing building energy consumption slows
down from rapid to gradual. The solutions in the set all show heating energy consumption
significantly better than the initial energy consumption values of the baseline building,
with per unit area carbon emissions also lower than the initial carbon emission values of
the baseline building. The trend in winter heating energy consumption and the global cost
of rural house retrofit are inversely related, indicating that the optimization objectives are
mutually constrained and cannot achieve optimum simultaneously.

The diagram shows a series of retrofitting schemes obtained after 20 generations of
optimization, which display varying degrees of trade-offs between cost reduction and
energy consumption. These trade-offs reflect the mutual constraints of the optimization
objectives. As a scatter plot representing different retrofitting schemes, each point on the
plot indicates two key performance indicators of a retrofitting scheme: the vertical axis
represents carbon emissions CECO2 , and the horizontal axis represents the incremental
global cost dCg. It is evident that there are schemes with dCg < 0, indicating that these
retrofitting schemes are economically viable. The smaller the value of dCg, the better the
economic benefit during the operational phase of the rural dwelling.

The red points in the diagram represent the Pareto frontier solutions obtained through
the NSGA-II algorithm, indicating that these points achieve a better trade-off between
carbon emissions and cost. The distribution of data points shows that as the cost increment
dCg increases, the carbon emissions CECO2 gradually decrease, although the rate of reduc-
tion slows down. Within the Pareto frontier, lower cost increments correspond to lower
carbon emissions, indicating that significant reductions in energy consumption and carbon
emissions can be achieved through moderate retrofit investments.

From an overall perspective, the unit area heating load can be reduced from 211.51 kW·h/m2

to 109.72 kW·h/m2. Among them, within the Pareto optimal solution set, those satisfying a
75% energy-saving rate account for 42.2%. The minimum building heat consumption index
can reach 12.427 W/m2, resulting in an energy-saving rate of 79.5%. Among these, 80% of
the renovation plans have initial investments lower than the lifecycle energy-saving costs
(dCg < 0). This indicates that adding photovoltaic components to improve the enclosure
structure is economically feasible for reducing heating power consumption.
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5.2. Factor Analysis Based on Entropy-Weighted TOPSIS

Building on this, the obtained Pareto solution set is analyzed to compare the heating
carbon emissions and overall costs of various plans. Through the entropy weighting
method, the data is normalized and weighted, resulting in the outcomes for seven key
indicators, as shown in Table 5.

Table 5. Results of entropy weight calculation.

Indicator Entropy Value Difference Coefficient Weight Rank

Story height 0.96 0.04 0.112 4
Roof insulation

thickness 0.95 0.05 0.139 3

External wall insulation
thickness 0.92 0.08 0.217 1

East-facing WWR 0.91 0.09 0.241 6
North-facing WWR 0.97 0.03 0.092 5
South-facing WWR 0.95 0.05 0.140 2
West-facing WWR 0.98 0.02 0.059 7

The entropy weighting results highlight the insulation thickness of external walls as the
most significant factor, followed by the south-facing window-to-wall ratio, roof insulation
thickness, story height, north-facing window-to-wall ratio, and east–west facing window-to-
wall ratio, in descending order of impact. This indicates that energy-saving optimizations
for rural houses in the region should prioritize reducing the thermal conductivity of external
walls and increasing the south-facing window-to-wall ratio. Subsequently, improving the
performance of roof insulation materials and adjusting the design of window-to-wall ratios
in other directions should be considered. Specifically, minimizing or avoiding windows in
the east–west orientation can optimize the overall energy-saving effect.

According to the calculation steps of the entropy weight TOPSIS method, after stan-
dardizing the values of each criterion, they are multiplied by the entropy weights previously
determined to calculate the closeness coefficient C. This coefficient represents the overall
performance of each scheme across all criteria, meaning that the higher the C value, the
closer the scheme is to the ideal solution after considering all evaluation criteria. The results
are shown in Figure 8.
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The graph clearly shows significant fluctuations in the C values, indicating consid-
erable differences in the quality of the retrofitting schemes. About 25% of the schemes
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perform well, as these retrofitting strategies are closer to the ideal solution, with their
relative closeness exceeding 0.7.

Within the Pareto front solution, 20% of the plans are not economically viable, and
the carbon reduction per unit of building area is less than 47.93 kg CO2/m2. Compared to
the baseline model, the maximum carbon reduction per unit of building area is achieved
by Plan 43, with a value of 112.01 kg CO2/m2, whereas Plan 62 has the highest economic
feasibility, with a dCg of −34,434.56 CNY, but the carbon reduction per unit of building
area is 100.67 kg CO2/m2. Hence, a higher investment in rural house optimization does
not necessarily lead to greater carbon reduction. Balancing the carbon reduction per unit
area and dCg objectives, Plan 38 is identified as the optimal, with heating period carbon
reduction and a global cost increase of 108.65 kg CO2/m2 and −31,818.74 CNY, respectively,
reducing building heating carbon emissions while also offering good economic benefits.

The study utilizes roof-distributed “self-consumption with surplus to grid” for simu-
lation, assuming that the degradation of the solar photovoltaic power generation system
does not exceed 20% throughout its lifecycle [93], with a first-year degradation of 2% and
no more than 0.5% per year thereafter. The calculated annual average photovoltaic power
generation during the heating period is 3603.23 kWh, with 4583.77 kWh fed into the grid.
Taking into account the saved heating electricity due to envelope structure renovation, Plan
38, Plan 43, and Plan 62 have payback periods of 12.51, 13.37, and 12.53 years, respectively.

5.3. Solar Contribution Rate

The solar contribution rate intuitively reflects the performance differences between
solar photovoltaic systems and electric heating during the heating period in the Ussuri
region’s building heating cycle. This analysis selects a compromise solution to compare the
energy generated by the photovoltaic system during operation with the building’s total
thermal load throughout the heating cycle [22].

As indicated in Figure 9, from December to February of the following year, it was
characterized by low solar altitude angles and weather conditions such as rain and snow
that reduced the efficiency of solar photovoltaic systems. Especially in January and Febru-
ary, frost formation at night adversely affects solar collectors, decreasing the absorption
efficiency of the collectors. As midday temperatures rise and the frost melts, the solar
system almost ceases to generate heat during this period. To meet the indoor thermal
load demand, electric heating becomes a necessary choice. In October and April, due to
ample solar radiation, the solar system’s contribution rate exceeds 100%, and as the internal
thermal load of the farmhouse decreases, the photovoltaic system can generate extra heat.
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6. Discussion

In architectural performance optimization research, objective functions are commonly
based on economic aspects such as life cycle cost, total investment cost, or building oper-
ation cost; energy aspects like electrical load; and environmental aspects such as carbon
emissions [94]. In this paper, the optimization objective functions are per unit area heating
carbon emissions and the global cost increment of retrofitting. This study has validated that
retrofitting strategies, which enhance the insulation performance of the building envelope
and add photovoltaic systems to roofs in rural residences in the Wusu area, can significantly
reduce heating energy and carbon emissions. Zhen M. and others have proposed that the
form factor of rural residences, the window-to-wall area ratio, and the thermal transmit-
tance coefficient of the envelope are positively correlated with heating energy consumption
in the severely cold regions of Northeast China [95], collectively indicating that establishing
a heating energy consumption prediction model in severely cold regions can provide a
basis for energy-saving retrofits for rural dwellings.

The entropy weight TOPSIS method is used in this study to evaluate retrofitting
schemes obtained through the NSGA-II algorithm. The results indicate that adding addi-
tional insulation to the exterior walls has the greatest impact on heating energy consump-
tion, followed by the control of the south-facing window-to-wall ratio and the addition of
insulation to the roof. Jin H. and others, taking residential design in a severely cold village
as an example, used the NSGA-II algorithm to filter design parameter combinations related
to energy consumption and cost, obtaining a set of Pareto non-dominated solutions and a
global balance solution, and selecting different technical templates for various needs [96].
Lu H. and others took a new rural residential building in a cold region as the research
object to simulate and analyze the impact of the thermal performance of various envelopes
on building heating energy consumption, noting that the exterior walls have the greatest
potential for energy savings, with a potential of 18.35%, windows at 15.64%, and the roof at
4.53% [97]. In addressing multi-objective research problems, the selection of the NSGA-II
algorithm is feasible, and the conclusions drawn from the study of the impact of envelope
structures on heating energy consumption in cold regions are in line with the trends ob-
served in this study, indicating that in both severely cold and cold regions, greater attention
should be paid to the insulation of exterior walls, windows, and roofs.

Analysis of the Pareto frontier solutions indicates that the per unit area heating carbon
emissions can be reduced to 78.76 kg CO2/KW·h, of which the solutions meeting the 75%
energy-saving design standard of the autonomous region account for 42.2%, demonstrating
the potential for sustainable development in rural housing. The best retrofitting scheme
selected through the entropy weight TOPSIS method combines the retrofit of the building
envelope and the application of photovoltaic systems, achieving an energy-saving rate
of 79.5%. Compared with Ding Y.’s research on the thermal performance of vertical
building envelopes in rural housing in the Hohhot–Baotou–Ordos region, the optimized
scheme reached an energy-saving rate of up to 76.69% [98]. This proves the energy-saving
effect of envelope structure optimization and shows that adding photovoltaic systems to
rural housing can further enhance energy savings, validating the correctness of envelope
structure optimization and the significant role of photovoltaic systems in promoting energy
savings in rural dwellings.

Furthermore, this study indicates that in the transitional heating season of October
and April, the solar contribution rate of the photovoltaic system exceeds 100%, where the
surplus energy can be utilized by metering transmission to the grid or battery storage. In
winter, when the solar incident angle is low and snowfall reduces the efficiency of solar
collectors, the photovoltaic system should be combined with electric heating to ensure
stable heating during the heating season. Zhang J. and others, through measured and
numerical simulation of different thermal inertia building envelopes and delay times in
low-energy buildings in severely cold regions, controlled strategies to maximize the use
of peak–valley electricity prices, significantly reducing the operating time of the electric
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heating system in the heating system [22], further enhancing the sustainability and energy
independence of rural housing.

7. Conclusions

Improving the building’s structural performance and reducing the economic costs of
heating are key to promoting carbon reduction in rural house heating systems. Installing
photovoltaic power systems on building roofs offers good economic benefits and signif-
icant energy-saving and emission-reduction effects. Effectively utilizing measures such
as external wall and roof insulation, the performance of transparent envelope structures,
and clean energy can achieve optimal energy-saving and cost-effectiveness. The differen-
tiated performance of various retrofitting plans for rural houses in terms of each target
performance is as follows:

The carbon emission per unit area of heating has been reduced from a high of
109.76 kg CO2/KW·h to 78.76 kg CO2/KW·h. Among the Pareto front solutions, 42.2%
meet the autonomous region’s current energy-saving residential design standard of a 75%
energy-saving rate; the lowest building thermal consumption index can reach 12.427 w/m2,
at which point the energy-saving rate has reached 79.5%. In all retrofitting plans, 64%
have dCg < 0; within the Pareto front solutions, 80% of the plans with dCg < 0 indicate that
improving the envelope structure and adding photovoltaic components are economically
feasible in reducing heating energy consumption.

Balancing the carbon emissions from heating and the overall cost increase from
retrofitting, the balanced solution for the retrofit of the rural house is identified: the
net height of the house is 2.80 m, the external wall is insulated with 280 mm thick EPS
polystyrene board, the insulation thickness of the roof is 240 mm, and the type of external
window chosen is type 5 (6 mm translucent low-E, 12 mm argon gas, and 6 mm transparent),
with a south-facing window-to-wall ratio controlled at 0.3 and a north-facing window-
to-wall ratio of 0.09, without adding external shading. At this point, the corresponding
carbon emission per unit building area is 82.11 kg CO2/m2, and the global cost increase
is −31,818.74 CNY. The addition of photovoltaic system components yields an annual
electricity output of 8187 kWh, with a total output of 191,661 kWh over 25 years. The
photovoltaic system reduces standard coal emissions by 19.28 kgce/(m2·a) and carbon
emissions by 0.834 kg/(m2·a) over its operational cycle. At this point, the payback period
for the investment in the heating retrofit of the rural house is 12.51 years, demonstrating
good economic and environmental benefits.

This study employs the NSGA-II genetic algorithm-based multi-objective optimization
plugin, Wallacei, to balance per unit area carbon emissions and the global cost increment
of retrofitting, constructing a multi-objective optimization approach suitable for winter
heating in rural dwellings in the Wusu area. By analyzing the Pareto frontier solutions,
the study evaluates the impact of each optimization scheme on winter heating energy con-
sumption and economic costs, proposing energy-saving and emission-reduction solutions
under the premise of economic viability. It also highlights some limitations. Firstly, due
to geographical location and manpower constraints, the sample size is limited, with the
research perspective focused on the Wusu area. Despite being in the same cold region,
there are differences in climate characteristics, cultural backgrounds, and residents’ living
habits across regions. There is a need for targeted energy-saving retrofit designs for rural
dwellings that maintain the characteristics and continuity of regional architecture while
meeting energy-saving and emission-reduction requirements. Further analysis of their
socio-economic benefits should be conducted to ensure the economic feasibility of the
retrofitting schemes. Moreover, this study is limited to analyzing the current typical climate
conditions without predicting or assessing the potential impacts of future climate changes.

Additionally, the current analysis and research are only targeted at rural residences
in the plain areas of the Wusu region, where farming is the primary mode of production,
without considering other rural residences in the mountainous regions that rely on nomadic
lifestyles. Different production methods and changes in terrain may affect the optimization
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direction and results. Future research will focus on analyzing the energy consumption
of the residences of nomadic populations and improving living comfort. Further studies
will also explore the interaction between rural housing and the power grid, optimizing the
integration of storage systems and photovoltaic power generation, and analyzing energy
and comfort optimization during the operational phase of rural dwellings to enhance the
validity of the results.
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