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Abstract: It is necessary to develop a health monitoring system (HMS) for complex systems to
improve safety and reliability and prevent potential failures. Time-series signals are collected from
multiple sensors installed on the equipment that can reflect the health condition of them. In this study,
a novel interpretable recurrent variational state-space model (IRVSSM) is proposed for time-series
modeling and anomaly detection. To be specific, the deterministic hidden state of a recursive neural
network is used to capture the latent structure of sensor data, while the stochastic latent variables of
a nonlinear deep state-space model capture the diversity of sensor data. Temporal dependencies are
modeled through a nonlinear transition matrix; an automatic relevance determination network is
introduced to selectively emphasize important sensor data. Experimental results demonstrate that
the proposed algorithm effectively captures vital information within the sensor data and provides
accurate and reliable fault diagnosis during the steady-state phase of liquid rocket engine operation.

Keywords: nonlinear deep state-space model; automatic relevance determination network;
interpretability; fault diagnosis

1. Introduction

The liquid rocket engine, as the core component of a spacecraft, plays a crucial role in
ensuring the safe launch and flight of a rocket. However, due to prolonged operation under
harsh conditions such as high temperatures, high pressures, strong corrosion, and intense
energy release, the engine is prone to malfunctions. If anomalies occur in the liquid rocket
engine during ignition or flight, it often leads to rapid consequences such as explosions,
resulting in significant financial losses and even jeopardizing human lives. Hence, it is
imperative to conduct fault detection for liquid rocket engines. Engine fault detection
essentially involves processing and analyzing multidimensional sensor time-series data,
extracting features to obtain engine states. To detect the fault of LRE, statistical analysis
methods such as red-line threshold algorithms [1] and autoregressive moving average
(ARMA) algorithms [2] were initially applied due to their rapid and reliable computa-
tion. However, these methods often neglect the relationships between sensors, leading
to false alarms due to the unstable threshold ranges and data of some sensors. With the
advancement of deep learning techniques, an increasing number of deep neural models are
employed in liquid rocket engine for fault detection, which aim to overcome the shortcom-
ings of traditional machine learning methods such as artificial neural network (ANN) [3]
and support vector machines (SVM) [4], which have inadequate feature extraction capabili-
ties. Park et al. [3] integrated convolutional neural networks (CNN) and long short-term
memory networks (LSTM) to identify transient faults during engine startup. Yan et al. [5]
proposed a memory-enhanced skip-connection autoencoder for unsupervised anomaly
detection in rocket engine operations. Feng et al. [6] employed a generative adversarial
network (GAN) to achieve multi-source fusion for LRE anomaly detection. However, these
approaches exhibit limited capacity in modeling long-term dependencies in multidimen-
sional complex temporal data and are prone to overfitting issues due to sample imbalances
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and small sample sizes. Moreover, the multi-source data fusion strategies are relatively
simple and lack interpretability, hindering the representation of the relationship between
sensors and model performance.

Meanwhile, model-based fault detection methods are also investigated, utilizing
mathematical analytical models of the engine combined with methods like Kalman filtering
to achieve fault detection [7,8]. The effectiveness of this approach depends on the accuracy
of the model, yet analytical models established often diverge from actual engine behavior.
Similar to model-based methods, state-space models describe the evolution of system states
over time through state equations and observation equations. By integrating deep learning,
state-space models can leverage their multi-level representation capabilities to capture
features across different scales, thus enabling a more precise understanding and prediction
of complex time series data. In 2022, Shalini et al. [9] employed state-space models for
currency price forecasting. Similarly, in the same year, Li et al. [10] utilized state-space
models for anomaly detection in time-series data. However, state-space models typically
assume a linear relationship between system states and observations, which may pose
limitations when dealing with the complex nonlinear relationships in liquid rocket engine
data. Therefore, state-space models require further improvement to accommodate these
complex scenarios.

To tackle the aforementioned challenges, a novel approach named interpretable recur-
rent variational state-space model (IRVSSM) is proposed for fault diagnosis of liquid rocket
engines, which leverages the recursive nonlinear state-space framework of deep neural
networks. The nonlinear emission and transition matrices are designed to adeptly capture
the intricate temporal dependencies and dynamic variations inherent among sequential
signals. This adaptability bolsters the model’s resilience to complex data distributions.
Additionally, an automatic relevance determination (ARD) network was employed to facili-
tate the identification of critical factors within sensor data, thereby enhancing the model’s
interpretability. The contributions of this study are summarized as follows:

(1). Anovel interpretable recurrent variational state-space model (IRVSSM) is proposed
for diagnosis of complex systems. Recurrent neural networks (RNNs) are utilized to
capture long-term dependencies in sensor data, while the state-space model (SSM)
captures dynamic changes in complex sensor data. The incorporation of nonlinear
emission and transition matrices enables the model to flexibly adapt to various data
distributions. Additionally, integrating a variational autoencoder (VAE) within the
state-space framework not only enhances the model’s generalization capability but
also helps alleviate overfitting issues.

(2). To extract crucial information from sensor data, an automatic relevance determination
(ARD) network is designed. By comparing sensor weights with actual fault informa-
tion and conducting detailed analyses of the model’s decisions, the ARD network
furnishes compelling explanations for engine fault classification.

(3). Experiments were carried out on simulated and actual liquid rocket engine test data.
The results demonstrate the fault diagnosis performance of the proposed methodology
outperforms baseline models.

2. Related Works
2.1. State-Space Models

State-space models (SSMs) provide a versatile and flexible approach for modeling
sequential data [11]. Stemming from Kalman’s pioneering work, SSMs were rapidly
employed including estimating the trajectory of the spacecraft transporting humans to the
moon [12]. SSMs primarily serve as generative models for sequential data, encompassing
prediction modeling, state inference, and representation learning. As depicted in Formula
(1), the state-space model consists of state transition equations and observation equations.
The former describes the dynamics of hidden states over time p(z¢|z;_1,u¢), while the
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latter summarizes the conditional probability distribution of observations given the hidden
states p(x¢|zs, ).
xt = Aszt + Brup + by + vrey

1
zy = Cizy—1 + Drut + et @)

where the input vector, hidden state vector, and output vector are denoted as u € RV,
zi € Rl and x; € RM. The state transition equation includes the state transition matrix
Ct € RE*L and the intensity of state transition noise g;, while the observation equation
comprises the weight and bias of the observation model A; € RMXL and b;, and the
intensity of observation noise v;. Furthermore, B; € REXN and D; € RMxN represent the
effects of input on hidden variables and observations, respectively. The state vector follows
a Gaussian distribution z ~ N(u,diag(c?)), and the noise follows a standard normal
distribution & ~ N(0,1).

2.2. Deep State-Space Model

The deep state-space model builds upon the foundation of the state-space model
by incorporating stochastic latent variables from variational autoencoders (VAE) [13,14],
thereby enabling scalable training through stochastic backpropagation and inference net-
works. The SSM model allows for modeling the temporal relationships of stochastic latent
variables, extending the time dimension of VAEs. The integration of SSM and VAE permits
the creation of flexible conditional distributions using neural networks, offering a viable
approach to modeling uncertainty in latent variables. Deep state-space model primarily
focus on unsupervised learning of complex temporal data probability distributions [9,15],
with wide applications in areas such as speech, music, video, and text generation [16-18].
These applications face similar challenges, characterized by complex high-dimensional
temporal distributions with uncertainty and variability. For instance, video generation
necessitates sophisticated architectures capable of modeling high-dimensional observation
data at each time step while capturing long-term temporal dependencies. Similarly, engine
sensor data exhibit characteristics such as nonlinearity, high dimensionality, dynamics, and
strong correlations. Modeling sensor data in high dimensions at each time step serves the
purpose of fault detection and diagnosis. Hence, the deep state-space model aligns well
with the requirements of liquid rocket engine fault diagnosis.

2.3. Variational Autoencoders

Variational autoencoders (VAEs) have great success in generative models for high-
dimensional data [19], which introduce the probabilistic modeling and employ deep neu-
ral networks to parameterize the probability distribution of latent variables. Simultane-
ously, VAEs provide an effective approximate inference process that can be scaled to large
datasets [20]. The variational autoencoder consists of a generative network and an inference
network. The inference network is responsible for learning the latent representation of the
data, while the generative network utilizes these latent representations to generate data
samples. Together, they collaborate to achieve data dimensionality reduction and feature
extraction, thereby maximizing the model’s performance.

3. Proposed Model

This section provides a detailed overview of the main framework of the proposed
algorithm, as depicted in Figure 1. The model primarily comprises the following com-
ponents: (1) A nonlinear recurrent variational state-space model, which utilizes RNNs
to capture long-term dependencies and incorporates nonlinear transition and emission
matrices to account for dynamic changes across different time steps. (2) An automatic
relevance determination algorithm, which selects crucial information from sensor data,
thereby enhancing the model’s classification performance and interpretability.
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Figure 1. Schematic diagram of recurrent variational state-space model.

3.1. Problem Formulation

When provided with a time series of sensor data originating from a liquid rocket
engine sy.7 = [s1,S2,- - - , S|, the operating state can be evaluated x1.7 = [x1,xp,- -+ ,x7]|. In
state-space form, our goal can be represented as in Equation (2). However, the state-space
model constructed for this experiment does not account for input variables u(t). This is
because the control element of the liquid rocket engine is typically a valve, whose opening
is used to regulate the oxygen-fuel mixture during engine startup. In steady-state operation,
the valve’s opening remains constant and only changes when adjusting flow under varying
operational conditions.

= Pe(xl:T|S1:T)
= po(x1.7|21.7) Po (21:7(51:7/ 20)

T
= tljl Pe(xt|2t)P9(Zt|Zt—1,St)

po(x1.7|s1:T, U1.T)

3.2. Recurrent Variational State-Space Model for Liquid Rocket Engines

We introduce a deep state-space model with two primary features: (1) using a recurrent
neural network (RNN) to capture long-term dependencies in sensor data and (2) employing
neural networks to nonlinearize the state-space transition and emission matrices.
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The initial state-space model (SSM) is based on linear Gaussian models and hid-
den Markov models (HMM), which include linear transition and emission matrices [14].
However, liquid rocket engine sensor data exhibits complex nonlinear relationships and
long-term dependencies. Traditional frameworks are insufficient for modeling these com-
plexities. The interpretable recursive variational state-space model (IRVSSM) employs a
recurrent neural network (RNN) to capture long-term dependencies in sensor data, re-
laxing the Markov assumption [20]. The RNN then extracts deterministic sensor states.
The generative model for the state-space is illustrated in Figure 2a and can be expressed
mathematically as follows:

h ~ 6(fo, (hi-1,51-1)) ®3)
z ~ N(ug, (z¢—1,ht), Toz (211, ht)) 4)
xt ~ AR(fo, (2t)) (5)

where fq, is the RNN function, and 4(-) is a delta distribution. For stochastic latent states,
ug, mean and Xy, covariance functions for Gaussian distribution of state transitions, which
are also parameterized by neural networks. AR is an arbitrary probability distribution, and
its parameter fy_is also parameterized by neural networks.

900 O
FINRTL
ey —Sdb

(a) (b)

Figure 2. Recurrent variational state-space model. (a) Generative model; (b) Inference network.

The deep state-space model represented in Equations (3)—(5) is parameterized as
6 = {6),6,,0x}. The parameterization is implemented as follows: a long short-term
memory (LSTM) network is employed to capture the temporal dependencies in the data,
and the hidden state transition matrix 6, is parameterized using the following method:

ug, (t) = NN1(z¢-1, ht, st) ©)
09, (t) = SoftPlus[NNz (Zt—lr hy, St)]
where NN; and NN; denote two neural networks parameterized by 6,, and
SoftPlus[x] = log(1 + exp(x)).
The parameterization of the emission matrix 6y also uses neural networks NNj to
approximate arbitrary distributions [21].

fo,(t) = NN3(zt) )

3.3. Inference Network

Our objective is to maximize the log marginal likelihood L(0) = log p(x1.7|s1.T). Ow-
ing to the nonlinear characteristics of parameterized deep neural networks, accurately
calculating the data’s log likelihood in variational autoencoders (VAE) presents a challenge.
Nevertheless, to optimize the parameters of the VAE through maximum likelihood estima-
tion, we use variational inference to approximate challenging posterior distributions and
select an efficient variational approximation q¢(z¢|z;—1, xt,ht) = N (zt,' ug, (Tq), as shown
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in Figure 2. Specifically, the deep neural network takes data points as input and gener-
ates the corresponding mean and diagonal covariance matrix of the Gaussian variational
approximation. The formula is as follows:

M(P(t) = NN3(zt,1,xt, ht) 8)
10g0’¢(t) = NN4(Zt_1, Xt,ht)

Then we maximize the variational evidence lower bound (ELBO); the maximization
over § in Equations (3)-(5) is actually a maximization over the parameters ¢ (use below the
notation F;(6, ¢)). ELBO can be decomposed in two terms [22]:

./—_;(Q,qb) = Eq(P(Zl:T/hlzT‘xlzT,SIZT/hO) |:10g pe(X].T|ZLT)p6(ZLT‘ LT) :|

qp (z1.7| X1:7 1.7

pe(x1:7|z1:7)po (217 [h1:T)
qp(z1:7 | x1:7.h1:7)

= E%(Zl:ﬂxl:rrhl:r) {log

_ {:E log Pe(xt|zt)pe(zilhi)
_t:1 qu(zt‘xtrht) & q¢(zt|xt,ht)

©)

T
= L\ Eaptarfrin) [log po (xt|zt)] — KL [q¢ (z¢]xt, ht) | |P9(Zt|ht”>

Reconstruction term Regularization term

The reconstruction term allows the likelihood and the inference network to accurately
reconstruct data, thereby maximizing the autoencoding capability of VAEs. The regulariza-
tion term, as a penalty, discourages posterior approximations that deviate significantly from
the prior distribution. Given that both the generative and inference models are defined
using neural networks, we can effectively compute gradients of 8 and ¢ using the back-
propagation algorithm [23]. To obtain low-variance, differentiable, and unbiased estimates
of the lower bound, the reparameterization technique is also employed [24], which allows
backpropagation to flow through latent variables z and approximates complex expectations
via Monte Carlo integration. Notably, due to the Gaussian nature of g4(z|x) and py(z), the
KL divergence term can be analytically computed [25].

3.4. Automatic Relevance Determination Network

Given the variability in engine component failure probabilities, the likelihood and
magnitude of responses from engine sensors differ. Some sensors demonstrate more pro-
nounced changes, necessitating greater scrutiny. This study utilizes an automatic relevance
determination (ARD) network to allocate priority weights to each sensor. These weights
may be randomly initialized or determined based on the engine’s historical failure rates.
Employing gradient descent within the network yields the sensors’ final posterior weights,
indicative of the significance of each sensor’s data [26,27]. Conventional ARD approaches
regard variables as governed by sparsity-induced priors. To circumvent intricate weight
inference, constant inputs are parameterized via a neural network, and a Softmax function
ensures their aggregate equals one [28].

w = softmax(NN4rp(I)) (10)

where SoftMax(x;) = exp(x;)/ Y exp(xj). The input vector I € RE, which corresponds
to the dimensionality of the number of sensors, can be defined randomly or based on
the engine’s prior probability of failure. As depicted in Figure 3, where s denotes input
sensor data, i represents the number of sensors, and t indicates the time step. The ARD
network’s posterior weights w can be efficiently determined through gradient descent on
the parameters by training sensor data thereby avoiding the posterior inference issues of
traditional Bayesian methods.
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Figure 3. Automatic relevance determination network.

4. Experiments

In this section, the proposed model is evaluated in two multi-source datasets and
compared with baseline methods. The experiment results demonstrate the effectiveness
and superiority of interpretable recurrent variational state-space model (IRVSSM).

4.1. Datasets

This investigation employs two principal datasets: steady-state simulated fault data
and empirical rocket engine test data. The simulated dataset encompasses both normal
operational states and four distinct fault scenarios; the empirical test data derives from
measurements across multiple sensors, identified as LRE-1 and LRE-2. Table 1 furnishes an
exhaustive delineation of the LRE datasets. In the course of model training and evaluation,
signals are partitioned into subsequences with lengths of 25 and 20. These subsequences
facilitate the categorization of engine states, each annotated with a label delineating the en-
gine’s specific state. The dataset allocation for training follows an 80/20 partition, utilizing
80% for model training and the remaining 20% for validation. The loss function applied
in the model is delineated in Equation (9). The model’s dimensionality is established at
80, while in the deep state-space model, the stochastic latent variables” dimensionality is
configured to 5 for the LRE-1 dataset and 8 for the LRE-2 dataset. Optimization of the model
is conducted using the Adam algorithm. In experiments, all methods are implemented
with Python 3.6. The working configurations are Intel Core i5-10400F CPU and NVIDIA
GeForce GTX 1660Ti GPU.

Table 1. Description of two LRE datasets.

Samples Number/
Dataset Sensors Number Samples Length Subsequence Length
LRE-1 28 50/5500 25
LRE-2 48 2/20,000 20

4.2. Compared Methods

By introducing the ARD network into the deep state-space model, we aim to further
capture critical information from sensor data and validate the model’s ability to capture
data through weights. We refer to this model as the interpretable recurrent variational
state-space model (IRVSSM), which can be categorized based on the presence of the ARD
network and nonlinear layers: (1) the basic DSSM without the ARD network and nonlinear
layers, (2) the DSSM-A with the added ARD network, and (3) the DSSM-NL with the
additional nonlinear layers.

4.3. Results and Analysis

Figure 4a,b illustrate the classification performance of the model on datasets LRE-1 and
LRE-2, respectively. The classification performance of the network is evaluated using the
training epochs and corresponding accuracy. In the LRE-1 experiment, the baseline DSSM
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model exhibits poor classification performance, while the DSSM-A model, augmented with
the ARD network, shows improvement in classification results after additional epochs.
Furthermore, the classification performance of the DSSM-nl model, which includes non-
linear state-space transitions, surpasses that of the baseline DSSM model, indicating that
nonlinear layers can better fit the data. The IRVSSM, which combines nonlinear state-space
transitions and ARD network, demonstrates the best performance after a certain number of
epochs, indicating that the combination of ARD network and nonlinear layers effectively
enhances the model’s classification capability. Similar classification results are observed in
the LRE-2 experiment, demonstrating the effectiveness of the model.

100.0 1 -®- DssM y——————- % EU—— ->————9 -e- DSSM e
-¥- DSSM-A / - 95.0 1 -¥- DSSM-A —_,,—’/.
-M- DSSM-nl Y - v -8~ DssM-nl e,
97.5 1 @ RVSSM A - -@- IRVSSM e e
- 92.5 -
/ - i 4
95.0 A - o
. /'/,’ J5. SoSEEEEEES e 90.0 P e B
e & - s
Q - e - o L
E 92,5 .r:/’_, /’l, §87.5 s = & g
5 - . g
2 9.0 P S 85.01 @ -
/ < ) ) %
87.5 A 82.5{ * —Y
85.0 ¢ 80.01 v —
25 Y 775"
20 40 60 80 100 120 20 20 60 80
epoch
epoch
(a) (b)

Figure 4. (a) Classification accuracy of LRE-1; (b) Classification accuracy of LRE-2.

Figure 5 depicts the sensor weight diagram obtained after training the ARD network on
the LRE-1 dataset. Sensors such as low-pressure oxygen turbine pump flow, high-pressure
oxygen turbine pump flow, high-pressure oxygen turbine pump pressure, fuel preburner
pump pressure, high-pressure hydrogen turbine pump flow, low-pressure hydrogen turbine
pump flow, and fuel preburner pump pressure (IpotpQ, hpotpQ, hpotpPo, fpbQoc, hpoftpQ,
IpftpQ) exhibit relatively high weights. In actual faults, such as oxygen turbine pump leaks,
hydrogen turbine pump leaks, and cooling jacket leaks, changes in turbine pump flow and
pressure occur. Therefore, the high weights of turbine pump flow and pressure correspond
to actual fault patterns, demonstrating that the ARD network effectively captures crucial
information from the data and verifies the interpretability of the model.

IpotpQ
hpotpQ
hpotpPo
fpbQoc
hpfipQ
IpftpQ
fpblc
ncP
hpotpN
IpotpPo
Qoc
hpftpN
hpftppo
IpftpPo

Qfe
opbQoc
opbTe
fpbQfe
Qhoc
IpotpN
pfsP

0.00 0.02 0.04 0.06 0.08 0.10 012

Figure 5. Sensor weight graph.
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5. Conclusions

This paper proposes a fault diagnosis method for liquid rocket engine based on an
interpretable recursive variational state-space model. The method relies on a recursive
nonlinear state-space model implemented using deep networks, allowing for nonlinear
emission and transition matrices, which enables flexible adaptation to data distributions,
thereby extracting and conveying the engine’s state and enhancing the model’s robust-
ness. Additionally, the utilization of ARD networks facilitates the exploration of sensor
importance, effectively identifying crucial factors within the data and enhancing the in-
terpretability of the model. With the evolution of reusable rocket technology, the accurate
diagnosis of liquid rocket engine malfunctions has become paramount. Swift and precise
diagnostic algorithms are imperative for fault identification. While state-space models
are adept at long-term fault modeling and monitoring in engines, data-driven diagnostic
approaches are prone to sensor malfunction interference. Consequently, the development
of a precise mathematical model of the engine, juxtaposed with real sensor data and deep
neural networks, is essential for accurately differentiating between sensor and engine faults,
preventing misdiagnosis, and will be a focal point of forthcoming research.
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