
Citation: Mateo Sanguino, T.d.J.

Enhancing Security in Industrial

Application Development: Case Study

on Self-Generating Artificial

Intelligence Tools. Appl. Sci. 2024, 14,

3780. https://doi.org/10.3390/

app14093780

Academic Editor: Paolino Di Felice

Received: 11 April 2024

Revised: 24 April 2024

Accepted: 26 April 2024

Published: 28 April 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Enhancing Security in Industrial Application Development: Case
Study on Self-Generating Artificial Intelligence Tools
Tomás de J. Mateo Sanguino

Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Av. de las Artes, s/n, 21007 Huelva, Spain;
tomas.mateo@diesia.uhu.es; Tel.: +34-959-217665

Abstract: The emergence of security vulnerabilities and risks in software development assisted by
self-generated tools, particularly with regard to the generation of code that lacks due consideration
of security measures, could have significant consequences for industry and its organizations. This
manuscript aims to demonstrate how such self-generative vulnerabilities manifest in software pro-
gramming, through a case study. To this end, this work undertakes a methodology that illustrates a
practical example of vulnerability existing in the code generated using an AI model such as ChatGPT,
showcasing the creation of a web application database, SQL queries, and PHP server-side. At the
same time, the experimentation details a step-by-step SQL injection attack process, highlighting the
hacker’s actions to exploit the vulnerability in the website’s database structure, through iterative
testing and executing SQL commands to gain access to sensitive data. Recommendations on effective
prevention strategies include training programs, error analysis, responsible attitude, integration of
tools and audits in software development, and collaboration with third parties. As a result, this
manuscript discusses compliance with regulatory frameworks such as GDPR and HIPAA, along
with the adoption of standards such as ISO/IEC 27002 or ISA/IEC 62443, for industrial applications.
Such measures lead to the conclusion that incorporating secure coding standards and guideline—
from organizations such as OWASP and CERT training programs—further strengthens defenses
against vulnerabilities introduced by AI-generated code and novice programming errors, ultimately
improving overall security and regulatory compliance.

Keywords: self-generative vulnerability; AI-based code generation; security risk; ChatGPT; software
development; industrial application

1. Introduction

In today’s industrial landscape, programmers play a pivotal role in the development
and optimization of industrial applications. As an example, the demand for software devel-
opers among automobile manufacturers has grown 200% over just four years, surpassing
the average demand for other job roles in the sector [1]. Moreover, 91% of manufacturing
companies have increased their digital transformation investments—such as the Internet
of Things and data analytics—to enhance efficiency and productivity, necessitating pro-
gramming skills [2]. Surveys conducted by the Federation of German Industries (BDI)
underscore the scarcity of information and communication technology (ICT) skills, in-
cluding programming, which stands as a significant barrier to the adoption of digital
technologies in the industry [3]. Consequently, programmers are indispensable in au-
tomating processes, integrating systems, analyzing vast datasets, and ensuring the smooth
operation of industrial machinery, ultimately driving innovation and competitiveness in
the industrial sector [4].

Nevertheless, novice programmers tend to exhibit an average rate of 16 errors per
100 lines of code, a statistic influenced by factors such as code complexity and the program-
mer’s skills [5]. In certain instances, particularly with more experienced programmers,
this error rate can be halved [6]. Despite the decrease in error frequency with increasing

Appl. Sci. 2024, 14, 3780. https://doi.org/10.3390/app14093780 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093780
https://doi.org/10.3390/app14093780
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9387-3892
https://doi.org/10.3390/app14093780
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093780?type=check_update&version=2

Appl. Sci. 2024, 14, 3780 2 of 18

experience, errors can still have dramatic consequences for organizations (e.g., financial
transactions, medical software, aircraft systems, or the energy grid, among others). These
examples, regardless of the industry, can sometimes have irreversible effects for the organi-
zations and stakeholders they serve.

Artificial General Intelligence (AGI) models can generalize, learn, and understand
like humans. This makes current generative artificial intelligence (AI) systems “competent
AI”, meaning that they are better at a limited set of tasks than 50% of people [7]. In this
context, the advent of online self-generative tools—like ChatGPT—have facilitated the
widespread adoption of AI by programmers, who increase its usage by creating code within
their organizations. This democratization has brought a new potential security gap for
the industry that still goes unnoticed, which aligns with the concerns expressed by other
researchers [8].

In this context, new roles emerge such as the “prompt engineer”, a person that is
involved in understanding the capabilities and limitations of the AI system, as well as
knowing how to effectively formulate questions to obtain useful and relevant responses.
This may involve selecting keywords, tone of the question, grammatical structure, and other
language aspects that influence the response generated by the AI. Nonetheless, becoming a
prompt engineer also entails certain risks. These risks include the misuse of AI, which can
lead to application risks and mistrust in its technology, which could negatively affect its
adoption and use [9].

For programming tasks, a large language model (LLM) can be used to self-generate
source code, based on descriptions or instructions in natural language. LLMs are AI systems
that undergo training on extensive textual datasets, to comprehend language patterns and
structures [10]. Theoretically, self-generative tools can help programmers write code faster,
more efficiently, and with fewer bugs, thus increasing their productivity. However, this is
not always necessarily true.

Consequently, LLMs introduce their own challenges, encompassing concerns related
to efficiency, security, or adherence to programming best practices. LLMs do not inherently
generate secure code, unless explicitly denoted (i.e., they are designed mainly to fulfill
their functionality). This happens because most self-generative tools, trained to date, do
not consider possible vulnerabilities. Accordingly, LLMs default to adopting code that
is prevalent on the Internet, which may lack considerations for security [11]. Therefore,
the use of LLMs in code generation must require careful oversight and review by human
developers, a condition that is not consistently met [12]. Recently, the generation of
disentangled representations in neural networks has emerged as a promising strategy to
improve the comprehensibility and robustness of AI models [13]. This approach could
address some of the limitations identified in AI-based code generation tools, by enhancing
the quality and coherence of the generated code.

According to this, Table 1 shows a comparison of the main characteristics of the most
representative online self-generative tools. In general, their ability to perform programming
tasks includes basic code, functions, classes, data structures, interfaces, libraries, and
applications for a wide range of programming languages (e.g., Python, JavaScript, Java,
C++, C#, or Swift). Additionally, they can also solve incomplete or incorrect code, generate
new functions for an existing program, and identify and repair errors in the code. In
addition, they can also perform more specific tasks such as generating code for algorithms
and data structures (e.g., trees, lists, stacks, queues, and arrays), generating code for
graphical user interfaces (e.g., windows, buttons, and menus), as well as generating code
for relational and non-relational databases.

For a deeper understanding, a comprehensive review of resources relevant to LLMs
can be found in the literature, with specific emphasis on ChatGPT [14]. The content covers
a wide range of topics, including milestone documents, frameworks for LLM training
and implementation, and tutorials for using these models effectively. This compilation
serves as a valuable resource for people interested in exploring and learning more about the
details covering frameworks for LLM training and implementation, tutorials for practical

Appl. Sci. 2024, 14, 3780 3 of 18

implementation, and a complete overview of the current landscape through leaderboards
and visualization.

Table 1. Main features of the current online self-generative tools.

Provider Tool LLM Data Size Availability Year

OpenAI (San Francisco,
CA, USA)

ChatGPT-3
(https://openai.com/chatgpt) Transformer 100 terabytes Public 2020

Tabnine (Tel Aviv, Israel) Tabnine
(https://www.tabnine.com/) CodeDaVinci 25 petabytes Public 2022

GitHub (San Francisco,
CA, USA)

Copilot
(https://github.com/features/copilot) Transformer 100 petabytes Public 2022

Microsoft and NVIDIA
(Santa Clara, CA, USA)

Megatron
(https://github.com/NVIDIA/Megatron-LM) Turing NLG 1.75 exabytes Limited 2022

Microsoft AI (Redmond,
WA, USA)

DeepCoder
(https://snyk.io/platform/deepcode-ai/)

Transformer-
Decoder 1.2 exabytes Public 2022

Codesmith Software
(Los Angeles, CA, USA)

CodeSmith
(https://www.codesmith.io/) LaMDA 1.2 exabytes Public 2023

Meta (Menlo Park,
CA, USA)

Code Llama
(https://huggingface.co/codellama) Llama 2 1.5 exabytes Public 2023

Google AI (Mountain
View, CA, USA)

Bard/Gemini
(https://gemini.google.com/app) LaMDA 1.56 exabytes Public 2023

GitHub and Google AI Codex
(https://openai.com/blog/openai-codex) Transformer 1.6 exabytes Public 2023

OpenAI ChatGPT-4 Transformer 45 terabytes Public 2023
OpenAI ChatGPT-4.5 Transformer 75 terabytes Beta 2023
DeepMind
(London, UK)

AlphaCode
(https://alphacode.deepmind.com/) Transformer 100 exabytes Beta 2023

Microsoft AI Ada Transformer 1.2 exabytes Beta 2024

Research Hypothesis and Objectives

This manuscript focuses on the study of the prevalence and effects of vulnerabilities
with self-generative tools in software development, which are particularly relevant for
industrial applications where reliability and safety are crucial. Industrial environments
often rely on software to monitor complex processes, machinery, and systems [15]. Soft-
ware failures can have serious consequences—including workplace accidents, production
disruptions, and financial losses—highlighting the importance of software security.

LLMs represent a paradigm shift in code generation, offering efficient and automated
code creation capabilities. The selection of LLMs as the focal point of this study is justified,
due to its increasing adoption in various fields, including industry. For this reason, the
approach followed in this work involves the review of a case study related to an LLM. By
examining a vulnerability associated with a self-generated tool, this work aims to provide
valuable information for engineers tasked with implementing control and monitoring
systems in industrial environments, thereby contributing to greater reliability and security
in industrial applications. In this regard, the present manuscript proposes the term “self-
generative vulnerability”, to characterize scenarios where AI-based tools can facilitate
the automatic creation of security weaknesses, as evidenced in the methodology and
experimentation carried out. Specifically, the implications included in this study cover a
security vulnerability related to SQL injection attacks.

While the notion of AI-generated code having security issues may not be ground-
breaking in itself, the novelty of this manuscript lies in its practical demonstration of how
such vulnerabilities manifest, particularly through the provided case study involving the
MySQL and PHP code generated by ChatGPT. The research goes beyond simply iden-
tifying security issues and provides detailed information on how these issues can arise
in real-world scenarios. It provides specific recommendations to address these concerns,
including training programs, error analysis, responsible practices, tool integration, soft-
ware development audits, regulation and legislation, and collaboration with third parties.

https://openai.com/chatgpt
https://www.tabnine.com/
https://github.com/features/copilot
https://github.com/NVIDIA/Megatron-LM
https://snyk.io/platform/deepcode-ai/
https://www.codesmith.io/
https://huggingface.co/codellama
https://gemini.google.com/app
https://openai.com/blog/openai-codex
https://alphacode.deepmind.com/

Appl. Sci. 2024, 14, 3780 4 of 18

Ultimately, the manuscript’s value lies in its pragmatic approach and proposed solutions
for mitigating security risks in AI-enabled development.

The hypothesis posits that early implementation of secure development practices can
reduce the risk of exploitation, thereby improving the resilience of software systems against
self-generated vulnerabilities. For this reason, the study aims to recommend the adoption
of a comprehensive security framework in the context of AI-generated code development,
including regulatory compliance, adoption of industry standards, continuous monitoring,
and robust security testing.

To this end, this manuscript is structured as follows: Section 2 analyzes the underlying
causes behind the use of new ICT in industrial applications. Section 3 presents the materials
and methods used in an example of a self-generated vulnerability. Section 4 shows an
example of an SQL injection attack. Section 5 analyzes traditional security methodologies
versus AI-based code generation approaches and discusses security measures in industrial
environments. Finally, this manuscript presents its conclusions and future work prospects.

2. Related Work

Experience shows that the rapid development of industrial applications introduces
new, previously unidentified vulnerabilities, threats, and risks. As self-generated tools
become an integral part of today’s development, it is imperative to consider these tools
separately to understand their potential vulnerabilities [16]. Analyzing security risks in
AI-generated programming is crucial to ensure the integrity, confidentiality, and availability
of software systems.

A lack of focus on security in education programs—especially in industrial engineer-
ing grades—is pointed out as a major contribution to security vulnerabilities, highlighting
the need for adequate security training [17]. The learning difficulties faced by novice
programmers, particularly those engaging in procedural programming for the first time,
were addressed in a further study [18]. The study identified key problem areas, including
poor planning and problem-solving abilities, a lack of programming language knowledge,
limited understanding of the application domain, and difficulties in conceptualizing pro-
gram execution. The solution involves the development of instructional strategies to help
novices overcome these identified difficulties. Other study placed emphasis on obtaining
information about students’ deficiencies and misconceptions, by analyzing programming
errors [19]. The findings revealed that a significant portion of errors is attributed to careless-
ness. Beyond that, students faced challenges primarily in strategic knowledge, specifically
in problem-solving abilities.

The importance of errors in industrial applications as causes of security vulnerabilities
is analyzed, finding a gap between developers’ conceptual understanding of security, as
well as their attitudes and practices related to personal responsibility for software secu-
rity [20]. Later studies pointed to possible approaches to address this gap, such as the need
for developers to ask the right questions and make strategic decisions when programming
secure code [21]. Another work also highlighted the importance of including aspects
related to the software, its social ecosystem, and related resources and tools [22]. In this
sense, the approach proposed to use explainable AI in classifying suitable crops for preci-
sion agriculture offers an innovative perspective. This could improve the understanding
and transparency of generated code, thereby contributing to the security and quality of
industrial software [23].

The challenge of developing secure industrial applications was also investigated in
experienced programmers, who make security-related errors despite their basic security
knowledge. The results found patterns, indicating that simple mistakes are less usual,
while vulnerabilities stemming from a misunderstanding of security concepts are more
prevalent. Another study also addressed the gap between mid-level programmers making
more sophisticated errors [24]. The study, focused on a semantic approach, revealed that
those errors involved complex program constructs such as nested loops, arrays, recursion,
and functions. In line with previous works, both studies suggest areas for improvement in

Appl. Sci. 2024, 14, 3780 5 of 18

security education, secure-programming APIs, documentation, and vulnerability-finding
tools [25].

There is certainly a need for interactive tools to help engineers create more secure
software, which is a common practice nowadays. For example, DeepState is presented
as a tool that integrates vulnerability detection into the development cycle [26], while
VulnEx has been proposed as a tool to audit applications, to identify and assess exposure to
vulnerabilities due to the reuse of open-source software [27]. In this sense, LLMs have the
potential to automate code generation, but their use must be combined with scalable defect
elimination methods, to ensure the production of high-quality, secure code [28]. AI code
generators are particularly vulnerable to data poisoning attacks, which can inject malicious
samples into the training data and compromise the security of the generated code [29].
To address these challenges, AI techniques are increasingly being used for security risk
assessment, with a focus on identifying and estimating cyber risks [30].

Additionally, collaborative efforts among engineers and cybersecurity experts are also
considered essential to establish robust security protocols and to stay ahead for a secure
industrial application environment [31]. This collaboration can be facilitated through
security code reviews, which help engineers to ensure the security of their applications.
The effectiveness of collaboration has been demonstrated in the context of a secure software
engineering course with students from different backgrounds, which could also be extended
to AI-generated programming [32].

3. Materials and Methods

This section aims to present a practical example of understanding vulnerabilities in
code generated by an AI model (i.e., ChatGPT 3.5). The methodology covers the creation
of a database, the definition of a table, the insertion of sample user data, and the secure
storage of passwords. To do this, the resources involved a database for a web application,
MySQL queries for database operations, and PHP for server-side logic.

Examples of industrial applications utilizing the components include inventory man-
agement systems, production tracking systems, and quality management systems, where
web-based applications, SQL databases, and PHP queries play a significant role. For exam-
ple, inventory management systems efficiently track stock levels and manage suppliers,
leveraging SQL for database operations and PHP for server-side logic. Similarly, produc-
tion tracking systems monitor schedules and manage inventory levels, using SQL for data
extraction and PHP for dynamic functionalities. Quality management systems ensure
product compliance, using SQL for data analysis and PHP for robust server-side logic.

In the context of self-configurable systems, these resources assume particular signif-
icance. That is, they not only facilitate data management and user interaction, but also
have the capability to dynamically adapt to the evolving needs of industrial operations,
thanks to the use of agents [33]. For instance, the web server can automatically adjust
resource allocation to handle sudden traffic spikes, while the PHP code can adapt to modify
existing behavior in response to changing system requirements. Similarly, the SQL database
can be reconfigured to optimize performance or ensure data integrity in highly dynamic
production environments.

3.1. Materials

The working model proposed is depicted in Figure 1, for which a detailed description
of the typical components can be found in [34]. The process is as follows: upon entering a
web address, the user’s browser sends a request to the server, specifying the page name.
The web server retrieves the corresponding PHP file and directs the PHP interpreter to
process it. The PHP interpreter executes the PHP code, including MySQL database calls.
After processing, the PHP interpreter sends the results back to the web server, which then
delivers the HTML response to the user’s browser. This process can be repeated by an
attacker, to exploit a vulnerability in the target system.

Appl. Sci. 2024, 14, 3780 6 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 19

suppliers, leveraging SQL for database operations and PHP for server-side logic. Simi-
larly, production tracking systems monitor schedules and manage inventory levels, using
SQL for data extraction and PHP for dynamic functionalities. Quality management sys-
tems ensure product compliance, using SQL for data analysis and PHP for robust server-
side logic.

In the context of self-configurable systems, these resources assume particular signif-
icance. That is, they not only facilitate data management and user interaction, but also
have the capability to dynamically adapt to the evolving needs of industrial operations,
thanks to the use of agents [33]. For instance, the web server can automatically adjust re-
source allocation to handle sudden traffic spikes, while the PHP code can adapt to modify
existing behavior in response to changing system requirements. Similarly, the SQL data-
base can be reconfigured to optimize performance or ensure data integrity in highly dy-
namic production environments.

3.1. Materials
The working model proposed is depicted in Figure 1, for which a detailed description

of the typical components can be found in [34]. The process is as follows: upon entering a
web address, the user’s browser sends a request to the server, specifying the page name.
The web server retrieves the corresponding PHP file and directs the PHP interpreter to
process it. The PHP interpreter executes the PHP code, including MySQL database calls.
After processing, the PHP interpreter sends the results back to the web server, which then
delivers the HTML response to the user’s browser. This process can be repeated by an
attacker, to exploit a vulnerability in the target system.

To replicate the experiment, the installation of a MySQL database from the repository
https://dev.mysql.com/downloads/mysql/ (accessed on 11 April 2024) is required, with
the code statements being compatible with versions 5.0.13 onwards. A web server (e.g.,
Apache or Nginx) is also required to host the PHP files. Moreover, PHP version 7.x or
higher can be utilized in conjunction with the MySQLi extension for interacting with
MySQL databases. The MySQLi extension—short for MySQL Improved—is a PHP exten-
sion that provides an enhanced interface and security features. The MySQLi extension is
typically included as part of the PHP installation package from the official website
(https://www.php.net/downloads (accessed on 11 April 2024)) and can be enabled in the
PHP configuration file (i.e., php.ini).

Figure 1. Components of the working model for an industrial application.

3.2. Methodology for Database Establishment
Figure 2 includes a representative example of SQL code used to create the database

and the table, as well as to simulate the insertion of user data. The SQL script was gener-
ated by ChatGPT based on the following query:
- “Generate a script to set up a database named ‘my_database’ and a table named ‘user_table’

in MySQL. The user table should have fields for user ID, unique username, password hash,
and salt. Also, include a sample insertion to add a user named ‘sampleUser’ with an encrypted
password and salt”.

Figure 1. Components of the working model for an industrial application.

To replicate the experiment, the installation of a MySQL database from the repository
https://dev.mysql.com/downloads/mysql/ (accessed on 11 April 2024) is required, with
the code statements being compatible with versions 5.0.13 onwards. A web server (e.g.,
Apache or Nginx) is also required to host the PHP files. Moreover, PHP version 7.x or higher
can be utilized in conjunction with the MySQLi extension for interacting with MySQL
databases. The MySQLi extension—short for MySQL Improved—is a PHP extension
that provides an enhanced interface and security features. The MySQLi extension is
typically included as part of the PHP installation package from the official website (https:
//www.php.net/downloads (accessed on 11 April 2024)) and can be enabled in the PHP
configuration file (i.e., php.ini).

3.2. Methodology for Database Establishment

Figure 2 includes a representative example of SQL code used to create the database
and the table, as well as to simulate the insertion of user data. The SQL script was generated
by ChatGPT based on the following query:

- “Generate a script to set up a database named ‘my_database’ and a table named ‘user_table’ in
MySQL. The user table should have fields for user ID, unique username, password hash, and
salt. Also, include a sample insertion to add a user named ‘sampleUser’ with an encrypted
password and salt”.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 19

Figure 2. SQL code for creating a database, provided by ChatGPT.

Initially, the code checks if a database named “my_database” exists, creating it if not.
Then, the code selects this database for subsequent operations. A table named “users” is
created if it does not already exist, defining its structure to store user information, includ-
ing a unique identifier (user_id), non-null and unique username, password hash, and salt
value. A sample user is inserted into the “users” table with simulated values. A comment
notes that the password has been hashed and salted in PHP, highlighting the importance
of securely storing passwords. Additionally, the code provides commented PHP lines ex-
emplifying how to verify a password. This code snippet demonstrates database setup,
table creation, and password handling practices in a secure manner. Figure 2 highlights
the syntax for better understanding, where a blue color is used to easily recognize the SQL
keywords (e.g., create, if not exists, or primary key). Additionally, comments in both SQL
and PHP, denoted by -- in SQL and // in PHP, are displayed in a gray color, to clearly
distinguish them from the executable code. Moreover, specific values, including database
names (my_database), table names (users), column names (user_id, username, etc.) and
data types (VARCHAR, INT, etc.) are presented in black or purple colors, for clarity and
differentiation within the code structure.

The code provided by ChatGPT in Figure 2 lacks certain security measures related to
database management and password handling. It inserts a user with a plaintext password
directly into the database, failing to employ proper encryption practices. While the code
includes a comment on the hypothetical hashing and salting of the password, this is not
reflected in the actual insertion of data. Furthermore, the absence of specific password
complexity constraints, such as minimum length or the inclusion of special characters, is
a notable security gap. The code also neglects the use of prepared statements, a recom-
mended practice for preventing SQL injection attacks. Additionally, the handling of
uniqueness constraints for the username is not explicitly addressed in the code. In a pro-
duction environment, these security considerations are crucial for safeguarding data in-
tegrity and password security.

The issue lies in the fact that LLMs do not inherently generate secure code unless
explicitly specified. This stems from the training data, predominantly consisting of pro-
grams created prior to considering potential security vulnerabilities such as SQL injec-
tions. The models tend to replicate the patterns present in the training data and, since
secure coding practices were not comprehensively integrated at the time of training, LLMs
may inadvertently generate code that lacks robust security measures. Consequently, the
responsibility falls on developers to consciously incorporate secure coding practices and
address potential vulnerabilities in the code generated by LLMs, to ensure a heightened
level of security.

To obtain secure code that establishes a MySQL database, the user should have spec-
ified the following sentence at the prompt:

Figure 2. SQL code for creating a database, provided by ChatGPT.

Initially, the code checks if a database named “my_database” exists, creating it if not.
Then, the code selects this database for subsequent operations. A table named “users” is
created if it does not already exist, defining its structure to store user information, including
a unique identifier (user_id), non-null and unique username, password hash, and salt
value. A sample user is inserted into the “users” table with simulated values. A comment
notes that the password has been hashed and salted in PHP, highlighting the importance
of securely storing passwords. Additionally, the code provides commented PHP lines
exemplifying how to verify a password. This code snippet demonstrates database setup,
table creation, and password handling practices in a secure manner. Figure 2 highlights
the syntax for better understanding, where a blue color is used to easily recognize the SQL

https://dev.mysql.com/downloads/mysql/
https://www.php.net/downloads
https://www.php.net/downloads

Appl. Sci. 2024, 14, 3780 7 of 18

keywords (e.g., create, if not exists, or primary key). Additionally, comments in both SQL
and PHP, denoted by -- in SQL and // in PHP, are displayed in a gray color, to clearly
distinguish them from the executable code. Moreover, specific values, including database
names (my_database), table names (users), column names (user_id, username, etc.) and
data types (VARCHAR, INT, etc.) are presented in black or purple colors, for clarity and
differentiation within the code structure.

The code provided by ChatGPT in Figure 2 lacks certain security measures related to
database management and password handling. It inserts a user with a plaintext password
directly into the database, failing to employ proper encryption practices. While the code
includes a comment on the hypothetical hashing and salting of the password, this is not
reflected in the actual insertion of data. Furthermore, the absence of specific password
complexity constraints, such as minimum length or the inclusion of special characters, is a
notable security gap. The code also neglects the use of prepared statements, a recommended
practice for preventing SQL injection attacks. Additionally, the handling of uniqueness
constraints for the username is not explicitly addressed in the code. In a production
environment, these security considerations are crucial for safeguarding data integrity and
password security.

The issue lies in the fact that LLMs do not inherently generate secure code unless ex-
plicitly specified. This stems from the training data, predominantly consisting of programs
created prior to considering potential security vulnerabilities such as SQL injections. The
models tend to replicate the patterns present in the training data and, since secure coding
practices were not comprehensively integrated at the time of training, LLMs may inadver-
tently generate code that lacks robust security measures. Consequently, the responsibility
falls on developers to consciously incorporate secure coding practices and address potential
vulnerabilities in the code generated by LLMs, to ensure a heightened level of security.

To obtain secure code that establishes a MySQL database, the user should have speci-
fied the following sentence at the prompt:

- “Generate a secure script to set up a MySQL database named ‘my_database’ and create a
table named ‘user_table’. The user table should include fields for user ID, unique username,
password hash, and salt. Additionally, ensure that the script utilizes secure password storage
practices, such as hashing with a salt, and prevent SQL injection attacks by using prepared
statements. Finally, include a sample insertion to add a user named ‘sampleUser’ with an
encrypted password and a randomly generated salt”.

The key difference between the two prompts lies in the focus on security. While
the secure prompt emphasizes terms related to secure cryptography, prevention of SQL
injection attacks, and safe password storage, the insecure prompt omits these critical
considerations, focusing solely on the basic creation of a database and a user table. As
a result, the new code will use secure hash functions to store passwords in the database,
ensuring the protection of sensitive user credentials. Additionally, it will generate a random
salt for each user, stored alongside the hashed password, enhancing the security measures
against potential decryption attempts. Moreover, the code will use prepared statements
to prevent SQL injection attacks, thus fortifying the database against malicious exploits.
Furthermore, it will incorporate password complexity constraints—including minimum
length and special character requirements—to bolster the resilience against brute-force
attacks. Lastly, the code will explicitly manage the uniqueness of usernames, reducing the
risk of unauthorized access and ensuring data integrity within the system.

3.3. Methodology for User Authentication

Figure 3 shows a representative example of a PHP code that defines a function named
“getUserId”, designed for user authentication in the SQL database. The PHP code was
generated by ChatGPT based on the following prompt:

- “Generate a PHP function to authenticate users using login credentials. The function should
connect to a MySQL database and verify if the username and password match entries in

Appl. Sci. 2024, 14, 3780 8 of 18

the ‘user_table’ table. If successful, the function should return the corresponding user ID.
Otherwise, return −1”.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 19

- “Generate a secure script to set up a MySQL database named ‘my_database’ and create a table
named ‘user_table’. The user table should include fields for user ID, unique username, pass-
word hash, and salt. Additionally, ensure that the script utilizes secure password storage
practices, such as hashing with a salt, and prevent SQL injection attacks by using prepared
statements. Finally, include a sample insertion to add a user named ‘sampleUser’ with an
encrypted password and a randomly generated salt”.
The key difference between the two prompts lies in the focus on security. While the

secure prompt emphasizes terms related to secure cryptography, prevention of SQL injec-
tion attacks, and safe password storage, the insecure prompt omits these critical consider-
ations, focusing solely on the basic creation of a database and a user table. As a result, the
new code will use secure hash functions to store passwords in the database, ensuring the
protection of sensitive user credentials. Additionally, it will generate a random salt for
each user, stored alongside the hashed password, enhancing the security measures
against potential decryption attempts. Moreover, the code will use prepared statements
to prevent SQL injection attacks, thus fortifying the database against malicious exploits.
Furthermore, it will incorporate password complexity constraints—including minimum
length and special character requirements—to bolster the resilience against brute-force
attacks. Lastly, the code will explicitly manage the uniqueness of usernames, reducing the
risk of unauthorized access and ensuring data integrity within the system.

3.3. Methodology for User Authentication
Figure 3 shows a representative example of a PHP code that defines a function named

“getUserId”, designed for user authentication in the SQL database. The PHP code was
generated by ChatGPT based on the following prompt:
- “Generate a PHP function to authenticate users using login credentials. The function should

connect to a MySQL database and verify if the username and password match entries in the
‘user_table’ table. If successful, the function should return the corresponding user ID. Other-
wise, return −1”.

Figure 3. PHP code for authenticating users in a database, provided by ChatGPT.

The process begins with establishing a connection to the database using “mysqli_con-
nect”, where the placeholders ‘host’, ‘username’, ‘password’, and ‘database’ should be
replaced with the actual configuration values. The connection success is verified and, if
any errors occur, the program terminates with an error message. Subsequently, an SQL
query is crafted to search for a user in the ‘user_table’, whose provided username and

Figure 3. PHP code for authenticating users in a database, provided by ChatGPT.

The process begins with establishing a connection to the database using “mysqli_
connect”, where the placeholders ‘host’, ‘username’, ‘password’, and ‘database’ should be
replaced with the actual configuration values. The connection success is verified and, if any
errors occur, the program terminates with an error message. Subsequently, an SQL query is
crafted to search for a user in the ‘user_table’, whose provided username and password
match the parameters passed to the function. The query is executed using “mysqli_query”.
The function then checks if any user was found and, if not, it returns −1. If a user is
found, it retrieves the user ID from the first result and returns it. In essence, the “getUserId”
function serves to authenticate a user in the database, providing the user ID upon successful
authentication, or −1 if no matching user is found.

The vulnerability in the PHP code provided by ChatGPT lies in its susceptibility to SQL
injection attacks. The code constructs SQL queries by directly concatenating user-provided
input, specifically the $username and $password variables, into the SQL statement, without
proper sanitization or parameterization. This opens the door to malicious exploitation, as
an attacker could manipulate input to inject arbitrary SQL code, potentially compromising
the security and integrity of the database.

According to this, an attacker will attempt to manipulate the password field during
the login process, by inputting the following syntax in the space to write the password
during the login process of the web page (Figure 4).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 19

password match the parameters passed to the function. The query is executed using
“mysqli_query”. The function then checks if any user was found and, if not, it returns −1.
If a user is found, it retrieves the user ID from the first result and returns it. In essence, the
“getUserId” function serves to authenticate a user in the database, providing the user ID
upon successful authentication, or −1 if no matching user is found.

The vulnerability in the PHP code provided by ChatGPT lies in its susceptibility to
SQL injection attacks. The code constructs SQL queries by directly concatenating user-
provided input, specifically the $username and $password variables, into the SQL state-
ment, without proper sanitization or parameterization. This opens the door to malicious
exploitation, as an attacker could manipulate input to inject arbitrary SQL code, poten-
tially compromising the security and integrity of the database.

According to this, an attacker will attempt to manipulate the password field during
the login process, by inputting the following syntax in the space to write the password
during the login process of the web page (Figure 4).

Figure 4. SQL code for manipulating the password field during the login process.

Then, the attacker will manipulate the SQL query by concatenating the username and
password provided by the user directly into the query string, without proper sanitization.
Here, the ‘ OR 1 = 1 syntax is added to the password field. This part is designed to make
the condition always true and the -- symbol is used to comment out the rest of the query,
disabling any additional conditions that may follow. The resulting query might look
something like that shown in Figure 5.

Figure 5. SQL code for selecting all records from the user table of the database.

Since 1 = 1 is always true, the AND password = ‘’ condition becomes irrelevant. The
query effectively reduces to selecting all records from the user_table and the -- symbol is
used to comment out the rest of the query, to avoid syntax errors. This type of attack could
lead to the deletion of records from the user_table, if the query were a DELETE type.
Therefore, the attacker introduces the syntax “DELETE FROM user_table WHERE ‘ OR 1
= 1 --” in the space where the password must be written during the login process of the
web page.

To obtain secure code that establishes a MySQL database, the user should have spec-
ified the following sentence at the prompt:
- “Generate a secure PHP function to authenticate users using login credentials. The function

should connect to a MySQL database and verify if the username and password match entries
in the ‘user_table’ table. Ensure that the function is protected against SQL injection attacks
by using prepared statements or parameterized queries. If the authentication is successful, the
function should return the corresponding user ID. Otherwise, return −1”.
The main difference between the two prompts lies in the security approach. While

the insecure prompt does not specify the need for protection against SQL injection attacks
and does not mention the use of prepared statements or parameterized queries, the secure
prompt explicitly emphasizes the importance of these measures to mitigate such risks. As
a result, in the modified version, direct concatenation of the $username and $password
values into the SQL query will be replaced with placeholders (?). Subsequently, prepared
statements will be employed to bind the $username and $password values to these

Figure 4. SQL code for manipulating the password field during the login process.

Then, the attacker will manipulate the SQL query by concatenating the username and
password provided by the user directly into the query string, without proper sanitization.
Here, the ‘ OR 1 = 1 syntax is added to the password field. This part is designed to make
the condition always true and the -- symbol is used to comment out the rest of the query,
disabling any additional conditions that may follow. The resulting query might look
something like that shown in Figure 5.

Appl. Sci. 2024, 14, 3780 9 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 19

password match the parameters passed to the function. The query is executed using
“mysqli_query”. The function then checks if any user was found and, if not, it returns −1.
If a user is found, it retrieves the user ID from the first result and returns it. In essence, the
“getUserId” function serves to authenticate a user in the database, providing the user ID
upon successful authentication, or −1 if no matching user is found.

The vulnerability in the PHP code provided by ChatGPT lies in its susceptibility to
SQL injection attacks. The code constructs SQL queries by directly concatenating user-
provided input, specifically the $username and $password variables, into the SQL state-
ment, without proper sanitization or parameterization. This opens the door to malicious
exploitation, as an attacker could manipulate input to inject arbitrary SQL code, poten-
tially compromising the security and integrity of the database.

According to this, an attacker will attempt to manipulate the password field during
the login process, by inputting the following syntax in the space to write the password
during the login process of the web page (Figure 4).

Figure 4. SQL code for manipulating the password field during the login process.

Then, the attacker will manipulate the SQL query by concatenating the username and
password provided by the user directly into the query string, without proper sanitization.
Here, the ‘ OR 1 = 1 syntax is added to the password field. This part is designed to make
the condition always true and the -- symbol is used to comment out the rest of the query,
disabling any additional conditions that may follow. The resulting query might look
something like that shown in Figure 5.

Figure 5. SQL code for selecting all records from the user table of the database.

Since 1 = 1 is always true, the AND password = ‘’ condition becomes irrelevant. The
query effectively reduces to selecting all records from the user_table and the -- symbol is
used to comment out the rest of the query, to avoid syntax errors. This type of attack could
lead to the deletion of records from the user_table, if the query were a DELETE type.
Therefore, the attacker introduces the syntax “DELETE FROM user_table WHERE ‘ OR 1
= 1 --” in the space where the password must be written during the login process of the
web page.

To obtain secure code that establishes a MySQL database, the user should have spec-
ified the following sentence at the prompt:
- “Generate a secure PHP function to authenticate users using login credentials. The function

should connect to a MySQL database and verify if the username and password match entries
in the ‘user_table’ table. Ensure that the function is protected against SQL injection attacks
by using prepared statements or parameterized queries. If the authentication is successful, the
function should return the corresponding user ID. Otherwise, return −1”.
The main difference between the two prompts lies in the security approach. While

the insecure prompt does not specify the need for protection against SQL injection attacks
and does not mention the use of prepared statements or parameterized queries, the secure
prompt explicitly emphasizes the importance of these measures to mitigate such risks. As
a result, in the modified version, direct concatenation of the $username and $password
values into the SQL query will be replaced with placeholders (?). Subsequently, prepared
statements will be employed to bind the $username and $password values to these

Figure 5. SQL code for selecting all records from the user table of the database.

Since 1 = 1 is always true, the AND password = ‘’ condition becomes irrelevant. The
query effectively reduces to selecting all records from the user_table and the -- symbol
is used to comment out the rest of the query, to avoid syntax errors. This type of attack
could lead to the deletion of records from the user_table, if the query were a DELETE type.
Therefore, the attacker introduces the syntax “DELETE FROM user_table WHERE ‘ OR
1 = 1 --” in the space where the password must be written during the login process of the
web page.

To obtain secure code that establishes a MySQL database, the user should have speci-
fied the following sentence at the prompt:

- “Generate a secure PHP function to authenticate users using login credentials. The function
should connect to a MySQL database and verify if the username and password match entries
in the ‘user_table’ table. Ensure that the function is protected against SQL injection attacks by
using prepared statements or parameterized queries. If the authentication is successful, the
function should return the corresponding user ID. Otherwise, return −1”.

The main difference between the two prompts lies in the security approach. While
the insecure prompt does not specify the need for protection against SQL injection attacks
and does not mention the use of prepared statements or parameterized queries, the secure
prompt explicitly emphasizes the importance of these measures to mitigate such risks. As
a result, in the modified version, direct concatenation of the $username and $password
values into the SQL query will be replaced with placeholders (?). Subsequently, prepared
statements will be employed to bind the $username and $password values to these place-
holders prior to query execution. This ensures that user input values will be treated as data
and not as part of the SQL query structure, thereby mitigating the risk of SQL injection
vulnerability. It is a classic example of SQL injection, emphasizing the importance of using
prepared or parameterized queries to mitigate these vulnerabilities. To enhance security, it
is recommended to use prepared statements or parameterized queries, which effectively
mitigate the risk of SQL injection, by separating user input from the SQL code and ensuring
proper escaping of values.

4. Experimentation

This section describes a case study involving an SQL injection, detailing the steps
taken by a hacker to exploit weaknesses in the construction and execution of SQL queries
on a website, with the goal of removing user records from the organization database.

In industrial applications like inventory management, production tracking, and quality
management systems, SQL injection attacks pose serious risks. For instance, in a web-
based inventory management system, vulnerabilities in SQL queries could be exploited
by injecting malicious code into input fields. This could allow attackers to manipulate
queries, potentially deleting user records from the database. By bypassing authentication,
attackers could gain unauthorized access to sensitive data, leading to disruptions in pro-
duction processes, a loss of critical information, or compromised product quality, if not
promptly addressed. Similarly, in self-configurable systems, SQL injection attacks represent
a significant threat, where the dynamic adaptability introduced by agents creates new
vulnerabilities. Automatic adjustments in the web server, PHP code, and database could be
exploited by attackers to launch targeted attacks, thus interrupting the normal functioning
of operations.

SQL Injection Attack

The self-generating vulnerability covered in this study consists of an SQL injection
attack. This involves exploiting a security gap in the way SQL queries are constructed and

Appl. Sci. 2024, 14, 3780 10 of 18

handled on a website, specifically during the login process. The hacker will aim to delete
the organization’s user database and needs to ascertain the table name targeted for deletion.
To achieve this, the attacker will seek vulnerabilities and, in this instance, exploitation
occurs through the URL of the website.

Assuming the URL is http://www.domain.com/page.php?id=1&id2=1&id3=1 and
the database produces an error when a single quote (‘) is appended to id3, the manipulated
URL becomes http://www.domain.com/page.php?id=1&id2=1&id3=1’. This process
admits other variants than a single quote and involves iterative testing. After encountering
an SQL 1064 error resembling “You have an error in your SQL syntax; check the manual
that corresponds to your SQL server version for the right syntax”, the hacker can infer
a potential SQL injection vulnerability. The error message is essentially revealing to the
attacker that the input provided interfered with the SQL query’s structure, hinting at a
potential breach for unauthorized access or manipulation of the database.

To be successful, the hacker must determine the number of columns used by the web
page in the next step. To this end, the hacker engages in testing the column count, using the
“order by” clause. For instance, the hacker manipulates the URL as http://www.domain.
com/page.php?id=1&id2=1&id3=1’ order by 3 --+, where there is no error encountered.
The segment ‘ order by 3 --+ is an attempt to manipulate the SQL query executed by the
backend script page.php, where the ‘ character marks the end of a parameter value and
by 3 seeks to sort the query results by the third column. The -- symbol initiates an SQL
comment, ensuring that anything following it is disregarded by the database engine. The +
symbol at the end is an effort to evade potential input filters that could be in place.

Subsequent attempts, such as http://www.domain.com/page.php?id=1&id2=1&id3
=1’ order by 10 --+, will result in an error, specifically “The query did not execute: Unknown
column ‘10’ in ‘order clause’”. This iterative process allows the hacker to understand the
structure of the table and to determine the exact number of columns used by the web page,
enabling the attacker to proceed with more targeted and effective SQL injection attempts.

Later, the “union select” command will essentially grant the hacker the ability to
execute statements directly in the database, with the results reflected on the webpage.
Following the example, the hacker will manipulate the URL to http://www.domain.com/
page.php?id=1&id2=1&id3=1’ union select 1,2,3,4,5,6,7,8,9,10. What this accomplishes is
the presentation of column numbers to the hacker, indicating which columns are vulnerable
for SQL injection. This step is crucial and requires attention to discern the changes. In some
cases, alterations are quite noticeable and abrupt, while they are more subtle in others. As a
representative example, imagine that the vulnerability is located in column 5. The webpage
will reveal this number somewhere, providing the hacker with the information needed for
subsequent injection exploits.

The hacker then needs to input “database()” in column 5, resulting in the URL ap-
pearing as http://www.domain.com/page.php?id=1&id2=1&id3=1’ union select 1,2,3,4,
database(),6,7,8,9,10. This action leverages the SQL injection vulnerability previously iden-
tified in column 5. By inserting “database()” at this point, the hacker retrieves information
about the current database being used by the webpage. Assuming the database in use is
Oracle instead of MySQL, this detail could be determined by placing “@@datadir” where
the hacker previously used “database()”. This technique allows the hacker to gather critical
details about the database structure, paving the way for a more sophisticated and targeted
exploitation. The hacker, having successfully obtained user information, is then positioned
to execute a specific SQL injection. Attackers have several ways to send HTTP requests
in web applications, to carry out SQL injection attacks. In this case study, username and
password information can be sent manually, using tools such as Postman or cURL, or by
automating scripts in languages such as Visual Basic .NET. This would take on the form
described in Figure 6.

http://www.domain.com/page.php?id=1&id2=1&id3=1
http://www.domain.com/page.php?id=1&id2=1&id3=1
http://www.domain.com/page.php?id=1&id2=1&id3=1
http://www.domain.com/page.php?id=1&id2=1&id3=1
http://www.domain.com/page.php?id=1&id2=1&id3=1
http://www.domain.com/page.php?id=1&id2=1&id3=1
http://www.domain.com/page.php?id=1&id2=1&id3=1
http://www.domain.com/page.php?id=1&id2=1&id3=1
http://www.domain.com/page.php?id=1&id2=1&id3=1

Appl. Sci. 2024, 14, 3780 11 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 19

allows the hacker to understand the structure of the table and to determine the exact num-
ber of columns used by the web page, enabling the attacker to proceed with more targeted
and effective SQL injection attempts.

Later, the “union select” command will essentially grant the hacker the ability to ex-
ecute statements directly in the database, with the results reflected on the webpage. Fol-
lowing the example, the hacker will manipulate the URL to http://www.do-
main.com/page.php?id=1&id2=1&id3=1’ union select 1,2,3,4,5,6,7,8,9,10. What this accom-
plishes is the presentation of column numbers to the hacker, indicating which columns
are vulnerable for SQL injection. This step is crucial and requires attention to discern the
changes. In some cases, alterations are quite noticeable and abrupt, while they are more
subtle in others. As a representative example, imagine that the vulnerability is located in
column 5. The webpage will reveal this number somewhere, providing the hacker with
the information needed for subsequent injection exploits.

The hacker then needs to input “database()” in column 5, resulting in the URL ap-
pearing as http://www. domain.com/page.php?id=1&id2=1&id3=1’ union select
1,2,3,4,database(),6,7,8,9,10. This action leverages the SQL injection vulnerability previ-
ously identified in column 5. By inserting “database()” at this point, the hacker retrieves
information about the current database being used by the webpage. Assuming the data-
base in use is Oracle instead of MySQL, this detail could be determined by placing
“@@datadir” where the hacker previously used “database()”. This technique allows the
hacker to gather critical details about the database structure, paving the way for a more
sophisticated and targeted exploitation. The hacker, having successfully obtained user in-
formation, is then positioned to execute a specific SQL injection. Attackers have several
ways to send HTTP requests in web applications, to carry out SQL injection attacks. In this
case study, username and password information can be sent manually, using tools such
as Postman or cURL, or by automating scripts in languages such as Visual Basic .NET.
This would take on the form described in Figure 6.

Figure 6. Visual Basic .NET code for deleting records from the user table of the database.

This malicious SQL injection attempts to delete records from the user table, where
the condition ‘ OR 1 = 1 is always true, effectively targeting all rows for deletion. This
example underscores the severity of SQL injection vulnerabilities, emphasizing the im-
portance of implementing robust security measures to safeguard against unauthorized
access and the manipulation of sensitive data.

Figure 7 summarizes the SQL injection attack. The key actors in this scenario include
the hacker, responsible for carrying out the attack; the website at the server, which serves
as the destination; and the database, where sensitive information is stored. The attack
phases include reconnaissance, during which the attacker gathers information about the
website and database; crafting the malicious request, designed to exploit a vulnerability
in the database; sending the malicious request to the website; exploiting the vulnerability
within the database; and, finally, extracting the sensitive data from the website.

Figure 6. Visual Basic .NET code for deleting records from the user table of the database.

This malicious SQL injection attempts to delete records from the user table, where the
condition ‘ OR 1 = 1 is always true, effectively targeting all rows for deletion. This example
underscores the severity of SQL injection vulnerabilities, emphasizing the importance of
implementing robust security measures to safeguard against unauthorized access and the
manipulation of sensitive data.

Figure 7 summarizes the SQL injection attack. The key actors in this scenario include
the hacker, responsible for carrying out the attack; the website at the server, which serves
as the destination; and the database, where sensitive information is stored. The attack
phases include reconnaissance, during which the attacker gathers information about the
website and database; crafting the malicious request, designed to exploit a vulnerability
in the database; sending the malicious request to the website; exploiting the vulnerability
within the database; and, finally, extracting the sensitive data from the website.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 19

Figure 7. Overview of the SQL injection attack.

5. Discussion
This section discusses the limitations of traditional security practices in software de-

velopment and introduces an AI-driven methodology for enhanced vulnerability detec-
tion. It compares the effectiveness of ChatGPT with other LLMs in identifying risks, em-
phasizing the importance of thorough evaluation in real-world applications. The section
also covers regulations and legislation pertaining to industrial applications, emphasizing
compliance with standards such as GDPR, HIPAA, NIST Cybersecurity Framework, and
ISO/IEC 27001 [35], to ensure data security and mitigate legal and regulatory risks. It also
highlights adherence to industry-specific standards like ISA/IEC 62443 [36] and provides
guidelines for trustworthy AI development in industrial settings. Additionally, it ad-
dresses security enhancement measures in industrial applications, including continuous
security monitoring, testing, and code review to identify and mitigate vulnerabilities. It
emphasizes the importance of security awareness training for industrial developers.

5.1. Analysis of Traditional Security Methodologies Versus AI-Based Approaches
Traditional tools and methodologies for addressing security in software develop-

ment often focus on static testing and static code analysis. These practices involve manual
code review by developers, or the use of automated tools that scan code for known vul-
nerabilities. However, recent research found that 32% of web applications contained high-
severity security vulnerabilities, even after static code analysis [37]. These data reflect the
persistence of vulnerabilities in web applications, despite standard security practices. In
contrast, the methodology based on AI code generation introduces an innovative and au-
tomated approach to vulnerability detection. Rather than relying solely on static testing,
this methodology uses AI models to generate code, which can assist in identifying and
mitigating vulnerabilities more efficiently and accurately [38]. This is because AI models
can analyze large amounts of code and learn security patterns, to avoid the introduction
of common vulnerabilities. This enables them to scale seamlessly to handle increasingly
complex software systems.

A comparative analysis of the approach carried out with ChatGPT, with respect to
other LLMs, can be seen in Table 2, where several indicators of performance can be found.
The different LLMs exhibit varying degrees of proficiency in identifying risks within the
generated code. In this sense, there are instances where LLMs detect fewer risks compared
to ChatGPT, while they identify more in other scenarios. This difference highlights the
risk in code generation tasks, indicating that the quality and security can significantly de-
pend on the model utilized and the specific programming task. Moreover, the analysis

Figure 7. Overview of the SQL injection attack.

5. Discussion

This section discusses the limitations of traditional security practices in software devel-
opment and introduces an AI-driven methodology for enhanced vulnerability detection. It
compares the effectiveness of ChatGPT with other LLMs in identifying risks, emphasizing
the importance of thorough evaluation in real-world applications. The section also covers
regulations and legislation pertaining to industrial applications, emphasizing compliance
with standards such as GDPR, HIPAA, NIST Cybersecurity Framework, and ISO/IEC
27001 [35], to ensure data security and mitigate legal and regulatory risks. It also highlights
adherence to industry-specific standards like ISA/IEC 62443 [36] and provides guidelines
for trustworthy AI development in industrial settings. Additionally, it addresses security
enhancement measures in industrial applications, including continuous security monitor-
ing, testing, and code review to identify and mitigate vulnerabilities. It emphasizes the
importance of security awareness training for industrial developers.

5.1. Analysis of Traditional Security Methodologies Versus AI-Based Approaches

Traditional tools and methodologies for addressing security in software development
often focus on static testing and static code analysis. These practices involve manual code
review by developers, or the use of automated tools that scan code for known vulnerabili-

Appl. Sci. 2024, 14, 3780 12 of 18

ties. However, recent research found that 32% of web applications contained high-severity
security vulnerabilities, even after static code analysis [37]. These data reflect the per-
sistence of vulnerabilities in web applications, despite standard security practices. In
contrast, the methodology based on AI code generation introduces an innovative and
automated approach to vulnerability detection. Rather than relying solely on static testing,
this methodology uses AI models to generate code, which can assist in identifying and
mitigating vulnerabilities more efficiently and accurately [38]. This is because AI models
can analyze large amounts of code and learn security patterns, to avoid the introduction
of common vulnerabilities. This enables them to scale seamlessly to handle increasingly
complex software systems.

A comparative analysis of the approach carried out with ChatGPT, with respect to
other LLMs, can be seen in Table 2, where several indicators of performance can be found.
The different LLMs exhibit varying degrees of proficiency in identifying risks within the
generated code. In this sense, there are instances where LLMs detect fewer risks compared
to ChatGPT, while they identify more in other scenarios. This difference highlights the risk
in code generation tasks, indicating that the quality and security can significantly depend
on the model utilized and the specific programming task. Moreover, the analysis indicates
that ChatGPT and Copilot demonstrate robust scalability, as evidenced by their consistent
performance in generating code and detecting risks, contributing to the overall security in
different contexts. In contrast, Gemini exhibits limitations in certain scenarios, including
the inability to generate code and lower efficacy in risk detection in specific tasks. Such
findings underscore the importance of the thorough evaluation and comparison of codes in
real-world applications, to ensure robust and secure software development practices.

Table 2. Performance of various LLMs, in terms of secure code generation.

Code Description Code Size Risk Detected (by LLM
Itself)

Risk Detected (by
ChatGPT)

Insecure
SQL

Database creation
with ChatGPT 13 lines, 45 words Total 10 (low: 3, medium: 4,

high: 3 -

Secure
SQL

Database creation
with ChatGPT 17 lines, 56 words Total 6 (low: 3, medium: 1,

high: 2) -

Insecure
SQL

Database creation
with Gemini 9 lines, 22 words Total 3 (low: 0, medium: 2,

high: 1)
Total 8 (low: 6, medium: 2,
high: 0)

Secure
SQL

Database creation
with Gemini 17 lines, 39 words Total 3 (low: 0, medium: 1,

high: 2)
Total 5 (low: 1, medium: 3,
high: 1)

Insecure
SQL

Database creation
with Copilot 9 lines, 38 words Total 5 (low: 0, medium: 3,

high: 2)
Total 5 (low: 2, medium: 2,
high: 1)

Secure
SQL

Database creation
with Copilot 13 lines, 45 words Total 5 (low: 1, medium: 3,

high: 1)
Total 3 (low: 1, medium: 3,
high: 1)

Insecure
PHP

User Authentication
with ChatGPT 35 lines, 115 words Total 3 (low: 1, medium: 1,

high: 1) -

Secure
PHP

User Authentication
with ChatGPT 35 lines, 111 words Total 2 (low: 0, medium: 1,

high: 1) -

Insecure
PHP

User Authentication
with Gemini Unable to create N/A N/A

Secure
PHP

User Authentication
with Gemini Unable to create N/A N/A

Insecure
PHP

User Authentication
with Copilot 45 lines, 129 words Total 5 (low: 0, medium: 2,

high: 3)
Total 2 (low: 0, medium: 1,
high: 1)

Secure
PHP

User Authentication
with Copilot 31 lines, 106 words Total 7 (low: 1, medium: 5,

high: 1)
Total 2 (low: 1, medium: 1,
high: 0)

For instance, numerous vulnerabilities have been identified within the script provided
by ChatGPT in Figure 2. Pertaining to low-severity issues, shortcomings in error handling
and input validation were observed, potentially leading to unexpected system behavior and
susceptibility to SQL injection attacks. Moderately concerning are deficiencies in password

Appl. Sci. 2024, 14, 3780 13 of 18

management practices (e.g., the lack of a clear password policy and the usage of simplistic
password examples), which could compromise the integrity of user credentials. However,
of heightened concern are the absence of authentication mechanisms for database access,
the potential use of insecure password hashing algorithms, and the exposure of sensitive
user information through auto-incremented user IDs.

The revised code made with ChatGPT addresses various security concerns compared
to the original version, but still requires improvements for optimal system security. Pass-
word storage is strengthened with hashing and salt, yet susceptibility to brute force attacks
remains, if weak hashing algorithms or predictable passwords are used. Although the
hashed password length is increased, adequacy depends on the hashing algorithm and
security practices. Similarly, the salt field’s length may need adjustment. Also, explicit error
handling is absent, necessitating robust management for system resilience. Furthermore,
the absence of a password policy and explicit input validation exposes vulnerabilities to
potential attacks. Despite this, a 45% improvement in code security was obtained after a
first review of the SQL script.

Similarly, the insecure version of the user authentication code generated with ChatGPT
in Figure 3 also reveals differences, when compared with a secure version. While both
versions share similar code structures, the secure rendition demonstrates a reduced risk
profile, featuring one less low-risk issue compared to the insecure version (see Table 2).

5.2. Regulation and Legislation on Industrial Applications

Ensuring compliance with relevant industry regulations and standards, such as Gen-
eral Data Protection Regulation (GDPR) or the Health Insurance Portability and Account-
ability Act (HIPAA), can help protect sensitive data and mitigate the legal and regulatory
risks associated with security breaches [39]. Additionally, compliance frameworks like
NIST Cybersecurity Framework or ISO/IEC 27001 establish the requirements for imple-
menting effective security controls and risk management practices related to SQL injection
vulnerabilities. To fulfill it, ISO/IEC 27002 [40] offers a comprehensive framework for
information security management systems, providing guidance on establishing, imple-
menting, maintaining, and continually improving security controls and procedures within
an organization. ISO/IEC 27002 emphasizes the necessity of robust security policies, orga-
nizational structures, and human resource management practices to effectively mitigate
risks. For instance, ISO/IEC 27002 recommends implementing security policies addressing
secure coding practices, including guidelines for parameterized queries and input valida-
tion to prevent SQL injection exploits. The organizational security measures outlined in
ISO/IEC 27002 encompass role-based access controls, regular security training for develop-
ers and administrators, and incident response protocols to promptly address SQL injection
breaches [41].

Additionally, compliance with industry-specific standards such as ISA/IEC 62443
for industrial control systems (ICSs) cybersecurity is crucial for ensuring the security of
critical infrastructure and industrial operations against cyber threats. Adherence to this
standard ensures that industrial control systems are designed, implemented, operated, and
maintained securely. Certification bodies like the International Society of Automation (ISA)
or the International Electrotechnical Commission (IEC) provide certification programs to
validate compliance with ISA/IEC 62443, offering assurance to stakeholders regarding
the security of industrial systems. Complementarily, RFC 2196 offers guidance on site
security policies and procedures, focusing on establishing clear security guidelines and
practices to protect against various security threats, including SQL injection attacks. RFC
2196 underscores proactive measures such as pre-employment background checks, ongoing
security awareness training, and stringent access controls to mitigate the risks associated
with SQL injection vulnerabilities [42].

Moreover, the use of AI-supported tools in the industry necessitates adherence to
standards and best practices for ensuring the security and reliability of AI systems. Organi-
zations like the Institute of Electrical and Electronics Engineers (IEEE) and the National

Appl. Sci. 2024, 14, 3780 14 of 18

Institute of Standards and Technology (NIST) provide guidelines and frameworks for
trustworthy AI development, encompassing aspects such as transparency, accountability,
fairness, and robustness [43]. Adhering to these guidelines helps to mitigate the risks associ-
ated with AI-generated code and ensures the integrity of industrial processes and systems.

Furthermore, collaboration with industry consortia and research organizations can
facilitate the development and adoption of industry-specific security standards and best
practices for AI-supported systems. Initiatives such as the Industrial Internet Consortium
(IIC) or the Manufacturing Enterprise Solutions Association (MESA) promote collaboration
among industry stakeholders to address cybersecurity challenges in industrial environ-
ments and foster innovation in AI applications. This is also the case for e-mark certification
by TÜV SÜD, for the development of AI and machine learning in autonomous vehicles [44].
By actively participating in such initiatives, organizations can stay abreast of emerging
threats and technologies, enhancing the security posture of AI-enabled industrial systems.

5.3. Measures for Enhancing Security in Industrial Applications

Implementing continuous security monitoring solutions designed to detect and re-
spond to security threats in real-time for industrial applications can also help in mitigating
the risks. Security information and event management (SIEM) systems, intrusion detection
systems (IDSs), and endpoint detection and response (EDR) solutions are examples of
technologies that allow for the detection of suspicious or malicious activity in the database
in real-time [45]. Moreover, in industrial settings, destructive measures could involve
actions taken on a non-production environment or a replicated database instance, without
impacting the live production system. In this scenario, destructive measures could include
deliberately exploiting SQL injection vulnerabilities to test the system’s resilience, simulate
potential attacks, or identify weaknesses in the security defenses, without risking harm to
the live environment. The utilization of security tools such as OpenVAS, Nessus, Wireshark,
Nmap, and SQLmap is essential for this purpose [46]. These tools aid in detecting potential
vulnerabilities in network infrastructure, including misconfigurations exacerbating SQL
injection risks. Specifically, SQLmap automates the detection and exploitation of SQL injec-
tion flaws within web applications, enabling security teams to assess defenses effectively
and prioritize remediation efforts [47].

Regarding addressing the challenges posed by novice programming errors and vul-
nerabilities introduced by AI-generated code in industrial applications, it is essential to
incorporate additional measures tailored to specific requirements, based on standards and
industry best practices. Implementing secure coding standards and guidelines, such as
those outlined by organizations like Open Web Application Security Project (OWASP) or
Computer Emergency Response Team (CERT), can help mitigate common programming
errors and vulnerabilities [46]. These practices include input validation, output encod-
ing, proper error handling, and secure authentication mechanisms, which are particularly
crucial in industrial settings, where data integrity and system reliability are paramount.

Establishing robust code review processes—where experienced developers review
code written by novice programmers or generated by AI tools—can help identify and
address potential security vulnerabilities early in the development lifecycle. Code reviews
should focus not only on functionality, but also on security considerations specific to
industrial applications, such as ensuring compliance with industry-specific regulations
and standards.

Incorporating security testing into the software development lifecycle of industrial
systems, including techniques such as static code analysis, dynamic application security
testing (DAST), and penetration testing, can help identify and remediate vulnerabilities in
both manually written and AI-generated code. Automated tools like Burp Suite, SonarQube,
and Veracode can assist in these efforts, providing specialized features for assessing the
security of industrial software systems [48].

Furthermore, providing ongoing security awareness and training programs for devel-
opers in industrial settings is essential. This includes education on secure coding practices

Appl. Sci. 2024, 14, 3780 15 of 18

focused on industrial applications (e.g., Cisco Certified Network Professional), common
vulnerabilities specific to industrial environments, and threat modeling techniques adapted
to the unique challenges faced by industrial systems. By enhancing the security knowledge
and skills of developers, organizations can improve the overall security posture of their
industrial systems and reduce the likelihood of introducing vulnerabilities through coding
errors or AI-generated code [49].

6. Conclusions

Novice developers typically make 16 errors per 100 lines of code, while experienced
ones reduce this rate by half, yet errors still present significant risks across industries. Large
Language Models (LLMs) offer faster coding, but they do not always produce bug-free
code, posing risks of application failure and mistrust if misused. LLMs, like ChatGPT, are
popular among engineers, but concerns persist regarding security gaps. Consequently,
new vulnerabilities arise as ICT evolves, necessitating scrutiny of self-generated tools.
Moreover, novice programmers struggle with procedural programming, highlighting the
need for strategies to address deficiencies. Therefore, analyzing security in AI-generated
programming and enhancing security training in ICT education programs are crucial.
Collaborative efforts between engineers and cybersecurity experts, facilitated by tools like
DeepState and VulnEx, are essential for establishing robust security protocols and ensuring
software security for industrial applications, through security code reviews.

Accordingly, the present research focuses on the vulnerabilities of LLMs with the
aim of contributing to the understanding of the implications, through a practical case,
and proposing effective strategies to enhance secure software development practices. The
methodology carried out in this work describes the creation of a database, definition
of tables, insertion of user data, and storage of passwords, typically used in industrial
applications like inventory management systems, production tracking systems, and quality
management systems, where web-based applications, databases, SQL queries, and PHP
play a key role. However, the provided code is shown to lack strong security measures (e.g.,
password encryption and use of prepared statements to prevent SQL injection attacks).
Furthermore, it is shown that PHP code for user authentication is vulnerable to SQL
injection, due to concatenation of user input into SQL queries without proper sanitization.
Thus, the importance of using prepared statements or parameterized queries to mitigate
SQL injection vulnerabilities is emphasized.

The experimentation carried out showed an SQL injection attack as an example, which
exploits vulnerabilities in the construction of SQL queries during login processes on a
website. Through iterative URL manipulation tests, the attacker identifies potential vulnera-
bilities. By determining the number of columns and executing commands, the hacker gains
access to the database information. The attacker then executes a malicious SQL injection
to delete user records, which highlights the critical need for strong security measures to
prevent unauthorized access and manipulation of data. This could lead to disruptions in
production processes, loss of critical information, or compromised product quality.

The analysis on AI-based code generation models revealed significant variations be-
tween them in detecting security risks. A comparison between codes showed a trend
towards reduced risk in secure versions, indicating the potential of LLMs to improve code
security. However, it is essential to keep in mind that fewer problems detected using an
LLM does not necessarily equate to better code quality; it could reflect a lower ability to
identify problems. In this sense, ChatGPT generally detected more risks in the code com-
pared to Gemini and Copilot, demonstrating better performance. These findings highlight
the necessity for the comprehensive evaluation and comparison of AI-generated code in
practical applications, to guarantee robust and secure software development practices.

Regarding recommendations on security, ensuring compliance with industry regu-
lations such as GDPR and HIPAA helps protect sensitive data and mitigate legal risks.
Frameworks such as NIST and ISO/IEC 27001 establish security controls to address SQL
injection vulnerabilities. To this end, ISO/IEC 27002 emphasizes strong security policies

Appl. Sci. 2024, 14, 3780 16 of 18

and training to prevent breaches. In addition, compliance with industry-specific standards
such as ISA/IEC 62443 for industrial control systems’ (ICSs) cybersecurity is crucial for
ensuring the security of critical infrastructure and industrial operations. Additionally, other
approaches such as continuous security monitoring with SIEM, IDS, and EDR systems help
detect and respond to threats in real time. In addition, destructive testing in non-production
environments can assess resiliency, without putting active systems at risk. In this sense,
tools like OpenVAS, Nessus, and SQLmap help in detecting and testing for vulnerabili-
ties. Additionally, implementing secure coding standards, robust code review processes,
and security testing in the development lifecycle are also noted as approaches to address
novice programming errors and vulnerabilities in AI-generated code. Automated tools
like Burp Suite and SonarQube assist in security testing efforts. In this regard, ongoing
security awareness and training programs educate developers on secure coding practices
to improve organizational security.

Regarding the limitations of this work, while the provided example illustrates potential
vulnerabilities introduced by generative AI tools, a more thorough examination is needed,
ideally with multiple scenarios beyond the current single example. Incorporating analyses
that compare code generated by engineers and AI tools of varying expertise levels could
provide statistical evidence. Furthermore, practical examples of mitigation strategies, such
as modifying prompts to generate attack-resistant code, will be covered in future studies.
Future work could focus on investigating additional approaches to address vulnerabilities
in self-generated code, such as the development of static analysis tools specifically designed
to detect and mitigate these types of security risks. Moreover, further exploration could
be carried out into the ethical and social implications of the increasing reliance on AI in
software development, as well as the legal and regulatory implications related to liability
for self-generated code vulnerabilities.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: I would like to express my very great appreciation to A. Fernández García for
his valuable and constructive work that helped to improve this research.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. BSA Foundation. Every Sector Is a Software Sector: Manufacturing. Tech. Rep. 2018, 1–16. Available online: https://software.org/

wp-content/uploads/Every_Sector_Software_Manufacturing.pdf (accessed on 11 April 2024).
2. Fictiv and Dimensional Research. 2021 State of Manufacturing Report. eBook 2021. Available online: https://www.fictiv.com/

ebooks/2021-state-of-manufacturing (accessed on 11 April 2024).
3. Federation of German Industries. BDI Manifesto for Growth and Employment—Germany 2020; BDI publication No. 412E; Bundesver-

band der Deutschen Industrie e.V: Cologne, Germany, 2020; ISSN 0407-8977.
4. Lemeš, S. The Role of Software Engineering in Industry 4.0. In Proceedings of the Conference on Basic technologies and models

for implementation of Industry 4.0, Sarajevo, Bosnia and Herzegovina, 2023; Volume 209, pp. 57–88.
5. Wheeler, D.A.; Jones, D.A. An Empirical Study of Programming Errors. IEEE Trans. Softw. Eng. 1995, 21, 1269–1286.
6. Zimmermann, T.; Herzig, M.; Zeller, A. A Study of Programming Errors in Professional Software. Empir. Softw. Eng. 2020, 25,

49–88.
7. Morris, M.R.; Sohl-dickstein, J.; Fiedel, N.; Warkentin, T.; Dafoe, A.; Faust, A.; Farabet, C.; Legg, S. Levels of AGI: Operationalizing

Progress on the Path to AGI. 2023. Available online: https://arxiv.org/pdf/2311.02462.pdf (accessed on 11 April 2024).
8. Himmelreich, J. Against “Democratizing AI”. AI Soc. 2023, 38, 1333–1346. [CrossRef]
9. Spasić, A.J.; Janković, D.S. Using ChatGPT Standard Prompt Engineering Techniques in Lesson Preparation: Role, Instructions

and Seed-Word Prompts. In Proceedings of the 2023 58th International Scientific Conference on Information, Communication and
Energy Systems and Technologies (ICEST), Nis, Serbia, 29 June–1 July 2023; pp. 47–50.

10. Ressler, M. Automated inauthenticity. AI Soc. 2023, epub ahead of print. [CrossRef]
11. Nasr, M.; Carlini, N.; Hayase, J.; Jagielski, M.; Cooper, A.F.; Ippolito, D.; Choquette-Choo, C.A.; Wallace, E.; Tramèr, F.; Lee, K.

Scalable Extraction of Training Data from (Production) Language Models. arXiv 2023, arXiv:2311.17035v1.

https://software.org/wp-content/uploads/Every_Sector_Software_Manufacturing.pdf
https://software.org/wp-content/uploads/Every_Sector_Software_Manufacturing.pdf
https://www.fictiv.com/ebooks/2021-state-of-manufacturing
https://www.fictiv.com/ebooks/2021-state-of-manufacturing
https://arxiv.org/pdf/2311.02462.pdf
https://doi.org/10.1007/s00146-021-01357-z
https://doi.org/10.1007/s00146-023-01795-x

Appl. Sci. 2024, 14, 3780 17 of 18

12. Murray-Rust, D.; Lupetti, M.L.; Nicenboim, I.; van der Hoog, W. Grasping AI: Experiential exercises for designers. AI Soc. 2023,
epub ahead of print. [CrossRef]

13. Ke, Q.; Jing, X.; Woźniak, M.; Xu, S.; Liang, Y.; Zheng, J. APGVAE: Adaptive disentangled representation learning with the
graph-based structure information. Inf. Sci. 2024, 657, 119903. [CrossRef]

14. Hannibal046. Awesome-LLM. 2023. Available online: https://github.com/Hannibal046/Awesome-LLM (accessed on 11
April 2024).

15. Zheng, J.; Woźniak, M. Design of Quick Search Method for Key Feature Images in Mobile Networks. Mob. Networks Appl. 2022,
27, 2524–2533. [CrossRef]

16. Lozhnikov, P.S.; Zhumazhanova, S.S. Potential Information Security Risks in The Implementation of AI—Based Systems. In
Proceedings of the 2022 Dynamics of Systems, Mechanisms and Machines (Dynamics), Omsk, Russia, 7–12 November 2022;
pp. 1–4.

17. Jøsang, A.; Ødegaard, M.; Oftedal, E. Cybersecurity Through Secure Software Development. In Proceedings of the 9th IFIP WG
11.8 World Conference, WISE 9, Hamburg, Germany, 26–28 May 2015.

18. Pillay, N.; Jugoo, V.R. An Analysis of the Errors Made by Novice Programmers in a First Course in Procedural Programming in
Java. Comput. Sci. 2006, 1–8.

19. Albrecht, E.; Grabowski, J. Sometimes It’s Just Sloppiness—Studying Students’ Programming Errors and Misconceptions. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education, Portland, OR, USA, 11–14 March 2020.

20. Xie, J.; Lipford, H.R.; Chu, B. Why do programmers make security errors? In Proceedings of the 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Pittsburgh, PA, USA, 18–22 September 2011; pp. 161–164.

21. Smith, J.; Johnson, B.; Murphy-Hill, E.; Chu, B.; Lipford, H.R. How Developers Diagnose Potential Security Vulnerabilities with a
Static Analysis Tool. IEEE Trans. Softw. Eng. 2018, 45, 877–897. [CrossRef]

22. Smith, J.; Johnson, B.; Murphy-Hill, E.; Chu, B.; Lipford, H.R. Questions developers ask while diagnosing potential security
vulnerabilities with static analysis. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering, Bergamo,
Italy, 30 August–4 September 2015.

23. Srinivasu, P.N.; Ijaz, M.F.; Woźniak, M. XAI-driven model for crop recommender system for use in precision agriculture. Comput.
Intell. 2024, 40, 1. [CrossRef]

24. Kopec, D.; Yarmish, G.; Cheung, P. A description and study of intermediate student programmer errors. ACM SIGCSE Bull. 2007,
39, 146–156. [CrossRef]

25. Votipka, D.; Fulton, K.R.; Parker, J.; Hou, M.; Mazurek, M.L.; Hicks, M.W. Understanding security mistakes developers make:
Qualitative analysis from Build It, Break It, Fix It. In Proceedings of the 29th USENIX Security Symposium 2020, Boston, MA,
USA, 12–14 August 2020.

26. Goodman, P.; Grieco, G.; Groce, A. Tutorial: DeepState: Bringing Vulnerability Detection Tools into the Development Cycle.
In Proceedings of the 2018 IEEE Cybersecurity Development (SecDev), Cambridge, MA, USA, 30 September–2 October 2018;
pp. 130–131.

27. Dennig, F.L.; Cakmak, E.; Plate, H.; Keim, D.A. VulnEx: Exploring Open-Source Software Vulnerabilities in Large Development
Organizations to Understand Risk Exposure. In Proceedings of the 2021 IEEE Symposium on Visualization for Cyber Security
(VizSec), New Orleans, LA, USA, 27 October 2021; pp. 79–83.

28. Bharadwaj, R.; Parker, I. Double-edged sword of LLMs: Mitigating security risks of AI-generated code. In Disruptive Technologies
in Information Sciences VII; SPIE: Bellingham, WA, USA, 2023; Volume 12542.

29. Cotroneo, D.; Improta, C.; Liguori, P.; Natella, R. Vulnerabilities in AI Code Generators: Exploring Targeted Data Poisoning
Attacks. arXiv 2023, arXiv:2308.04451.

30. Erdogan, G.; Garcia-Ceja, E.; Hugo, Å.; Nguyen, P.H.; Sen, S. A Systematic Mapping Study on Approaches for Al-Supported
Security Risk Assessment. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC), Madrid, Spain, 12–16 July 2021; pp. 755–760.

31. Assal, H.; Wilson, J.; Chiasson, S.; Biddle, R. Collaborative Security Code-Review Towards Aiding Developers Ensure Software-
Security. 2015. Available online: https://chorus.scs.carleton.ca/wp-content/papercite-data/pdf/assal2015codereview-soups.pdf
(accessed on 11 April 2024).

32. Ludi, S. Work in Progress: Effectiveness of Collaboration within a Secure Software Engineering Course for SE and Computing
Students. In Proceedings of the Proceedings. Frontiers in Education. 36th Annual Conference, San Diego, CA, USA, 27–31
October 2006; pp. 15–16.

33. Rehman, H.U.; Chaplin, J.C.; Zarzycki, L.; Ratchev, S. A Framework for Self-configuration in Manufacturing Production Systems.
IFIP Adv. Inf. Commun. Technol. 2021, 626, 71–79.

34. Davis, M.E.; Phillips, J.A. Learning PHP & MySQL, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2007.
35. ISO/IEC 27001:2022; Information security, cybersecurity and privacy protection. Technical Report. International Organization for

Standardization: Geneva, Switzerland, 2022.
36. ANSI/ISA-62443-4-2-2018; Security for industrial automation and control systems, Part 4-2: Technical security require-ments for

IACS components, 2nd Printing. Technical Report. International Society of Automation: Research Triangle Park, NC, USA, 2018.
37. OWASP. Los Diez Riesgos Más Críticos en Aplicaciones Web. Tech. Rep. 2017. Available online: https://wiki.owasp.org/images/

5/5e/OWASP-Top-10-2017-es.pdf (accessed on 11 April 2024).

https://doi.org/10.1007/s00146-023-01794-y
https://doi.org/10.1016/j.ins.2023.119903
https://github.com/Hannibal046/Awesome-LLM
https://doi.org/10.1007/s11036-022-02077-4
https://doi.org/10.1109/tse.2018.2810116
https://doi.org/10.1111/coin.12629
https://doi.org/10.1145/1272848.1272899
https://chorus.scs.carleton.ca/wp-content/papercite-data/pdf/assal2015codereview-soups.pdf
https://wiki.owasp.org/images/5/5e/OWASP-Top-10-2017-es.pdf
https://wiki.owasp.org/images/5/5e/OWASP-Top-10-2017-es.pdf

Appl. Sci. 2024, 14, 3780 18 of 18

38. Louati, A.; Gasiba, T. Source Code Vulnerability Detection Using Deep Learning Algorithms for Industrial Applications. Commun.
Comput. Inf. Sci. 2023, 1768, 161–178.

39. Blue, J.; Furey, E. A Novel Approach for Protecting Legacy Authentication Databases in Consideration of GDPR. In Proceedings
of the 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018;
pp. 1–6.

40. ISO/IEC 27002:2022; Information security, cybersecurity and privacy protection. International Organization for Standardization:
Geneva, Switzerland, 2022.

41. Iqbal, A.; Horie, D.; Goto, Y.; Cheng, J. A Database System for Effective Utilization of ISO/IEC 27002. In Proceedings of the
Fourth International Conference on Frontier of Computer Science and Technology, Washington, DC, USA, 17–19 December 2009;
pp. 607–612.

42. Fraser, B. Request for Comments: 2196. Network Working Group 1997. Available online: https://datatracker.ietf.org/doc/html/
rfc2196 (accessed on 11 April 2024).

43. Brundage, M.; Avin, S.; Wang, J.; Belfield, H.; Krueger, G.; Hadfield, G.; Khlaaf, H.; Yang, J.; Toner, H.; Fong, R.; et al. Toward
Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims. arXiv 2020, arXiv:2004.07213.

44. Mateo Sanguino, T.J.; Lozano Domínguez, J.M.; Carvalho Baptista, P. Cybersecurity Certification & Auditing of Automotive
Industry. In Advances in Transport Policy and Planning; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 1–17.

45. Rahmawati, T.; Shiddiq, R.W.; Sumpena, M.R.; Setiawan, S.; Karna, N.; Hertiana, S.N. Web Application Firewall Using Proxy
and Security Information and Event Management (SIEM) for OWASP Cyber Attack Detection. In Proceedings of the 2023
IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), Bali, Indonesia, 28–30 November 2023;
pp. 280–285.

46. Vimala, K.; Fugkeaw, S. VAPE-BRIDGE: Bridging OpenVAS Results for Automating Metasploit Framework. In Proceedings of
the 2022 14th International Conference on Knowledge and Smart Technology (KST), Chon Buri, Thailand, 26–29 January 2022;
pp. 69–74.

47. Bouafia, R.; Benbrahim, H.; Amine, A. Automatic Protection of Web Applications Against SQL Injections: An Approach Based On
Acunetix, Burp Suite and SQLMAP. In Proceedings of the 2023 9th International Conference on Optimization and Applications
(ICOA), Abu Dhabi, United Arab Emirates, 5–6 October 2023; pp. 1–6.

48. Sönmez, F.Ö.; Kiliç, B.G. Holistic Web Application Security Visualization for Multi-Project and Multi-Phase Dynamic Application
Security Test Results. IEEE Access 2021, 9, 25858–25884. [CrossRef]

49. Pikulin, V.; Kubo, D.; Bandara, S.; Shamsiemon, M.A.; Yasmin, A.; Jayatilaka, A.; Madugalla, A.; Kanij, T. Towards Developer-
Centered Secure Coding Training. In Proceedings of the 38th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW), Luxembourg, 11–15 September 2023; pp. 24–31.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://datatracker.ietf.org/doc/html/rfc2196
https://datatracker.ietf.org/doc/html/rfc2196
https://doi.org/10.1109/access.2021.3057044

	Introduction
	Related Work
	Materials and Methods
	Materials
	Methodology for Database Establishment
	Methodology for User Authentication

	Experimentation
	Discussion
	Analysis of Traditional Security Methodologies Versus AI-Based Approaches
	Regulation and Legislation on Industrial Applications
	Measures for Enhancing Security in Industrial Applications

	Conclusions
	References

